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Abstract

Zirconium-89 (89Zr) has been explored for molecularly targeted positron emission tomography 

(PET) imaging of various diseases. We synthesized and evaluated a novel chelator (DA-18C6-

BHA) for 89Zr. The new chelator is structured on a macrocyclic backbone (1,10-diaza-18-

crown-6) and contains hydroxamates as acyclic donor groups. The new chelator ((DA-18C6-

BHA) was rapidly labeled with 89Zr under mild conditions. The 89Zr-labeled DA-18C6-BHA 

complex remained stable in human serum and apotransferrin for 7 days. When challenged with 

excess EDTA solution, 89Zr-labeled DA-18C6-BHA was shown to hold 89Zr without losing 

considerable radioactivity to EDTA. The 89Zr-labeled DA-18C6-BHA complex displayed high 

complex stability in normal mice as evidenced by low bone uptake.

Keywords

Zr-89; Chelator; PET Imaging

Positron-emitting radionuclides used for positron emission tomography (PET) imaging 

include 18F (t1/2 = 1.83 h, Eβ+ = 0.63 MeV), 64Cu (t1/2 = 12.7 h, Eβ+ = 0.66 MeV, Eγ 
= 1.35 MeV), 68Ga (t1/2 = 1.12 h, Eβ+ = 1.88 MeV, Eγ = 0.51 MeV), and 89Zr (t1/2 = 78.4 

h, Eβ+ = 0.90 MeV, Eγ = 0.91 MeV).1–5 Research efforts have been made on discovery 

of PET imaging agents with high binding affinity and selectivity to specific biomarkers on 

tumor cells.1–3 A number of target-specific biomolecules including peptides and antibodies 

have been labeled with radionuclides for preclinical and clinical evaluations of targeted PET 

imaging of cancers.5–7
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Among the positron-emitting radionuclides in clinical use, a long-lived 89Zr is well suited 

for PET imaging of molecular targets using an antibody with a long biological half-life.1,5–8 

In particular, 89Zr-based PET tracers have a clinical value in pre- and post-treatment 

imaging and monitoring tumor response in antibody therapy.5–6 89Zr(IV) is a highly charged 

cation with strong binding with anionic oxygens such as hydroxyl group in bone mineral 

hydroxylapatite (HA).1,5,9

DFO (desferrioxamine) is a hydroxamate-based chelator in clinical use for the treatment 

of iron overload diseases including β-thalassemia.10 Given the high binding avidity of 

the hydroxamates for a hard oxophilic cation, DFO has been also extensively explored 

for labeling of various biomolecules with 89Zr.8,11 DFO was shown to rapidly form a 

6-coordinate complex with Zr(IV), and 89Zr-DFO complex remained intact in human 

serum.12,13 However, DFO-antibody conjugate labeled with 89Zr has a limited in vivo 
stability in mice and displayed high bone uptake.12,13 The elevated bone uptake of 89Zr-

DFO can be rationalized by high affinity of 89Zr(IV) released from the complex for bone 

mineral, hydroxylapatite (HA). While research efforts have been made to develop improved 

chelation chemistry that can sequester the bone-seeking 89Zr with high in vivo stability, 

DFO remains the standard chelator for clinical use.1,12

In this paper, we report synthesis and evaluation of a novel chelating agent (DA-18C6-

BHA) that is built on a macrocyclic backbone (1,10-diaza-18-crown-6) tethered with 

hydroxamate as an acyclic donor group. The new chelator and DFO were comparatively 

studied for radiolabeling with 89Zr. The 89Zr-radiolabeled new chelator (89Zr-DA-18C6-

BHA) and 89Zr-DFO were comparatively evaluated for complex stability in human serum 

and apotransferrin and excess EDTA solution and biodistribution profile in normal mice.

The novel chelator (DA-18C6-BHA) contains diaza-18-crown-6 as a macrocyclic backbone 

and hydroxamates as tetradentate binding moieties. The four oxygens in the macrocyclic 

backbone are expected to participate in complexation with 89Zr(IV) and contribute to the 

formation of an eight-coordinate Zr complex. Synthesis of the new chelator (DA-18C6-

BHA) includes reaction of compound 214 as a key precursor molecule with 1,10-diaza-18-

crown-6 (3, Scheme 1). Compound 2 was prepared from O-paramethoxybenzyl (PMB)-

protected N-methyl hydroxylamine (1)15 by a modified procedure of the reported method.14 

Compound 1 was reacted with bromoacetyl bromide in CH3CN at 0 oC to afford compound 

2 in 77% isolated yield. Compound 2 was further reacted with 1,10-diaza-18-crown-6 (3) 

to produce O-PMB protected chelating agent 4 in 41% isolated yield. Deprotection of PMB 

in 4 was accomplished by reaction of 4 with TFA and triethylsilane to produce the desired 

chelating agent 5 in nearly quantitative yield.

The new chelator (DA-18C6-BHA) and DFO were comparatively evaluated for 

radiolabeling with 89Zr at room temperature (Supporting Information). The new chelator 

(DA-18C6-BHA) and DFO rapidly bound to 89Zr and were shown to be effective in binding 
89Zr at pH 7 and room temperature. Radiolabeling of DA-18C6-BHA or DFO with 89Zr was 

nearly complete in 10 min (>98% radiolabeling efficiency). Stability of 89Zr-DA-18C6-BHA 

and 89Zr-DFO in human serum was determined (Table 1 and Supporting Information). 

Dissociation of 89Zr from 89Zr-DA-18C6-BHA or 89Zr-DFO in human serum (pH 7.0 and 
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37 oC) was measured over 7 days. The serum stability data suggest that DA-18C6-BHA and 

DFO remained inert in serum for 7 days. A minimal amount of 89Zr from 89Zr-DA-18C6-

BHA or 89Zr-DFO was released to serum (<1% at 168 h time point).

89Zr-DA-18C6-BHA and 89Zr-DFO were evaluated for complex stability in the presence 

of EDTA (Table 2 and Supporting Information). 89Zr-DA-18C6-BHA or 89Zr-DFO was 

incubated with a 100-fold molar excess of EDTA. 89Zr-DA-18C6-BHA was shown to have 

high complex stability in EDTA solution, and only a trace amount of 89Zr (<1%) was 

transchelated to EDTA. In contrast, a significant amount of 89Zr was dissociated from 
89Zr-DFO complex at 168 h-post incubation (>12%).

89Zr-DA-18C6-BHA and 89Zr-DFO were further evaluated for complex stability in the 

presence of apotransferrin (Table 3 and Supporting Information). 89Zr-DA-18C6-BHA or 
89Zr-DFO was incubated with a 5-fold molar excess of apotransferrin. Both 89Zr-DA-18C6-

BHA and 89Zr-DFO complex remained stable in apotransferrin solution (PBS, pH 7.0), and 

no considerable amount of 89Zr was released to the apotransferrin solution over 7 days.

We performed biodistribution studies in CD-1 normal mice (intravenous injection, n = 4) to 

evaluate in vivo stability of 89Zr-DFO and 89Zr-DA-18C6-BHA. The mice were euthanized 

at 1 h, 4 h, and 24 h. The selected organs (liver, kidney, muscle, bone) and the blood were 

harvested, wet weighed, and the radioactivity was measured in a γ-counter (Figures 1 and 

2 and Supporting Information). Both 89Zr-DA-18C6-BHA (Figure 1) and 89Zr-DFO (Figure 

2) showed rapid blood clearance and low uptake in normal organs (<0.44% ID/g) over 

24 hours. 89Zr-DA-18C6-BHA exhibited a negligible level of radioactivity in blood at all 

time points (≤0.04 %ID/g). The bone and muscle uptake of 89Zr- DA-18C6-BHA remained 

minimal at all time points (≤0.11% ID/g). 89Zr-DA-18C6-BHA exhibited the highest 

retention in liver (0.44 %ID/g at 4 h). Renal uptake of 89Zr-DA-18C6-BHA was decreased 

from 0.21 %ID/g (1 h) to 0.12 %ID/g (24 h). 89Zr-DFO showed a minimal uptake in blood, 

liver, and muscle at 24 hours (0.02 %ID/g, 0.01 %ID/g, and 0.03 %ID/g, respectively). 
89Zr-DFO showed relatively higher accumulation of radioactivity in the kidney at all time 

points (≤0.25 %ID/g) when compared to other organs. 89Zr-DFO displayed minimal bone 

uptake which was decreased from 0.09 %ID/g (4 h) to 0.04 %ID/g (24 h). The in vivo data 

suggest that both 89Zr-DFO and 89Zr-DA-18C6-BHA presented an excellent biodistribution 

profile in normal mice as evidenced by low uptake in blood and normal organs including 

bone.

In summary, the new chelator (DA-18C6-BHA) built on diaza-18-crown-6 containing two 

hydroxamate donor groups was synthesized and evaluated. The new chelator rapidly bound 

to 89Zr, and the corresponding 89Zr-labeled DA-18C6-BHA was shown to display high 

complex stability in human serum and apotransferrin for 7 days. When challenged by 

excess EDTA solution, 89Zr-DA-18C6-BHA remained inert and was favorably compared 

to 89Zr-DFO for complex stability. Both 89Zr–DA-18C6-BHA and 89Zr–DFO were shown 

to be stable in mice and have favorable biodistribution profiles with low bone uptake. 

The radiolabeling and in vitro and in vivo complex stability data clearly demonstrate that 

DA-18C6-BHA is an efficient chelator for 89Zr radiolabeling.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Synthesis of chelator DA-18C6-BHA (5) for Zr(IV)-89
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Figure 1. 
In Vivo Biodistribution of 89Zr-DA-18C6-BHA in CD-1 mice (n = 4, intravenous injection)
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Figure 2. 
In Vivo Biodistribution of 89Zr-DFO in CD-1 mice (n = 4, intravenous injection)
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Table 1.

Complex Stability of 89Zr-DA-18C6-BHA and 89Zr-DFO in human serum (pH 7.0, 37°C, ITLC, duplicate).

89Zr-Chelator Complex (%)

Time DA-18C6-BHA DFO

0 h 99.4 ± 0.1 99.5 ± 0.5

24 h 99.1 ± 0.0 99.2 ± 0.1

48 h 98.8 ± 0.7 99.3 ± 0.3

72 h 98.7 ± 0.2 98.7 ± 0.8

168 h 99.0 ± 0.3 99.0 ± 0.5

Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 September 15.
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Table 2.

Complex Stability of 89Zr-DA-18C6-BHA and 89Zr-DFO in EDTA solution (pH 7.0, 37°C, ITLC, duplicate).

89Zr-Chelator Complex (%)

Time DA-18C6-BHA DFO

0 h 99.3 ± 0.1 99.4 ± 0.1

1 h 99.6 ± 0.1 98.1 ± 0.3

24 h 99.0 ± 0.2 92.5 ± 0.4

48 h 99.0 ± 0.2 89.1 ± 0.2

168 h 99.1 ± 0.3 87.3 ±1.8

Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 September 15.
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Table 3.

Complex Stability of 89Zr-DA-18C6-BHA and 89Zr-DFO in apotransferrin solution (pH 7.0, 37°C, ITLC, 

duplicate).

89Zr-Chelator Complex (%)

Time DA-18C6-BHA DFO

0 h 98.8 ± 0.5 99.0 ± 0.1

24 h 98.3 ± 0.4 98.8 ± 0.2

48 h 98.0 ± 0.2 97.8 ± 0.6

72 h 97.9 ± 0.4 98.0 ± 0.3

168 h 98.8 ± 0.3 98.4 ± 0.4

Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 September 15.
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