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Zero standby power crop 
water‑stress detector leading 
to the optimization of water usage 
and yield
Antea Risso1*, Vageeswar Rajaram1, Sungho Kang1, Sila Deniz Calisgan1, 
Matilde Maria Pavese1, Zhenyun Qian1,2 & Matteo Rinaldi1,2*

Agricultural sensors are powerful tools to optimize crop productivity while conserving natural 
resources. Here we report a crop water-stress detector based on a plasmonically-enhanced 
micromechanical photoswitch capable of detecting water content in leaves that is lower than a 
predetermined threshold without consuming electrical power when the leaf is healthy. The detection 
mechanism exploits the energy in a specific narrow-spectral band of solar radiation reflected off leaves 
that is strongly correlated to the water content in plants. This biosensor relies on a spectrally selective 
infrared plasmonic absorber and a thermally sensitive micro-cantilever to harvest the reflected solar 
energy and further produce a digitized wakeup-bit only when the monitored leaf is water-stressed. 
In particular, we demonstrate that the detector activates a commercial water pump when a soybean 
plant is water-stressed. The 10-year battery lifetime of the proposed detector pave the way for the 
development of high-granularity, maintenance-free sensor networks for large-scale smart-farms.

The agriculture industry currently faces an urgent need to improve crop productivity in response to the rapidly 
increasing competition for arable land and exposure to climatic shocks. The population-driven need for food in 
the world is projected to increase by 70% by 2050, while land and natural resources such as water are becoming 
scarcer for farming1. Therefore, increasing the efficiency of food production is incredibly important to avoid 
global shortages. Famers make over 40 yield-impacting decisions each season, therefore there is a clear need to 
develop decision support tools that maximize economic returns2. The capability of acquiring comprehensive and 
near-real time data of plant health and environmental conditions with high granularity and translating them 
into actionable items would maximize the crop yield while conserving natural resources. Optimizing irrigation 
based on in-field spatiotemporal data reflecting crop water-need is one of the most important actions that can be 
taken in this regard. Existing state-of-the-art technologies for detecting plant water-stress, however, cannot be 
used to implement such a continuous monitoring of large-scale crop fields due to the prohibitive cost associated 
with maintenance and calibration3. Several agritech startups4 currently offer wireless sensor solutions to monitor 
the water content in the soil hoping to provide simple, actionable and accurate irrigation decisions. Neverthe-
less, they have been facing a fundamental challenge associated with remotely deployed sensor technologies: 
inadequate battery lifetime due to the high power consumed by the sensors in standby. Despite being marketed 
as low power solutions, most existing sensors still draw a standby current in the order of 1 mA with only a few 
exceptions being in the order of 10 s μA consumption5,6. The sensors typically stop working after few weeks in 
the field because of running out of battery power3. Some sensors employ a solar panel for energy harvesting 
to increase deployment time. However, this increases the overall sensor cost, complexity, and size due to the 
inclusion of the solar panel, its associated electronics and rechargeable batteries, which prevents the scaling of 
a sensor network towards high spatial resolution and large coverage.

Limitations also lie in the accuracy and ease of use of these sensors based on soil moisture measurement due 
to their indirect way of determining crop water-stress. The water contained in soil is only partially available to 
plants depending on the soil properties and the root system of the crop because i) the soil water retention capac-
ity depends on the composition and compaction of the soil and ii) plants only draw water from the proximity of 
their root. Therefore, a soil moisture sensor must be pre-calibrated for the soil type and placed at the right depth 
close to the root (which varies per plant species and along time) in order to correctly estimate the available water 
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to the plant7. Although the requirement for calibration varies between different types of soil moisture sensor, 
solutions that offer lite calibration process, low maintenance needs and high accuracy do not exist. For example, 
tensiometers require specialized calibration and frequent maintenance due to the strong dependance of soil 
moisture tension to the type of soil and the accumulation of air bubbles over time in the water tube. Granular 
matrix sensors require less maintenance, but their accuracy varies significantly between different soil types (e.g. 
less accurate in sandy soils). Similarly, time domain reflectometers feature easy calibration but are with low 
accuracy when the clay content and level of salinity are high in the soil. Their counterpart frequency domain 
reflectometers can be used in soils with high salinity, but it requires soil specific calibration8,9. Furthermore, the 
water content level in a plant depends on not only the soil moisture, but also the transpiration process and the 
capability of plant roots to extract water from the soil. The latter two are further affected by weather and the 
growth stage of the plant beyond just the species, which makes the translation from soil moisture to plant water-
stress complicated and inherently inaccurate over time.

Hyperspectral imaging through satellite or drone is a more direct method of measuring crop water-need. 
The multispectral images of the crop canopy can be used to extract the information on plant water content 
because of the characteristic absorption of infrared (IR) radiation by the water in the leaves. Aerial imaging has 
advantages in terms of surveying a large area in a relatively short amount of time and almost no interference with 
the farming management. However, both satellite and drone-based approaches are characterized by a severely 
limited temporal resolution (~ days to weeks) due to either the long revisit period of satellite or the dependance 
on technical knowledge for drones’ use and on the meteorological conditions. In addition, the satellite-based 
approach is also characterized with a low spatial resolution due to the far distance for imaging. Moreover, further 
data processing and interpretation by experts are required to make decisions on the most effective irrigation 
plan. It can take up to several hours to derive useful information from aerial images making this technique far 
from being an accurate and convenient tool to address plant water needs3.

In this work, we propose to implement the optical-based direct measurement of plant water-stress at ground 
level with a network of spectrally-selective IR sensors (Fig. 1a,b). More specifically, we show that by leveraging 
an event-driven IR sensing capability, it is possible to realize the monitoring of water-stress with high accuracy 
as well as high spatial and temporal resolution while being long lasting and low cost, which simultaneously 
addresses all the challenges associated with the existing soil moisture sensing and aerial hyperspectral imag-
ing methods. The concept of event-driven sensing was recently proposed to bridge the energy gap of powering 
large-scale unattended ground sensor networks by developing a new class of completely-passive micromechani-
cal sensors capable of detecting and distinguishing the signal of interests without using active electronics10,11. 
The water-stress sensor technology presented here selectively harvest the IR radiation reflected off from leaves 
and then use it to generate a wake-up bit to activate a water pump when the water content in the leaves is below 
a pre-determined threshold. The detection mechanism relies on the dependence of the leaf reflectance on the 
plant water-stress caused by the strong IR absorption of water in the short-wavelength infrared (SWIR) region 
(1.3–1.6 μm) (Fig. 1c). When the plant is water-stressed, the reduced absorption by water makes the surface of 
leaves more reflective. Therefore, when illuminated by the sunlight, the reflected IR power from the leaves in the 
SWIR band can be exploited as a signature for detecting plant water-stress.

The zero-standby power plant water-stress detector is based on a plasmonically-enhanced micromechanical 
photoswitch (PMP)11–19 previously reported by our group. Differently from all previous work, a PMP operating 
in the SWIR band suitable for detecting and digitizing the IR light reflected off a plant leaf is demonstrated in 

Figure 1.   (a) Schematic illustration of our vision for a smart farm employing the proposed zero-power and 
low-cost sensor nodes in a crop field with high spatial granularity. (b) Schematic of the wireless sensor node 
used for non-contact water stress detection in plants. Upon plant water-stress detection, the switch closes 
and connects the battery to active electronics. e.g. a wireless transmitter that remotely triggers an automated 
irrigation system. The sensor remains otherwise OFF with zero drain on the battery. (c) Water stress-dependent 
IR reflectance characteristic of plants. As the plant becomes water stressed, the reflectance of the leaf in the 
SWIR wavelength region increases, causing a higher intensity of IR radiation to be reflected off the leaf surface 
when illuminated by the sun. (d) Simplified schematic of the circuit functionality showing the plasmonically-
enhanced micromechanical photoswitch (PMP) controlling the current between the battery and the COTS 
electronics.
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this work. We show that only when the reflected IR exceeds a predetermined power threshold that corresponds 
to a low level of leaf relative water content (RWC), the PMP turns ON and activates the irrigation or wireless 
transmission, otherwise the entire system remains dormant with a power consumption below 1 nW, 5 orders of 
magnitude lower than the state of the art. The drastically reduced standby power consumption directly translate 
to a 10-year battery lifetime of a wireless water-stress sensor node (Fig. 1d), which leads to more than 4 times 
lower maintenance cost associated with battery replacement. Compared to soil moisture sensors, the technol-
ogy also features high accuracy and being easy to use thanks to the direct measurement of water stress in plant 
and the actionable output. Therefore, we believe the technology is ideal for the development of high-granularity, 
maintenance-free sensor networks for auto-irrigation systems in large-scale smart farms.

Results
Device design and characterization.  A PMP is composed of a pair of microcantilevers facing each other 
supported by four pairs of thermally sensitive bimaterial folded beams (Fig. 2a,b). A narrowband absorber is 
integrated with one of the cantilevers while a reflector is integrated in the other, which creates a temperature 
difference between the two sides when the device is illuminated by an IR radiation matching the absorbing 
band. When exposed to above threshold IR intensity, the two electrical contacts between the cantilevers are 
brought into contact forming an electrical path due to the thermal expansion in the supporting beans. Thanks 
to the symmetrical design, the device is immune to ambient temperature changes. The working principle and 
fabrication process of the device are explained in more detail in the Supplementary Section 1 and11. Differently 
from previous work, the PMP presented here incorporates a high-efficiency narrowband plasmonic absorber 
(η ~ 93%, 150 nm bandwidth) targeting the “water absorption valley” (centered at 1.47 μm) of a leaf ’s reflection 
IR spectrum, where there is a strong dependence of the reflectance on the RWC of a leaf (Fig. 2c)20. A resistive 
microheater is also added to the reflector head to realize a reset function in the event of the contacts are latched 
due to adhesion force after turning ON from a detection. Application of a short voltage pulse across the heater 
causes the reflector head to be thermally actuated downward and away from the absorber head, which reopens 
the contacts after a detection. The resistance of the heater was measured to be 53.7 kΩ by applying a 10 mV volt-
age across the heater and monitoring the current passing through it. Pull-in voltage was found to be 21.5 V. The 
OFF and ON state resistances were measured to be > 10 GΩ (instrument noise limited) and ~ 5 kΩ respectively17.

Water‑stress detection.  In this section, we show that the sensor is able to activate a commercial off-the-
shelf (COTS) water pump21 automatically when the plant being monitored becomes water stressed. Before per-
forming the tests to demonstrate water-stress detection using the PMP, the leaf reflectance was first characterized 
as a function of its RWC as described in the Supplementary Section 2. Results are shown in Fig. 4a (red curve).

Then, the experimental setup for demonstrating the proposed technology was assembled in a laboratory 
setting. Figure 3 shows the setup where a broadband IR illumination source (quartz tungsten halogen lamp) 
was used to simulate sunlight. The light was directed towards a leaf on a live soybean plant (Glycine Max) which 
was placed on top of a vacuum probe station containing the PMP. The leaf was secured on a holder tilted at 
45° with respect to the source to reflect light to the PMP through an IR-transparent window (made of calcium 
fluoride—CaF2). A lens on top of the window (also CaF2) was used to focus the reflected light from the leaf on 
to the PMP. A source meter (Agilent 2450), connected to one end of the PMP through a DC probe, was used to 
apply a bias voltage of 19 V across the contacts while monitoring the switch current. The bias voltage acts as a 
passive method to scale down the PMP’s threshold to the required value17. The other end of the PMP was linked 
through a DC probe to the ON pin of an ultra-low leakage load switch (SiP32421). The load switch was used 

Figure 2.   (a) Scanning electron microscope (SEM) image of the fabricated PMP. The right cantilever has a 
SWIR plasmonic absorber while the left one reflects IR and has an in-built microheater for reset. The contacts 
of the PMP are located in the middle. (b) Close-up of the absorber surface. The lateral dimensions of the metal 
patches determine absorption wavelength. (c) Fourier Transform-IR (FTIR) spectrometer measurement of 
the absorptance spectrum of the fabricated device and of the reflectance spectra of dry (RWC = 0%), visually 
moderately water stressed (RWC = 68%) and non-stressed (RWC = 100%) leaves. Absorption peak of the device 
matches well with the water absorption valley region of the leaf ’s reflectance spectra.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12603  | https://doi.org/10.1038/s41598-022-16419-5

www.nature.com/scientificreports/

to handle the high current (~ 600 mA) drawn by the load (COTS pump) because the PMP by itself can handle 
only up to 200 µA11. The input voltage to the load switch Vin was connected to another DC supply set at 5.8 V 
(the pump’s operating voltage). The output voltage Vout was confirmed to be equal to 0 V when the PMP is in the 
open/standby state and equal to Vin when the PMP was closed, and the ON pin was high. The detailed electrical 
circuit is described in the Supplementary Section 3. When the switch was turned ON the source meter reading 
abruptly changed from ~ 4 nA (i.e. noise floor of the instrument) to ~ 10 µA (internally limited). A 1 V pulse 
(~ 100 ms) from a separate DC source applied to the reset heater (R = 53.7 kΩ) was used to reopen the contacts 
to guarantee repeatable testing.

The IR power reflected from a soybean leaf with varying RWC was first characterized by substituting the 
PMP in the experimental setup (Fig. 3) with a commercial IR sensor, from which the required PMP threshold 
was found to be ~ 209 nW corresponding to a moderate water-stressed state (RWC = 68%). This RWC was cho-
sen as the moderate water-stressed level since the plant was still easily recoverable at this state if watered. The 
fabricated PMP was then placed in the chamber and fine-tuned to have a threshold of 209 nW by applying a 
bias voltage of 19 V17.

The PMP was then sequentially exposed to the soybean plant with RWC decreasing from 100 to 25% while the 
current in the device was monitored. As expected, the device reliably turned ON only when exposed to samples 
with RWC ≤ 68% as shown by the abrupt (> 6 order of magnitude) current change in Fig. 4a (blue curve). After 
detection of RWC = 68%, a piece of paper has been used as a shutter on top of the vacuum chamber’s window, in 
order to reset the device while allowing the leaf to dry to even lower values of RWC. Once reached the desired 
level of RWC, the shutter was removed and the device successfully detected lower levels of water stress in the 
leaf. The device remained completely off with zero standby leakage (instrument noise limited to ~ 10–5 µA) for 
higher RWCs as required. Using the source meter, an overall system current of ~ 600 mA was measured when the 
PMP was triggered ON and the pump was activated, and only ~ 120 pA when the PMP was off, and the system 
was at standby. It is notable that this represents a > 230,000 times improvement over the standalone pump (with 
no water-stress sensing function) which is normally operated on a duty-cycle and had a standby current of 28.4 
µA. It is also worth noting that with a reflectance change of 3.2% in the range from 100% RWC to 68% RWC, 
the device is able to differentiate between the IR power levels at these two RWCs (189.3 nW versus 209 nW).

An additional experiment was performed and an RWC of 50% has been identified as the minimum RWC 
for which, if a plant is watered, it recovers (i.e. its water-stressed wilting point) (more details in Supplementary 
Section 4). To simulate the scenario corresponding to the limit of detection for our sensor, the PMP was fine-
tuned at a bias voltage of 18.5 V in order to detect 214 nW corresponding to a leaf reflectance change of 4% and 
turning on at RWC = 50% (Fig. 4a (green curve),b).

This case has been shown purely for demonstrative purposes as it corresponds to the maximum reflectance 
change that can be targeted by the sensor for recoverability of the plant. However, it is important to highlight 
that in a real scenario if the stress level is set at the wilting point, it will likely affect yield and trigger chronic 
physiological damages22.

Nevertheless, the implementation of irrigation management techniques such as the optimized regulated 
deficit irrigation (ORDI) are beginning to be explored as the limited water reservoirs are getting more valuable 
due to climate change and increasing demand. ORDI distributes the total available water based on the needs at 
each growing stage. In this scenario, the demonstrated tunability of our sensor can be used to arbitrary choose 

Figure 3.   Schematic of the experimental setup used to demonstrate the zero standby power SWIR soybean 
plant water stress detection. It includes a Quartz tungsten halogen lamp (sunlight simulator), a soybean alive 
plant, a lens, a vacuum chamber where the PMP was placed, a load switch, a water reservoir and a water pump. 
The PMP was connected to a source-meter to apply the Vbias and to monitor the switch current. It was also 
connected to a separate DC supply to apply the reset pulse. Another DC supply was used as Vin of the load 
switch. A moderate water-stress condition of the plant (RWC = 68%) resulted in the PMP closing and, as a 
consequence, triggering the ON port of the load switch. At that point Vout = Vin resulting in the activation of the 
water pump which was programmed to pump 20 ml of water over 20 s.
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an RWC level far from the wilting point but under low or moderate water stress to optimize water usage while 
avoiding chronic physiological damages23. The reasons for a deficit irrigation can be government incentives for 
water conservation, shortage in water supply24 and/or for the purpose of achieving a tastier product (mostly 
fruits) filled with vitamins and antioxidants25.

As a test for repeatability, Fig. 4c shows the measured current through the PMP in response to chopped IR 
radiation reflected off the water stressed leaf at RWC = 68%. Due to the pull-in voltage effect, the PMP latches 
ON after each detection. To reopen the switch for the next detection, a 1 V pulse (~ 100 ms) applied to the reset 
heater (53.7 kΩ) returns the switch to an open and OFF state until triggered ON again by above-threshold IR 
when the shutter is removed from the top of the vacuum chamber’s window. Each time the PMP is triggered ON 
the water pump turns on as shown in Fig. 4d.

Compared to a conventional commercial low-power battery-powered water stress sensor such as a soil mois-
ture sensor (ECOWITT WN516) which was measured to have a power consumption of 60 µW at standby, our 
water stress sensor features a 75,000 times reduced power consumption of only 720 pW in standby. While the soil 
moisture sensor is duty cycled, the PMP turns ON only when sensing water stress and therefore its frequency at 
which it turns on varies according to the growth stage and season (e.g. soybean plants need more water during 
pod development and early seed fill as well as during drier/warmer weather). In a hypothetical in-field situa-
tion, with a Panasonic CR2354 coin battery (capacity ~ 560 mAh), the lifetime of the water stress sensor based 
on a PMP was estimated and compared to the Ecowitt soil moisture sensor (when they are connected to a same 
wireless transmitter with the soil moisture sensor duty cycled every 20 min). The calculation shows that while 

Figure 4.   (a) Experimental result of the current flowing through the PMP with two different bias voltages 
and reflectance of the leaf as a function of the relative water content (RWC) of the leaf. (b) The tested soybean 
plant at different RWCs (100%, 68%, and 25%). (c) Measured current through the entire system in response to 
chopped IR radiation reflected off the leaf at RWC = 68%. The PMP latches ON after each detection and the reset 
function returns the switch to an OFF state until triggered ON again by above-threshold IR. (d) The water pump 
turns ON when the PMP closes as a response to IR radiation reflected off the leaf at RWC = 68%. After the reset, 
the water pump remains OFF until triggered ON again by an above-threshold IR radiation.
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the state-of-the-art soil moisture sensor would last less than one year (~ 8 months) the water stress sensor based 
on a PMP results in almost 4-years lifetime. Compared to the state-of-the-art soil moisture sensor, the proposed 
zero-power crop water-stress detector can continuously monitor the plant water stress while enabling 5.7 times 
longer battery lifetime and higher accuracy thanks to its direct measurement scheme. A comparison showing 
twice the improvement of the proposed sensor over soil moisture sensors in the case of activating a water pump 
is also included in the Supplementary Section 5.

Potential impact on yield improvement and water saving.  We believe that the unique combination 
of high accuracy and ultra-low power consumption of the proposed water stress sensor technology will enable 
a significant water use efficiency (WUE, defined as grain produced per unit of water used by the crop) improve-
ment that cannot be achieved with soil moisture sensors in a large scale. Studies have shown that precise irriga-
tion based on the growth stage and real-time water stress level in a plant (e.g., soybeans in the case of26) leads to 
a maximized yield. Due to the indirect measurement, soil moisture sensors are unable to guide the irrigation sys-
tem to precisely control the RWC of a plant within an optimum range in different growth stages. In this context, 
the demonstrated IR-based direct RWC measurement and the threshold tuning capability of the proposed water 
stress sensors are ideal for monitoring a plant’s water need in real time and further generating actionable items 
(digitized output bits) to control the irrigation systems. The threshold of the sensors in this case can be adjusted 
along the growth of the plant to ensure a RWC value always maintained above the optimum level regardless of 
the change of soil property and temperature27, weather conditions and root depth that have to be taken into 
account when a soil moisture sensor is employed. On the other hand, it has been reported that maximized 
water saving can be achieved through a dripping irrigation system with high-granularity sensor input (~ 5 × 5 m2 
area)28. Although soil moisture sensors are used in trial fields for such studies, there are no commercially avail-
able products can be deployed in such a density in a large scale due to the prohibitive cost associated with sensor 
hardware and maintenance. By replacing the soil moisture sensors with the proposed zero-power water stress 
sensors, it is expected that the same or better result on water saving can be achieved and with greatly reduced 
labor cost spent on calibration and battery replacement hence a promising solution for large scale deployment.

Discussion
One key aspect of the presented device concept is to use sunlight as the IR source in order to keep the sensor 
node fully passive at standby. However, the sunlight is a constantly varying power source making it challenging 
to rely on thresholding method to gauge the water stress in the leaf. Therefore, in order to practically implement 
the presented sensing mechanism in the field, a stable and calibrated light source (in a greenhouse for example) 
or additional sunlight sensor is required. Unlike the case for IR sensing, detection and digitizing of light intensity 
in visible spectrum with ultra-low power consumption is less challenging with existing technologies. For instance, 
a miniature and self-sustaining sunlight digitizer circuit was demonstrated29, which can be used in conjunction 
with the sensor technology presented here to mitigate the problem related to sunlight variation. Other possible 
challenges associated with outdoor development are from the environmental conditions such as large tempera-
ture change, wind, rain, dust, fog, etc. In principle, the temperature compensation mechanism in PMP30 and the 
operating wavelength at SWIR spectral band help address some of the challenges in certain extent. For example, 
IR light can pass through smoke and fog with little attenuation thanks to their longer wavelength. Future work 
will focus on the design of a robust sensor system and deployment scheme based on the technology for field test.

In conclusion, we have demonstrated a first-of-its-kind zero-power water stress sensor based on the monitor-
ing of leaf reflectance rise when its RWC drops. The use of sunlight as the IR source together with the sensor’s 
event-driven IR sensing capability make it fully passive at standby which leads to a drastically extended sensor 
lifetime compared to state-of-the-art low-power soil moisture sensors. The direct measurement scheme contrib-
utes to a high accuracy without the need of soil dependent calibration, which is critical for precision agriculture 
aiming at maximized yield with reduced water usage. These features directly translate to a low maintenance cost 
and a high return of investment making the proposed technology an ideal candidate for the implementation of 
high-granularity water stress sensor networks suitable for large-scale smart farms.

Online methods
Plant selection and growing conditions.  We chose to perform our tests on Soybean (Glycine Max) 
due to its fast growth rate, quick response to water-stress and large amount of relevant data available in litera-
ture. More specifically, the selected seeds are labeled “Non-GMO, Gluten Free Laura Soybeans” and they are 
sold by Sanlinx Inc. The Lot Number is NJKS-19-LA and the Harvest Date was October 15, 2019. The soybean 
plant was grown in an enclosed Delux Smart Grow Closet in our lab, which was fitted with air filters (to avoid 
cross-contamination between the lab and closet), continuous airflow, a thermo/hygrometer and grow lights. The 
hygrometer, a thermometer and a Kind LED K3 Series 2 XL450 grow light allowed us to keep the plant under 
constant humidity (~ 30%) and temperature (~ 26 °C) as well as to enable perpetual growing cycles. A DIY Micro 
Automatic Drip Irrigation Kit was used to water the plants daily (300 mL/day). All methods were performed in 
accordance with relevant guidelines and regulations.

RWC as a measure of water stress.  Among the many indices used in literature to model reflectance 
spectra versus the water content of the leaf, we chose the Relative Water Content (RWC) for two main reasons. 
Firstly, it is relatively easy to obtain directly from the weight of the leaf (directly dependent on the leaf water con-
tent) and is easy to calculate. The second reason is because we found consistent RWC literature connecting the 
reflectivity of Glycine Max to its water content therefore allowing a solid comparison of our results with results 
of already existing techniques.
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The measurements were done with circular cut leaf discs of 3 cm diameter (We avoided large veins when 
cutting). The formula used was: RWC (%) = [(W − DW)/(TW − DW)] × 100 where W = weight of the cut leaf 
disc, TW is the weight of the leaf disc after being immersed in water in a closed petri dish to reach full turgidity 
in 3-4 h under normal lab conditions (we measured TW = 0.126 g), DW is the mass of the leaf disc dried at 80C 
for 24 h and weighed (measured DW = 0.015 g).

Generally, the RWC was 98% for fully turgid transpiring leaves, 60% to 70% for the initial wilting stage and 
30% to 40% for severely desiccated and dying leaves.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding authors upon reasonable request.
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