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Abstract
Aim  To test radiomic approach in patients with metastatic neuroendocrine tumors (NETs) treated with Everolimus, with the 
aim to predict progression-free survival (PFS) and death.
Materials and methods  Twenty-five patients with metastatic neuroendocrine tumors, 15/25 pancreatic (60%), 9/25 ileal 
(36%), 1/25 lung (4%), were retrospectively enrolled between August 2013 and December 2020. All patients underwent 
contrast-enhanced CT before starting Everolimus, histological diagnosis, tumor grading, PFS, overall survival (OS), death, 
and clinical data collected. Population was divided into two groups: responders (PFS ≤ 11 months) and non-responders 
(PFS > 11 months). 3D segmentation was performed on whole liver of naïve CT scans in arterial and venous phases, using 
a dedicated software (3DSlicer v4.10.2). A total of 107 radiomic features were extracted and compared between two groups 
(T test or Mann–Whitney), radiomics performance assessed with receiver operating characteristic curve, Kaplan–Meyer 
curves used for survival analysis, univariate and multivariate logistic regression performed to predict death, and interobserver 
variability assessed. All significant radiomic comparisons were validated by using a synthetic external cohort. P < 0.05 is 
considered significant.
Results  15/25 patients were classified as responders (median PFS 25 months and OS 29 months) and 10/25 as non-responders 
(median PFS 4.5 months and OS 23 months). Among radiomic parameters, Correlation and Imc1 showed significant dif-
ferences between two groups (P < 0.05) with the best performance (internal cohort AUC 0.86–0.84, P < 0.0001; external 
cohort AUC 0.84–0.90; P < 0.0001). Correlation < 0.21 resulted correlated with death at Kaplan–Meyer analysis (P = 0.02). 
Univariate analysis showed three radiomic features independently correlated with death, and in multivariate analysis radi-
omic model showed good performance with AUC 0.87, sensitivity 100%, and specificity 66.7%. Three features achieved 
0.77 ≤ ICC < 0.83 and one ICC = 0.92.
Conclusions  In patients affected by metastatic NETs eligible for Everolimus treatment, radiomics could be used as imaging 
biomarker able to predict PFS and death.
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PFS	� Progression-free survival
OS	� Overall survival
CM	� Contrast medium
LBW	� Lean body weight
GLSZM	� Gray-level size zone matrix
NGTDM	� Neighboring gray-tone difference Matrix
GLDM	� Gray-level dependence matrix
GLCM	� Gray-level co-occurrence matrix
GLRLM	� Gray-level run length matrix
ROC	� Receiver operating characteristic
ADASYN	� Adaptive synthetic sampling approach

Introduction

Neuroendocrine neoplasms (NENs) are rare and indolent 
tumors, arising from diffuse neuroendocrine cells and the 
most common neoplasms occur in the gastroenteropancre-
atic tract (GEP-NETs) and in the lung [1]. An updating of 
WHO classification divided NENs in well-differentiated 
neuroendocrine tumors (NETs) and poorly differentiated 
neuroendocrine carcinomas (NECs) according to differentia-
tion degree and morphological features, in order to classify 
the more aggressive neoplasms as carcinomas [2].

In the new era of target therapy, Everolimus has been 
used in the treatment of advanced NETs, in management of 
advanced progressive disease [3, 4]. One of the main clini-
cal challenges is to predict efficacy of Everolimus before 
starting the therapy, by stratifying patients as responders 
and non-responders, then predicting progression-free sur-
vival (PFS) and death. In fact, both clinical and histological 
data (e.g., tumor grade, age, sex, and prior chemotherapy) 
resulted to have limited accuracy to predict PFS and death 
with consistent and reproducible results [4, 5].

In such scenario, radiomics could be an emerging nonin-
vasive biomarker, having the expectancy to predict patient 
prognosis on the basis of liver microarchitecture, microenvi-
ronmental, and heterogeneity by extracting radiomic features 
from volumetric liver segmentation [6–9]. NENs radiomic 
approach was studied and tested by several groups, with a 
specific focus on tumor degree differentiation and differen-
tial diagnosis between neuroendocrine and non-neuroendo-
crine neoplasms [10–16]. The major results were reached in 
tumor degree differentiation with the goal to overcome and 
support conventional tumor biopsy, often altered by substan-
tial intrinsic bias (e.g., lesion sampling, operator experience, 
and bleeding) [17]. In the future landscape of personalized 
medicine, radiomics might enter in the structured workflow 
of NENs by providing several objective parameters useful 
for stratifying patients according to tumor aggressiveness, 
risk of recurrence, and mortality [6, 7]. In this study we 
proposed both a comparison and survival analysis between 
responders and non-responder NETs to Everolimus, then we 

built a radiomic model having as clinical endpoint the death. 
The goal of the study was to provide an imaging tool to 
screen patients with high risk of aggressive disease before 
starting the therapy.

On the best of our knowledge, there are no studies which 
tested radiomics performance to predict prognosis, in 
terms of PFS and death, in patients with NET before start-
ing Everolimus. The aim of this study is to investigate the 
performance of radiomic approach, by analyzing naïve CT 
scans, in predicting PFS and to test any correlations with 
death in patients affected by metastatic NETs suitable for 
Everolimus treatment.

Materials and methods

Patient selection

This retrospective observational study was in accordance 
with the Declaration of Helsinki. All procedures were 
approved by the ENETS Center of Excellence of Rome 
(Sant’Andrea University Hospital)   Institutional Review 
Board. It was structured by selecting all patients affected by 
NETs with liver metastases, afferents at the ENETS Center 
of Excellence of Rome (Sant'Andres University Hospital), 
from August 2013 to December 2020, eligible to be treated 
with Everolimus (well-differentiated gastroenteropancreatic 
or lung NENs with documented progressive disease) [4]. All 
participants provided the informed consensus, the approval 
of Institutional Review Board was obtained. Epidemiologi-
cal and clinical data were collected for each patients includ-
ing sex, age, tumor grading, Ki67, overall survival (OS), 
and PFS. Patients were selected according to the following 
inclusion criteria: (a) patients with histological diagnosis 
of NETs, (b) evidence of liver metastases, (c) availability 
of clinical data, and d) availability of contrast-enhanced 
naïve CT scans. Exclusion criteria were the following: (a) 
intolerance of Everolimus and (b) patients with previous 
liver surgery or locoregional treatment. PFS and OS were 
evaluated from the time of beginning of Everolimus treat-
ment. From an initial population of 69 patients, 25 patients 
with progressive metastatic NETs were enrolled and divided 
into two groups: responders and non-responders according 
to the PFS ≤ 11 months and PFS > 11 months, respectively 
(Fig. 1) [18, 19]. A synthetic external validation cohort was 
built by using the adaptive synthetic sampling approach 
(ADASYN) [20], achieving 87 synthetic patients for the 
group of responders and 90 for the non-responders.

CT acquisition protocol

Patients with histological diagnosis of metastatic liver dis-
ease in NETs, eligible for Everolimus treatment underwent 
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multiphases CT scans before starting Everolimus. CT scans 
were obtained by using 128-slice CT (GE Revolution EVO 
Slice CT Scanner, GE Healthcare, Milwaukee, WI, USA), 
patients were in supine position and the scans were per-
formed in cranio-caudal direction at end-inspiration. Z-axis 
included the entire abdomen, from the diaphragm to the 
pubic symphysis for unenhanced, late arterial, portal venous, 
and delayed phases. In this study were selected for the radi-
omic analysis late arterial and portal venous phases.

For each patient, the volume of contrast medium (CM) 
was tailored in accordance with lean body weight (LBW) 
[21, 22]:

The administration of contrast medium bolus (iopromide 
370 mg I/mL, Ultravist 370; Bayer AG, Berlin, Germany) 
and the saline solution (45 mL) was performed through 
contrast media injection system (MEDRAD® Centargo CT 
Injection System) with a flow rate of 3.5 mL/s by an ante-
cubital venous access (18–20 gauge). The bolus-tracking 
method (Smart Prep, GE, Milwaukee, WI) was used for the 
contrast-enhanced CT phases, setting within the abdominal 
aorta, at level of celiac tripod, a 150 HU-threshold region 
of interest. All patients were studied with unenhanced, late 
arterial (18 s from threshold achieved) and portal venous 
(70 s from threshold achieved). CT scans were obtained 
by setting the following technical parameters: tube voltage 
100 kV; tube current modulation 130-300mAs by using 
SMART mA (GE Healthcare, Milwaukee, USA); spiral 
pitch factor 0.98; collimation 64 × 0.625 mm; time of rota-
tion 0.6 s. Standard soft tissue reconstruction, by using 
Iterative Reconstruction at 40% (ASiR-V, GE Healthcare, 

CMvolume(mL) =
0.7gIxLBW(kg)

CMconcentration(
mgI

mL
)
.

Milwaukee, USA), was used for all CT images at slice thick-
ness of 1.25 mm.

CT scans segmentation analysis

Two expert abdominal radiologists (DC and MZ of 10 and 
8 years of experience) independently performed volumet-
ric liver segmentation of all naïve CT scans by using open-
source 3D Slicer software (version 4.10.2, http://​www.​slicer.​
org) on both late arterial and portal venous phases. Slice-by-
slice a volumetric region of interest was manually drawn, 
with the goal of covering total liver volume and avoiding 
the liver vessels or the main biliary ducts (Fig. 2). The radi-
ologists have drawn the regions of interest (ROIs) with the 
same criteria for both arterial and portal phase, to maintain 
the same ROIs for both phases as much as possible.

Radiomic features extraction

3D Slicer Radiomics extension (pyradiomics library [23]) 
was used to extract 107 radiomic features from late arterial 
and venous phases CT scans, including first- and second-
order features: 19 features first-order statistics, 13 features 
2D and 3D shape, 16 features gray-level size zone matrix 
(GLSZM), 5 features neighboring gray-tone difference 
matrix (NGTDM), 14 features gray-level dependence matrix 
(GLDM), 24 features gray-level co-occurrence matrix 
(GLCM), and 16 features gray-level run length matrix 
(GLRLM).

Statistical analysis

Continuous parameters were reported as mean ± standard 
deviation. To compare continuous variables were used Stu-
dent T test and Mann–Whitney U test based on Gaussian 
normality or non-normality, respectively. Categorial vari-
ables were reported with numbers and percentages, then 
compared with Fisher’s exact test or χ2 test with or with-
out Yates correction. Performance of significant radiomic 
features was tested with receiver operating curve (ROC), 
calculating area under the curve (AUC), sensitivity, speci-
ficity, and cutoff values considering PFS (PFS ≤ 11 months 
and PFS > 11 months) as endpoint. All significant radi-
omic features were also tested and performance validated 
through the synthetic external cohort. Kaplan–Meyer sur-
vival analysis was applied to test the correlation with death, 
and log-rank test for P values calculating. All clinical and 
radiomic features were tested with univariate enter logis-
tic regression analysis as predictors of death at naïve CT 
scan. All features resulted to be significant (P < 0.05) were 
included in multivariable backward logistic regression 
analysis with the aim to build a radiomic model to predict 

Fig. 1   Patients enrollment flowchart

http://www.slicer.org
http://www.slicer.org
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patients’ death. Statistical significance was assessed with a 
P < 0.05. Statistical analysis was performed with MedCalc 
(MedCalc Software, version15, Ostend, Belgium). Bonfer-
roni correction was applied to adjust the multiple compari-
sons. Interobserver variability was also assessed, the fea-
tures were considered unstable with ICC < 0.75, stable with 
0.75 ≤ ICC < 0.9, and excellent with ICC ≥ 0.9.

Results

Study population

Population included 25 patients, 11 males and 14 females 
(44% and 56%, respectively). A sub-analysis according to the 
primary site, 15 (60%) were pancreatic NETs, 9 (36%) were 
ileal NETs, and 1 (4%) was lung NET. Concerning tumors 
grading 5 (20%) were NETs G1, 19 (76%) were NETs G2, 
and 1 (4%) was NET G3. Population showed a median PFS 
and OS of 15  and 21 months, respectively. Fifteen patients 
(60%) resulted to be responders and 10 (40%) were consid-
ered non-responders according to PFS. In the analysis of 
two patient groups, it was showed a median PFS of 27  and 
4.5 months in responders and non-responders, respectively 
(Table 1). Overall, 19 patients died during follow-up, result-
ing in a mortality rate of 76%.

3D segmentation and radiomic features

From the volumetric segmentation of liver parenchyma were 
extracted 107 radiomic features on both late arterial and por-
tal phases of naïve CT scans. In the comparison between 
responders and non-responders, ten radiomic parameters 
resulted to be significantly different (P < 0.05) (Table 2). 
Among radiomic features extracted from arterial phase, four 
First-Order features (10Percentile, Mean, Median, and Root-
MeanSquared) were able to differentiate two patient groups 
(P = 0.02–0.04) with good AUC, sensitivity, and specific-
ity ranging from 0.76 to 0.81, 71.4–78.6%, and 80–90%, 
respectively (Tables 2 and 3). Four GLCM features (Cor-
relation, Imc1, Imc2, and MCC) significantly differentiated 
two groups (P = 0.004–0.04) showing good AUC, sensitiv-
ity, and specificity ranging from 0.73 to 0.86, from 42.9 to 
78.6%, and from 80 to 100%, respectively (Tables 2 and 
3) (Fig. 3). Between GLSZM features only one (LargeA-
reaLowGrayLevelEmphasis) significantly differentiated 
responders and non-responders (P < 0.0001), but no signifi-
cant result was obtained in ROC curve analysis (P = 0.523) 
showing poor AUC, sensitivity, and specificity (0.58, 35.7, 
and 100%, respectively) (Tables 2 and 3). Among radiomic 
features extracted from portal phase, only one Shape fea-
ture (SurfaceVolumeRatio) resulted to be statistically sig-
nificantly different between responders and non-responders 
(P = 0.04) showing good AUC, sensitivity, and specificity 

Fig. 2   3D manually segmentation of liver parenchyma in arterial 
phase, performed by using Slicer software (version 4.10.2, http://​
www.​slicer.​org), of 54-year-old woman affected by pancreatic NETs 

(G2) with liver metastases before starting Everolimus treatment. Fig-
ure displays axial A, Coronal B, Sagittal C, and 3D Volumetric D 
segmentation of metastatic liver parenchyma

http://www.slicer.org
http://www.slicer.org
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of 0.74, 71.4, and 70%, respectively (Tables 2 and 3). All 
significant radiomic features obtained, for both arterial and 
portal phase, were also tested in the external synthetic cohort 

and all features were confirmed to be significantly different 
with P value ranging from 0.002 to < 0.001 and AUC from 
0.58 to 0.90 (Tables 2, 3, and 4).

Table 1   Patient clinical data

Bold value denotes statistical significance
* PFS Progression-free survival, OS Overall survival

Patients Characteristics N patients (n = 25) % P

Median age 60 – –
Male 11/25 44% –
Deaths 19/25 76% –
Primary
Pancreatic 15/25 60% –
Ileal 9/25 36% –
Lung 1/25 4% –
Grading
NET G1 5/25 20% –
NET G2 19/25 76% –
NET G3 1/25 4% –
Overall PFS Median 15 months – –
Overall OS Median 21 months – –

PFS ≤ 11 (n = 10/25) PFS >11 (n = 15/25)

PFS Median 4.5 months PFS Median 25 months 0.009
OS Median 13 OS Median 29 0.08
Deaths 8 Deaths 11

Table 2   Significant radiomic features resulted in comparison between responders (PFS ≤ 11) and non-responders (PFS > 11) NETs in internal 
and external cohorts

Bold values denote statistical significance
PFS Progression-free survival, SD Standard deviation, GLCM Gray-level co-occurrence matrix, GLSZM Gray-level size zone matrix

Radiomic features PFS ≤ 11 PFS > 11 P Internal cohort Bonferroni 
correction

PExternal cohort Bonferroni 
correction

Arterial phase Mean ± SD Mean ± SD
First Order_10Percentile 49.93 ± 13.19 38 ± 12.07 0.03 – 0.002 –
First Order_Mean 70.12 ± 12.79 59.76 ± 9.85 0.04 – 0.002 –
First Order_Median 70 ± 12.67 59.9 ± 9.62 0.04 – 0.002 –
First Order_ RootMeanS-

quared
76.82 ± 15.41 63.27 ± 9.40 0.02 – 0.0001 –

GLCM_Correlation 0.29 ± 0.21 0.17 ± 0.05 0.001 –  < 0.0001  < 0.0001
GLCM_Imc1 − 0.07 ± 0.16 − 0.03 ± 0.01 0.004 –  < 0.0001  < 0.0001
GLCM_Imc2 0.32 ± 0.23 0.21 ± 0.06 0.01 –  < 0.0001  < 0.0001
GLCM_MCC 0.42 ± 0.3 0.28 ± 0.07 0.04 –  < 0.0001  < 0.0001
GLSZM_LargeAreaLowG-

rayLevelEmphasis
191,313.61 ± 228,501.47 317,486.48 ± 588,025.78  < 0.0001  < 0.0001 0.04 –

Portal phase
Shape_SurfaceVolumeRatio 0.07 ± 0.01 0.06 ± 0.008 0.04 –  < 0.0001  < 0.0001
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In the analysis of interobserver variability, three fea-
tures (Median, Correlation, and Imc1) resulted stable, with 
0.77 ≤ ICC < 0.83, and one excellent (LargeAreaLowGray-
LevelEmphasis) with ICC = 0.92. All these figures were 
extracted from arterial phase.

Survival analysis

Kaplan–Meyer analysis showed that five features extracted 
from late arterial phase, if dichotomized at the best thresh-
old according to PFS, resulted to be statistically correlated 
with death before starting Everolimus: 10Percentile (First 
Order) had cutoff of 44 with P = 0.01, Mean (GLMC) had 
cutoff of 65.6 with P = 0.02, Median (GLMC) had cutoff 
66 with P = 0.02, Correlation (GLMC) had cutoff 0.21 

with P = 0.02, and Imc1 (GLMC) had cutoff – 0.04 with 
P = 0.05 (Fig. 4).

Univariate and multivariate analyses

Univariable logistic regression analysis was performed 
for assessing the correlation between clinical and radi-
omic features with death. Univariate analysis showed 
that no clinical parameters were significantly associ-
ated with death: age (P = 0.50), sex (P = 0.54), tumor 
grading (P = 0.29), Ki67 (P = 0.20), pancreatic and ileal 
primary (P = 0.57 and P = 0.41, respectively). Among 
radiomic features, extracted from arterial phase, two 
GLSZM features resulted to be predictors of death: 
GrayLevelVariance (OR 1.61; 95%CI, 0.65 to 3.94; 

Table 3   Performance of 
radiomic parameters in 
comparison between responders 
and non-responders tested 
by using receiver operating 
characteristic (ROC) curve in 
internal cohort

Bold values denote statistical significance
* PFS Progression-free survival, AUC​ Area under the curve, GLCM Gray-level co-occurrence matrix, 
GLSZM Gray-level size zone matrix

Radiomic features PFS ≤ 11 vs PFS > 11

Arterial phase Sensitivity Specificity AUC​ Criterion P

First Order_10Percentile 78% 80% 0.77  > 44 0.01
First Order_Mean 71.4% 90% 0.76  > 65.6 0.02
First Order_Median 71.4% 90% 0.76  > 66 0.01
First Order_ RootMeanSquared 78.6% 80% 0.81  > 66.9 0.001
GLCM_Correlation 78.6% 80% 0.86  > 0.21  < 0.0001
GLCM_Imc1 78.6% 80% 0.84 ≤-0.04  < 0.0001
GLCM_Imc2 42.9% 100% 0.76  > 0.29 0.01
GLCM_MCC 50% 100% 0.73  > 0.42 0.03
GLSZM_LargeAreaLowGrayLev-

elEmphasis
35.7% 100% 0.58 ≤ 22,113.22 0.52

Portal phase
Shape_SurfaceVolumeRatio 71.4% 70% 0.74  > 0.06 0.01

Fig. 3   The most performant radiomic features in the comparison between responders and non-responders tested with receiving operative charac-
teristics (ROC) curve in internal cohort. For each curve, P values and area under the curve (AUC) are specified
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P = 0.05); ZonePercentage (OR, 3.59; 95%CI, 2.06 to 
62,529,763.18; P = 0.04). While, one GLSZM feature 
resulted to be inversely correlated with death: GrayLev-
elNonUniformity, (OR, 0.99; 95%CI, 0.98 to 1; P = 0.04), 
and three GLSZM features resulted to be irrelevant: 
LargeAreaEmphasis (OR, 1; 95%CI, 1 to 1; P = 0.008), 
LargeAreaLowGrayLevelEmphasis (OR, 1; 95%CI, 
1–1; P = 0.02), and ZoneVariance (OR, 1; 95%CI, 1 to 

1; P = 0.008) (Table 5). The remanent radiomic features 
resulted to be not statistically correlated with death.

Multivariate radiomic model was built by including 
radiomic features resulted significantly correlated with 
death from univariate analysis. The best radiomic param-
eter, predictor of death, was GrayLevelVariance (OR, 
1.72;95%CI, 1.04–2.83; P = 0.03). Prognostic performance 
of multivariable radiomic model showed good AUC of 

Table 4   External validation 
of radiomic parameters 
performance in comparison 
between responders and non-
responders by using receiver 
operating characteristic (ROC) 
curve

Bold values denote statistical significance
* PFS Progression-free survival, AUC​ Area under the curve, GLCM Gray-level co-occurrence matrix, 
GLSZM Gray-level size zone matrix

Radiomic features PFS ≤ 11 vs PFS > 11

Arterial phase Sensitivity Specificity AUC​ Criterion P

First Order_10Percentile 59% 78% 0.66  > 49.9 0.0001
First Order_Mean 59% 79% 0.63  > 65.5 0.002
First Order_Median 63% 74% 0.63  > 64.9 0.002
First Order_ RootMeanSquared 66% 74% 0.67  > 68.8  < 0.0001
GLCM_Correlation 81% 84% 0.90  > 0.21  < 0.0001
GLCM_Imc1 74% 85% 0.84  ≤ 0.037  < 0.0001
GLCM_Imc2 45% 97% 0.74  > 0.28  < 0.0001
GLCM_MCC 68% 97% 0.82  > 0.35  < 0.0001
GLSZM_LargeAreaLowGrayLev-

elEmphasis
25% 95% 0.58  ≤ 32,331.22 0.04

Portal phase
Shape_SurfaceVolumeRatio 39% 100% 0.69  > 0.07  < 0.0001

Fig. 4   Kaplan–Meyer curves of radiomic features resulted to be significantly correlated with death (P < 0.05). Time was expressed in months
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0.87 (95% CI, 0.67–0.97), sensitivity of 100%, and speci-
ficity of 66.7% (Table 5).

Discussion

In this study, we tested radiomics as an imaging tool 
with the expectancy to be a predictor of progression-free 
survival and death in patients affected by metastatic pro-
gressive NENs, who can benefit of Everolimus. We had 
focused the study on PFS as a clinical endpoint according 
to the consistent evidence which described OS as a reduc-
tive outcome biomarker in the assessment of NENs [24]. 
Furthermore, we considered to divide the initial popula-
tion according to PFS following the results obtained in 
the trails RADIANT 3 and 4 [18, 19]. Our results showed 
that ten radiomic features, extracted from naïve CT scans, 
were able to differentiate responders from non-responders 
(P < 0.05) with good performance (AUC 0.73–0.88), these 
data were also validated through an external validation 
cohort achieving some relevant data in terms of perfor-
mance. In the survival analysis, five radiomic parameters 
showed to be significantly correlated with death in survival 
analysis. Furthermore, interobserver variability was also 
tested, in the arterial phase three features resulted stable 
and one excellent, this latter was the same to be significant 
after applying Bonferroni correction. In univariate analy-
sis, GrayLevelVariance and Zone Percentage (GLSZM 
features) resulted to be correlated with death. Only one 
GLSZM feature, GrayLevelNonUniformity, resulted 
inversely correlated with death having a value of OR 
extremely closed to 1 (0.99), then with weak consistency 

and that should be confirmed in a future second step of 
analysis. Multivariate analysis enabled to reach a promis-
ing radiomic model in death prediction reaching an AUC 
of 0.87, sensitivity of 100%, and specificity of 66.7%. 
An unexpected result was that no clinical data showed 
to be significantly linked to death, then patient outcome 
was not predictable by analyzing only medical evidence. 
Among clinical parameters, Ki67 is usually considered a 
key outcome biomarker, consistently correlated with tumor 
aggressiveness and patient prognosis [25]. Then, these 
nonsignificant results could be justified considering the 
heterogeneous population, especially in high number of 
G2 in comparison with G1 and G3, and small sample size.

Radiomics has been emerging in cancer imaging, rep-
resenting the future imaging landscape, having the chance 
to become a supporting tool for the clinicians in the struc-
tured management and workup of oncologic patients [6, 26]. 
Recently, radiomic approach has been extensively investi-
gated in oncology and consistent results were demonstrated 
in differential diagnosis, prediction prognosis, and response 
to therapy in several cancers [6, 7]. Pretreatment patient risk 
stratification could be useful for clinicians to have a strength 
approach with patients with high risk of progression before 
starting target therapy. Focusing on NETs, several promising 
results have been already reached in differentiating well- 
from poor-differentiated NETs, in predicting tumor grading, 
and in differential diagnosis between pancreatic NETs and 
adenocarcinomas [11–15]. In particular, Bian Y. et al. [13] 
built a CT-based radiomic score to assess tumor grading in 
nonfunctioning pancreatic NETs with the aim to distinguish 
G1 from G2. They analyzed 102 CT scans of pancreatic 
NETs patients and multivariate logistic regression analysis 

Table 5   Univariate and multivariate logistic regression to test the correlation between radiomics and death

Bold values denote statistical significance
*OR Odds ratio, GLSZM Gray-level size zone matrix

Univariate analysis Radiomic model

Variable OR(95%CI) P Coefficient OR(95%CI) P Coefficient

Age – 0.50 – – – –
Sex (F = 0) – 0.54 – – – –
Grading – 0.29 – – – –
Ki67 – 0.20 – – – –
Pancreatic – 0.57 – – – –
Ileal – 0.41 – – – –
GLSZM_GrayLevelVariance 1.61 (0.65–3.94) 0.05 0.48 1.72 (1.04–2.83) 0.03 0.54
GLSZM_ZonePercentage 3.59 (2.06–62,529,763.18) 0.04 – 146.08 9.76 (1.56–6.12) 0.02 – 368.44
GLSZM_GrayLevelNonUniformity 0.99 (0.98–1) 0.04 -0.006 – – –
GLSZM_LargeAreaEmphasis 1 (1–1) 0.008 0.0001 – – –
GLSZM_LargeAreaLowGrayLevelEmphasis 1 (1–1) 0.02 0.0001 – – –
GLSZM_ZoneVariance 1 (1–1) 0.008 0.0001 – – –
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was performed to test the correlation between radiomics and 
tumor grading; results demonstrated that radiomic score 
achieved good performance (AUC 0.86; sensitivity 94%, 
and specificity 63.5). Similarly, Gu et al. [14] in a multi-
centric study enrolled 138 patients with pancreatic NETs 
with the goal to test radiomics in preoperative prediction of 
tumor grading. They extracted 853 features from CT scans, 
analyzing both arterial and portal phases, and performed 
a nomogram, based on clinical and selected radiomic fea-
tures, able to discriminate grade 1 from grade 2/3 pancreatic 
NENs with AUC of 0.974 and 0.902 in training and valida-
tion cohort, respectively. These studies confirmed the poten-
tial role of radiomics in management of NETs, especially to 
identify NETs with poor aggressiveness (G1 vs G2/3). Their 
results reinforced our data, which highlighted the promis-
ing role of radiomics to stratify patients according to tumor 
aggressiveness and the ability in distinguishing responders 
from non-responders NETs. Moreover, radiomics was also 
tested in differential diagnosis between atypical pancreatic 
NENs and pancreatic adenocarcinomas by He M. et al. [15], 
they developed three different models and radiomic outper-
formed clinic-radiological model (AUC 0.884 vs 0.775). 
Also, these results enhanced the strengths of radiomics in 
identifying more aggressive tumors, especially in case of 
atypical appearance of pancreatic NETs during imaging 
workup. We also showed that radiomics could outline tumor 
profile before starting target therapy, by highlighting micro-
architecture and heterogeneity, then identifying patients who 
can be treated with Everolimus with great benefits. Then, 
radiomic approach could be considered in case of advanced 
NETs eligible to be treated with Everolimus to recognize 
potential good responders.

To date, some studies tested radiomics as a noninvasive 
biomarker to assess outcome in patients affected by NENs 
on preoperative medical images with the goal to provide an 
objective support to identify patients with more aggressive 
disease [10, 27–29]. In the future, radiomics could be also 
investigated and considered as noninvasive tool to support 
or replace re-biopsy in case of progressive disease, when 
the clinicians need revaluation of tumor aggressiveness 
[30]. One of the major studies was performed by the group 
of Song [27], which proposed a deep learning radiomic 
approach on preoperative CT scans to predict the recur-
rence risk in patients affected by pancreatic NENs treated 
with radical surgery. Their radiomic model, built on arte-
rial phase, resulted promising to assess the risk of recur-
rence with AUC of 0.80. Also, texture analysis yielded some 
consistent results as prognostic biomarker when applied to 
baseline 68 Ga PET–CT scans in patients affected by meta-
static NETs, in fact tumor textural heterogeneity resulted to 
be correlated with shorter PFS [28]. As well, Mapelli et al. 
[29] investigated radiomics performance in preoperative 

risk patient stratification by analyzing baseline FDG and 
68 Ga PET/CT scans in PNETs patients eligible to surgery. 
These studies showed the potentiality of radiomics in NETs 
workflow, in particular quantitative imaging could cover the 
main gaps existing in patient risk stratification. Our data 
reinforced the idea that radiomics could have a future role 
in prediction prognosis, by providing a quantitative nonin-
vasive tool to the clinicians. Our radiomic model reached 
good performance to predict death, especially two radiomic 
features showed direct correlation with death but no clini-
cal data were significant. Concerning the lack of significant 
correlation between clinical parameters and death, we are 
in accordance with previous literature results regarding the 
difficulty of prediction prognosis only by using medical data 
in patients affected by advanced NENs [4, 31].

Furthermore, we want to focus the attention on our 
main results obtained from the analysis of arterial phase, 
this aspect highlights and confirms the key role of CT 
arterial phase in detection and characterization of NENs 
[32, 33]. In fact, some previous radiomic studies on NENs 
reported that their consistent data were obtained in the 
analysis of arterial phase, limiting the role of portal phase 
[10, 27]. This aspect was also confirmed in the qualitative 
study performed by Kim and colleagues [34], in which the 
evaluation of conventional CT findings on arterial phase 
achieved excellent data for predicting patient survival. Our 
data were in accordance with these literature evidence, in 
fact only one feature extracted from portal phase resulted 
significant. It was SurfaceVolumeRatio, a shape fea-
ture having the expectancy to reflect the compactness of 
whole, without any information about the heterogeneity. 
The remanent significant features, extracted from arterial 
phase, had the power to provide an objective evaluation 
of microstructural architecture, with different statistical 
levels (e.g., first and second order), considering pixel or 
voxel intensity and their relationship with the others [6].

In that context, radiomics might be central in starting 
workup of NEN patients, having the chance to be an objec-
tive and noninvasive imaging tool able to reflect tumor 
heterogeneity and to predict patient outcome by analyz-
ing medical images before any therapies. The study has 
several limitations that should be overcome in the future 
second step. Firstly, the small sample size and heteroge-
neity of patients affected by metastatic NENs eligible to 
Everolimus treatment; secondly, the retrospective nature 
of the study; thirdly, the lack of external validation cohort; 
fourthly, no feature selection was performed. In the future, 
these drawbacks need to be overcome by expanding the 
starting population, performing a different analysis for 
each different primitive NET, also by selecting consistent 
feature and validating with external cohort.

To sum up, radiomics achieved good performance to 
differentiate patient responders from non-responders 
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before starting target therapy. Moreover, radiomic model 
yielded consistent results in prediction patient outcome, 
while clinical data resulted to be not statistically correlated 
with prognosis. Radiomics could be considered as nonin-
vasive imaging tool to stratify patients based on radiomic 
features reflecting tumor aggressiveness, before starting 
therapeutic workflow.

Author’s contribution  All authors contributed, read, and approved the 
final manuscript.

Funding  Open access funding provided by Università degli Studi di 
Roma La Sapienza within the CRUI-CARE Agreement. The authors 
declare that no funds, grants, or other support were received during the 
preparation of this manuscript.

Declarations 

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

Ethical approval  This study was performed in line with the principles 
of the Declaration of Helsinki. Approval was granted by the Ethics 
Committee of Sant’Andrea University Hospital, Rome, Italy.

Consent to participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Consent to publish  The authors affirm that human research participants 
provided informed consent for publication of the images in Fig. 2.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 La Rosa S, Uccella S (2021) Classification of neuroendocrine neo-
plasms: lights and shadows. Rev Endocr Metab Disord 22(3):527–
538. https://​doi.​org/​10.​1007/​s11154-​020-​09612-2

	 2.	 Klimstra DSKG, La Rosa S, Rindi G (2019) Classification of neu-
roendocrine neoplasms of the digestive system WHO Classifica-
tion of Tumours Editorial Board editors. Digestive Syst Tumours 
1:16–19

	 3.	 Panzuto F, Rinzivillo M, Spada F, Antonuzzo L, Ibrahim T, Cam-
pana D, Fazio N, Delle Fave G (2017) Everolimus in pancreatic 
neuroendocrine carcinomas G3. Pancreas 46(3):302–305. https://​
doi.​org/​10.​1097/​MPA.​00000​00000​000762

	 4.	 Lee L, Ito T, Jensen RT (2018) Everolimus in the treatment of 
neuroendocrine tumors: efficacy, side-effects, resistance, and fac-
tors affecting its place in the treatment sequence. Expert Opin 
Pharmacother 19(8):909–928. https://​doi.​org/​10.​1080/​14656​566.​
2018.​14764​92

	 5.	 Pavel ME, Baudin E, Öberg KE, Hainsworth JD, Voi M, Rouyrre 
N, Peeters M, Gross DJ, Yao JC (2017) Efficacy of everolimus 
plus octreotide LAR in patients with advanced neuroendocrine 
tumor and carcinoid syndrome: final overall survival from the 
randomized, placebo-controlled phase 3 RADIANT-2 study. Ann 
Oncol 28(7):1569–1575. https://​doi.​org/​10.​1093/​annonc/​mdx193

	 6.	 Caruso D, Polici M, Zerunian M, Pucciarelli F, Guido G, Polidori 
T, Landolfi F, Nicolai M, Lucertini E, Tarallo M, Bracci B, Nacci 
I, Rucci C, Iannicelli E, Laghi A (2021) Radiomics in oncology, 
part I technical principles and gastrointestinal application in CT 
and MRI. Cancers (Basel) 13(11):2522. https://​doi.​org/​10.​3390/​
cance​rs131​12522

	 7.	 Caruso D, Polici M, Zerunian M, Pucciarelli F, Guido G, Polidori 
T, Landolfi F, Nicolai M, Lucertini E, Tarallo M, Bracci B, Nacci 
I, Rucci C, Eid M, Iannicelli E, Laghi A (2021) Radiomics in 
oncology, part 2: thoracic, genito-urinary, breast, neurological 
hematologic and musculoskeletal applications. Cancers (Basel) 
13(11):2681. https://​doi.​org/​10.​3390/​cance​rs131​12681

	 8.	 Danti G, Flammia F, Matteuzzi B, Cozzi D, Berti V, Grazzini 
G, Pradella S, Recchia L, Brunese L, Miele V (2021) Gastro-
intestinal neuroendocrine neoplasms (GI-NENs): hot topics in 
morphological, functional, and prognostic imaging. Radiol Med 
126(12):1497–1507. https://​doi.​org/​10.​1007/​s11547-​021-​01408-x

	 9.	 Granata V, Fusco R, Barretta ML, Picone C, Avallone A, Belli 
A, Patrone R, Ferrante M, Cozzi D, Grassi R, Izzo F, Petrillo 
A (2021) Radiomics in hepatic metastasis by colorectal can-
cer. Infect Agent Cancer 16(1):39. https://​doi.​org/​10.​1186/​
s13027-​021-​00379-y

	10.	 Martini I, Polici M, Zerunian M, Panzuto F, Rinzivillo M, Land-
olfi F, Magi L, Caruso D, Eid M, Annibale B, Laghi A, Iannicelli 
E (2020) CT texture analysis of liver metastases in PNETs versus 
NPNETs: correlation with histopathological findings. Eur J Radiol 
124:108812. https://​doi.​org/​10.​1016/j.​ejrad.​2020.​108812

	11.	 Guo C, Zhuge X, Wang Z, Wang Q, Sun K, Feng Z, Chen X 
(2019) Textural analysis on contrast-enhanced CT in pancre-
atic neuroendocrine neoplasms: association with WHO grade. 
Abdom Radiol (NY) 44(2):576–585. https://​doi.​org/​10.​1007/​
s00261-​018-​1763-1

	12.	 Bian Y, Zhao Z, Jiang H, Fang X, Li J, Cao K, Ma C, Guo S, 
Wang L, Jin G, Lu J, Xu J (2020) Noncontrast radiomics approach 
for predicting grades of nonfunctional pancreatic neuroendocrine 
tumors. J Magn Reson Imag 52(4):1124–1136. https://​doi.​org/​10.​
1002/​jmri.​27176

	13.	 Bian Y, Jiang H, Ma C, Wang L, Zheng J, Jin G, Lu J (2020) CT-
based radiomics score for distinguishing between grade 1 and 
grade 2 nonfunctioning pancreatic neuroendocrine tumors. AJR 
Am J Roentgenol 215(4):852–863. https://​doi.​org/​10.​2214/​AJR.​
19.​22123

	14.	 Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, Zeng M, Tian J 
(2019) CT radiomics may predict the grade of pancreatic neu-
roendocrine tumors: a multicenter study. Eur Radiol 29(12):6880–
6890. https://​doi.​org/​10.​1007/​s00330-​019-​06176-x

	15.	 He M, Liu Z, Lin Y, Wan J, Li J, Xu K, Wang Y, Jin Z, Tian J, 
Xue H (2019) Differentiation of atypical non-functional pancre-
atic neuroendocrine tumor and pancreatic ductal adenocarcinoma 
using CT based radiomics. Eur J Radiol 117:102–111. https://​doi.​
org/​10.​1016/j.​ejrad.​2019.​05.​024

	16.	 Benedetti G, Mori M, Panzeri MM, Barbera M, Palumbo D, Sini 
C, Muffatti F, Andreasi V, Steidler S, Doglioni C, Partelli S, Man-
zoni M, Falconi M, Fiorino C, De Cobelli F (2021) CT-derived 
radiomic features to discriminate histologic characteristics of 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11154-020-09612-2
https://doi.org/10.1097/MPA.0000000000000762
https://doi.org/10.1097/MPA.0000000000000762
https://doi.org/10.1080/14656566.2018.1476492
https://doi.org/10.1080/14656566.2018.1476492
https://doi.org/10.1093/annonc/mdx193
https://doi.org/10.3390/cancers13112522
https://doi.org/10.3390/cancers13112522
https://doi.org/10.3390/cancers13112681
https://doi.org/10.1007/s11547-021-01408-x
https://doi.org/10.1186/s13027-021-00379-y
https://doi.org/10.1186/s13027-021-00379-y
https://doi.org/10.1016/j.ejrad.2020.108812
https://doi.org/10.1007/s00261-018-1763-1
https://doi.org/10.1007/s00261-018-1763-1
https://doi.org/10.1002/jmri.27176
https://doi.org/10.1002/jmri.27176
https://doi.org/10.2214/AJR.19.22123
https://doi.org/10.2214/AJR.19.22123
https://doi.org/10.1007/s00330-019-06176-x
https://doi.org/10.1016/j.ejrad.2019.05.024
https://doi.org/10.1016/j.ejrad.2019.05.024


701La radiologia medica (2022) 127:691–701	

1 3

pancreatic neuroendocrine tumors. Radiol Med 126(6):745–760. 
https://​doi.​org/​10.​1007/​s11547-​021-​01333-z

	17.	 Midia M, Odedra D, Shuster A, Midia R, Muir J (2019) Predictors 
of bleeding complications following percutaneous image-guided 
liver biopsy: a scoping review. Diagn Interv Radiol 25(1):71–80. 
https://​doi.​org/​10.​5152/​dir.​2018.​17525

	18.	 Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem 
E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG, Tomas-
setti P, Pavel ME, Hoosen S, Haas T, Lincy J, Lebwohl D, Öberg 
K (2011) Everolimus for advanced pancreatic neuroendocrine 
tumors. N Engl J Med 364(6):514–523. https://​doi.​org/​10.​1056/​
NEJMo​a1009​290

	19.	 Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, 
Tomasek J, Raderer M, Lahner H, Voi M, Pacaud LB, Rouyrre 
N, Sachs C, Valle JW, Fave GD, Van Cutsem E, Tesselaar M, 
Shimada Y, Oh DY, Strosberg J, Kulke MH, Pavel ME (2016) 
Everolimus for the treatment of advanced, non-functional neu-
roendocrine tumours of the lung or gastrointestinal tract (RADI-
ANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 
387(10022):968–977. https://​doi.​org/​10.​1016/​S0140-​6736(15)​
00817-X

	20.	 He H, Garcia EA, and Li S (2008) ADASYN: adaptive synthetic 
sampling approach for imbalanced learning. IEEE international 
Joint Conference on neural networks

	21.	 Rosati E, Panvini N, Rengo M, Bellini D, Moltoni G, Bracci B, 
Lucertini E, Zerunian M, Polici M, de Santis D, Iannicelli E, 
Anibaldi P, Carbone I (2021) Optimization of contrast medium 
volume for abdominal CT in oncologic patients: prospective 
comparison between fixed and lean body weight-adapted dos-
ing protocols. Insights Imag 12(1):871. https://​doi.​org/​10.​1186/​
s13244-​021-​00980-0

	22.	 de Santis D, Rivosecchi F, Zerunian M, Panvini N, Montesano 
M, Biondi T, Bellini D, Rengo M, Laghi DC (2018) Lean body 
weight-tailored iodinated contrast injection in obese patient: Boer 
versus James Formula. BioMed Res Int.https://​doi.​org/​10.​1155/​
2018/​85218​93

	23.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin 
N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts 
H (2017) Computational radiomics system to decode the radio-
graphic phenotype. Cancer Res 77(21):e104–e107. https://​doi.​org/​
10.​1158/​0008-​5472.​CAN-​17-​0339

	24.	 Kulke MH, Siu LL, Tepper JE, Fisher G, Jaffe D, Haller DG, 
Ellis LM, Benedetti JK, Bergsland EK, Hobday TJ, Van Cutsem 
E, Pingpank J, Oberg K, Cohen SJ, Posner MC, Yao JC (2011) 
Future directions in the treatment of neuroendocrine tumors: 
consensus report of the National cancer institute neuroendocrine 
tumor clinical trials planning meeting. J Clin Oncol 29(7):934–
943. https://​doi.​org/​10.​1200/​JCO.​2010.​33.​2056

	25.	 Nieveen van Dijkum EJM (2019) ASO Author Reflections: Pan-
creatic Neuroendocrine Tumor Recurrence and Survival Predicted 
by Ki67. Ann Surg Oncol 26 (Suppl 3):531-532. doi:https://​doi.​
org/​10.​1245/​s10434-​018-​7019-z

	26.	 Grazzini G, Danti G, Cozzi D, Lanzetta MM, Addeo G, Fal-
chini M, Masserelli A, Pradella S, Miele V (2019) Diagnostic 
imaging of gastrointestinal neuroendocrine tumours (GI-NETs): 

relationship between MDCT features and 2010 WHO classi-
fication. Radiol Med 124(2):94–102. https://​doi.​org/​10.​1007/​
s11547-​018-​0946-8

	27.	 Song C, Wang M, Luo Y, Chen J, Peng Z, Wang Y, Zhang H, Li 
ZP, Shen J, Huang B, Feng ST (2021) Predicting the recurrence 
risk of pancreatic neuroendocrine neoplasms after radical resec-
tion using deep learning radiomics with preoperative computed 
tomography images. Ann Transl Med 9(10):833. https://​doi.​org/​
10.​21037/​atm-​21-​25

	28.	 Atkinson C, Ganeshan B, Endozo R, Wan S, Aldridge MD, Groves 
AM, Bomanji JB, Gaze MN (2021) Radiomics-based texture 
analysis of. Front Oncol 11:686235. https://​doi.​org/​10.​3389/​fonc.​
2021.​686235

	29.	 Mapelli P, Partelli S, Salgarello M, Doraku J, Pasetto S, Rancoita 
PMV, Muffatti F, Bettinardi V, Presotto L, Andreasi V, Gianolli 
L, Picchio M, Falconi M (2020) Dual tracer 68Ga-DOTATOC 
and 18F-FDG PET/computed tomography radiomics in pancreatic 
neuroendocrine neoplasms: an endearing tool for preoperative risk 
assessment. Nucl Med Commun 41(9):896–905. https://​doi.​org/​
10.​1097/​MNM.​00000​00000​001236

	30.	 Panzuto F, Cicchese N, Partelli S, Rinzivillo M, Capurso G, 
Merola E, Manzoni M, Pucci E, Iannicelli E, Pilozzi E, Rossi 
M, Doglioni C, Falconi M, Delle Fave G (2017) Impact of Ki67 
re-assessment at time of disease progression in patients with pan-
creatic neuroendocrine neoplasms. PLoS ONE 12(6):e0179445. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​01794​45

	31.	 Lombard-Bohas C, Yao JC, Hobday T, Van Cutsem E, Wolin EM, 
Panneerselvam A, Stergiopoulos S, Shah MH, Capdevila J, Pom-
mier R (2015) Impact of prior chemotherapy use on the efficacy of 
everolimus in patients with advanced pancreatic neuroendocrine 
tumors: a subgroup analysis of the phase III RADIANT-3 trial. 
Pancreas 44(2):181–189. https://​doi.​org/​10.​1097/​MPA.​00000​
00000​000262

	32.	 Park HJ, Kim HJ, Kim KW, Kim SY, Choi SH, You MW, Hwang 
HS, Hong SM (2020) Comparison between neuroendocrine carci-
nomas and well-differentiated neuroendocrine tumors of the pan-
creas using dynamic enhanced CT. Eur Radiol 30(9):4772–4782. 
https://​doi.​org/​10.​1007/​s00330-​020-​06867-w

	33.	 Tang M, Li Y, Lin Z, Shen B, Huang M, Li ZP, Li X, Feng ST 
(2020) Hepatic nodules with arterial phase hyperenhancement and 
washout on enhanced computed tomography/magnetic resonance 
imaging: how to avoid pitfalls. Abdom Radiol (NY) 45(11):3730–
3742. https://​doi.​org/​10.​1007/​s00261-​020-​02560-0

	34.	 Kim C, Byun JH, Hong SM, An S, Kim JH, Lee SS, Kim HJ 
(2017) A comparison of enhancement patterns on dynamic 
enhanced CT and survival between patients with pancreatic 
neuroendocrine tumors with and without intratumoral fibrosis. 
Abdom Radiol (NY) 42(12):2835–2842. https://​doi.​org/​10.​1007/​
s00261-​017-​1212-6

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11547-021-01333-z
https://doi.org/10.5152/dir.2018.17525
https://doi.org/10.1056/NEJMoa1009290
https://doi.org/10.1056/NEJMoa1009290
https://doi.org/10.1016/S0140-6736(15)00817-X
https://doi.org/10.1016/S0140-6736(15)00817-X
https://doi.org/10.1186/s13244-021-00980-0
https://doi.org/10.1186/s13244-021-00980-0
https://doi.org/10.1155/2018/8521893
https://doi.org/10.1155/2018/8521893
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1200/JCO.2010.33.2056
https://doi.org/10.1245/s10434-018-7019-z
https://doi.org/10.1245/s10434-018-7019-z
https://doi.org/10.1007/s11547-018-0946-8
https://doi.org/10.1007/s11547-018-0946-8
https://doi.org/10.21037/atm-21-25
https://doi.org/10.21037/atm-21-25
https://doi.org/10.3389/fonc.2021.686235
https://doi.org/10.3389/fonc.2021.686235
https://doi.org/10.1097/MNM.0000000000001236
https://doi.org/10.1097/MNM.0000000000001236
https://doi.org/10.1371/journal.pone.0179445
https://doi.org/10.1097/MPA.0000000000000262
https://doi.org/10.1097/MPA.0000000000000262
https://doi.org/10.1007/s00330-020-06867-w
https://doi.org/10.1007/s00261-020-02560-0
https://doi.org/10.1007/s00261-017-1212-6
https://doi.org/10.1007/s00261-017-1212-6

	CT-based radiomics for prediction of therapeutic response to Everolimus in metastatic neuroendocrine tumors
	Abstract
	Aim 
	Materials and methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Patient selection
	CT acquisition protocol
	CT scans segmentation analysis
	Radiomic features extraction
	Statistical analysis

	Results
	Study population
	3D segmentation and radiomic features
	Survival analysis
	Univariate and multivariate analyses

	Discussion
	References




