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Abstract

Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated 

by multiple proteins and signaling pathways. Cytokines constitute a major class of regulators of 

skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury 

secrete cytokines, which play critical roles in the myofiber repair and regeneration process. In the 

past 10–15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much 

attention in the field has been focused on the endocrine effects of muscle-secreted cytokines 

(myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived 

cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. 

In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle 

cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several 

major classes make up this group, and together they regulate all steps of the myogenic process. 

How such a large array of cytokines coordinate their signaling to form a regulatory network is a 

fascinating, pressing question. Functional studies that can distinguish the source of the cytokines 

in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
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Introduction

Skeletal muscle is one of the few adult mammalian tissues that can undergo robust 

regeneration after injury, owing at least partly to a resident population of stem cells that 

imparts a great regenerative capacity. These myogenic progenitor cells, called satellite cells, 

exist in a quiescent state under the basal lamina of myofibers until stimulated to divide 

by muscle injury as a result of acute trauma, toxin, exercise, or diseases. A subset of 
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the activated satellite cells returns to quiescence, allowing for self-renewal of the muscle 

stem cell pool, while the remaining activated cells proliferate at the site of injury to 

allow for new myofiber formation or repairing of injured myofibers [1, 2] (Figure 1). 

Effective regeneration depends on the new myoblasts successfully completing a number 

of different processes, including expression of many of the same myogenic genes seen in 

embryonic development, such as the MEF2 and MyoD families of transcription factors [3, 

4]. The differentiating myoblasts must also undergo massive cytoskeletal rearrangement, 

migration, cell-cell adhesion and alignment, and finally membrane fusion in order to form a 

multinucleated myofiber. Myocyte fusion occurs in two stages that are regulated by distinct 

molecular pathways [5, 6]. The first stage entails fusion between differentiated myoblasts, 

leading to small, nascent myotubes. The second stage of fusion occurs between myoblasts 

and these nascent myotubes, resulting in mature myofibers. This well-orchestrated myogenic 

process is regulated by numerous intracellular signaling pathways, including p38 [7], Jak/

STAT [8], mTOR [9] and PI3K/AKT [10], to name just a few. This review will discuss 

the roles of cytokines and their signaling in regulating myogenesis, with a special focus on 

cytokines of muscle cell origin.

The exact definition of what constitutes a cytokine has been evolving since their discovery in 

purulent exudates in the 1940s [11]. The earliest identified cytokines were of hematopoietic 

origin and thought to be dedicated to modulating inflammatory responses. Today, it is well 

established that nearly every cell type can produce secreted factors to some degree, and that 

even the original cytokines have other sources and pleiotropic functions beyond the immune 

system. Biochemical, structural, and functional understanding of these secreted factors have 

led to various, sometimes overlapping, forms of nomenclature. For instance, most of the 

interleukins and all interferons signal through cytokine receptors associated with the Jak 

kinases and they are still considered by some to be the only bona fide “cytokines”. Most 

growth factors (e.g., EGF, IGF, FGF, VEGF, etc.) act through receptor tyrosine kinases. 

Chemokines, so named for their chemoattractant properties, are ligands for G protein 

coupled receptors. TGFβ’s and TNFs bind distinct families of receptors known as TGFβ 
receptors and TNF receptors, respectively. For all practical purposes, the term “cytokine” 

has been extended to include all small (<30 kDa) secreted proteins that function via cell 

surface receptors, although there are certainly exceptions to this already broad definition. 

For instance, almost all TNF family members exist in a transmembrane form in addition to 

the extracellular soluble form resulting from proteolytic cleavage, both biologically active; 

some cytokines are larger than the 30 kDa molecular weight cutoff (e.g. IL-12, VEGF).

A large number of infiltrating immune cells at the site of skeletal muscle injury play a 

critical role in not only clearing the damaged tissue but also promoting muscle regeneration 

[12, 13]. It is well accepted that these immune cells produce a milieu of secreted factors 

that modulate every stage of injury-induced muscle regeneration. However, in the past 

two decades the skeletal muscle has also gained increasing attention as a secretory organ. 

Originally coined by Pedersen et al. [14], the term “myokine” refers to a cytokine that 

is released by skeletal muscle cells (often as a result of exercise) into the circulation to 

exert endocrine effects and metabolic regulation [15, 16]. IL-6, for which the term myokine 

was first proposed [14], is secreted by exercising muscles and may exert a multitude of 

beneficial effects on metabolism [15]. At an ever-growing number, myokines have attracted 
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intense interest and been the subject of many excellent reviews (e.g., [15–17]). The autocrine 

and paracrine functions of muscle- or myogenic cell-secreted cytokines on modulating 

myogenesis have received less attention. With the advent of single-cell RNA sequencing 

(scRNAseq), which enables deep interrogation of the transcriptomics of the injured muscle, 

it has become evident that vast heterogeneity of gene expression exists in the many types 

and subpopulations of cells contributing to the regeneration process [18–21]. For instance, 

Oprescu et al. uncovered a subpopulation of muscle satellite cells enriched for immune gene 

expression in the regenerating muscle, which they termed “immunomyoblasts” [19]. It is 

reasonable to assume that these cells contribute to cytokine secretion during regeneration. 

scRNAseq data from other groups have also hinted at the existence of such a cytokine-

expressing satellite cell subpopulation [18, 21]. The exact source of, and cell-specific 

responses to, each of the cytokines released during specific time points in regeneration 

are fascinating questions we are only just beginning to address. To help clarify the specific 

contribution of the myocyte lineage to the myogenic process, the current review focuses on 

muscle cell-derived cytokines that act in an autocrine manner to regulate skeletal muscle 

differentiation and regeneration.

Skeletal muscle cells are prolific producers of cytokines during differentiation

It has long been known that conditioned medium of differentiating skeletal myoblasts or 

myotubes in culture contain factors that influence myogenic differentiation, implicating 

muscle-derived cytokines in the autocrine/paracrine regulation of myogenesis. Whereas 

muscle tissue homogenates can contain proteins from non-muscle sources, analyses of in 

vitro muscle cell cultures have provided definitive evidence for muscle cells as prolific 

secretors of cytokines. About 10 years ago, significant efforts by several research groups 

led to the first proteome-wide glimpse of the skeletal muscle secretome. Two groups 

independently performed stable isotope labeling by amino acids in cell culture (SILAC) 

followed by proteomic analysis of the conditioned media of mouse C2C12 myoblasts at 

various stages of differentiation [22–24]. While Henningsen et al. identified 635 secreted 

proteins among which 75 were cytokines/growth factors [24], Chan et al. reported 34 

secreted proteins [22]. Both studies concluded that a large portion of the proteins were 

secreted differentially during the course of differentiation, providing potential support for 

the idea that those secreted factors may have regulatory roles in the myogenic process. 

Another commonly used myogenic cell line, the rat L6 myoblast, was studied by Yoon 

et al., and they identified 254 proteins in the conditioned medium of fully differentiated 

myotubes, a small subset of which were up- or down-regulated by short-term (5 hours) 

insulin treatment [25]. Myotubes differentiated from human myoblasts were also analyzed 

by Norheim et al. and 18 classically annotated secreted proteins were reported [26]. Around 

the same time as the cluster of proteomic studies, Griffin et al. examined the mRNA 

expression of 84 chemokines and genes encoding proteins involved in chemokine signaling 

during differentiation of mouse primary myoblasts. They found 80 of those genes to be 

expressed, with the majority peaking at the time of myocyte fusion, consistent with a 

potential role of these chemokines in cell migration necessary for fusion [27]. It is worth 

noting that Henningsen et al. did not observe a marked correlation between the levels 

of cytokine proteins in their secretome and the levels of the corresponding mRNAs [24], 

Waldemer-Streyer et al. Page 3

FEBS J. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggesting that a significant part of regulation of cytokine secretion by muscle cells may be 

at a post-transcriptional level.

Many of those identified muscle-secreted cytokines remain to be characterized for their 

potential functions in myogenesis. Nevertheless, the collective evidence raised the intriguing 

possibility that muscle cell-secreted proteins might have a previously under-appreciated 

role in modulating myogenic differentiation and muscle regeneration. Our lab conducted 

a functional screen of 134 mouse cytokines for their impact on myogenic differentiation 

in C2C12 myoblasts using RNAi, which led us to identify 29 potential regulators of 

myogenesis in distinct functional groups [28]. Several of those candidates have since been 

characterized for their myogenic functions and mechanisms (discussed later).

Early discoveries of cytokines with autocrine functions in myogenic differentiation

The concept of autocrine regulation of myogenesis by muscle-secreted factors is not new. 

Below we briefly describe a few of such cytokines first reported. Where comprehensive 

reviews have been published, we will refer the readers to those reviews in lieu of citing 

primary literature.

IGFs

The insulin-like growth factors IGF1 and IGF2 were among the earliest characterized 

and most extensively studied cytokines that promote myogenesis in an autocrine fashion 

[29–31]. IGFs are critically involved in skeletal muscle development, hypertrophy, and 

regeneration [29, 32, 33]. The autocrine function of IGF was first reported 30 years ago 

in cultured myoblasts found to secrete IGF2 that was indispensable for the initiation of 

differentiation [34]. Indeed, C2C12 myoblasts secrete high levels of both IGF1 and IGF2 

[35, 36], and both stimulate the expression of myogenin, an early marker of myogenic 

differentiation [29]. Autocrine IGF2 is also a survival factor for muscle cells [37].

FGF, PDGF, HGF

Around the time when IGFs emerged as positive regulators of myogenesis, it became clear 

that fibroblast growth factors (FGFs) were autocrine inhibitors of myogenic differentiation 

in vitro [30]. FGF2 (basic FGF) is more potent than FGF1 (acidic FGF) in this regard, 

both possibly acting as mitogens to prevent cell cycle withdrawal and consequently suppress 

differentiation, although direct inhibition of myogenic gene expression is also proposed [30]. 

Several FGFs (at least FGF1, 2, 4 and 6) are expressed in satellite cells and, not surprisingly, 

they can also stimulate cultured satellite cell proliferation in an autocrine manner [38]. It 

would therefore appear that FGFs could have dual roles in muscle regeneration – promoting 

satellite cell expansion and suppressing myogenic differentiation. However, in vivo evidence 

for FGF function in myogenesis is limited (to be discussed later).

Another growth factor, platelet derived growth factor (PDGF), is expressed by myoblasts 

and exerts inhibitory effects on myogenic differentiation by promoting cell proliferation 

and inhibiting cell cycle exit [39–41]. Likewise, hepatic growth factor (HGF) is found to 

be expressed in satellite cells during rat muscle regeneration [42], stimulate satellite cell 

proliferation, and inhibit differentiation [43, 44]. Although IGFs are also growth factors 

Waldemer-Streyer et al. Page 4

FEBS J. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that stimulate myoblast proliferation, unlike FGF, PDGF and HGF, the mitogenic activity of 

IGFs – especially IGF2 [45] – does not interfere with their myogenic activity at the time of 

differentiation [29].

TGFβ

In 1986 transforming growth factor β (TGFβ) was reported independently by three groups to 

be an inhibitor of myogenic differentiation in vitro [46–48]. Those initial reports concluded 

that the effect of TGFβ was independent of cell proliferation. However, it is now confirmed 

in at least C2C12 cultures that TGFβ stimulates myoblast proliferation through Smad2 

activation and consequently suppresses cell cycle exit [49, 50]. On the other hand, TGFβ 
activation of Smad3 leads to direct suppression of the transcriptional activity of MyoD 

and possibly other myogenic regulatory factors [51]. Consistent with an autocrine function, 

TGFβ is found to be secreted by myoblasts in vitro and its mRNA is expressed in mouse 

skeletal muscles [52].

Myostatin

A member of the TGFβ family, myostatin (also known as growth/differentiation factor-8 

or GDF8) was reported in 1997 to be an autocrine inhibitor of muscle mass in mice 

[53]. Deletion of the myostatin gene leads to drastic muscle hypertrophy, manifesting the 

double-muscled phenotype in mice, cattle, and humans [54]. The mechanism by which 

myostatin inhibits muscle growth and myogenesis is multifold and will be discussed later. 

Two other TGFβ family members closely related to myostatin, activin A and GDF11, 

are also secreted by muscle cells and inhibit myogenic differentiation [55, 56]. All three 

ligands signal through the same activin receptors, and the receptor binding is antagonized 

by these ligands’ physical interaction with muscle-secreted follistatin [55, 57]. Consistent 

with its anti-myostatin function, follistatin is a potent inducer of muscle hypertrophy [58, 

59], although a myostatin-independent mechanism has also been suggested for follistatin’s 

hypertrophic effects [60].

Regulation of myogenic processes by muscle-derived cytokines—In our 

literature survey we have set two criteria to look for cytokines that are autocrine regulators 

of muscle differentiation/regeneration: (a) evidence of expression by muscle cells in culture 

or in vivo and (b) evidence of myogenic regulation by the cytokine – either endogenous or 

recombinant. To date, dozens of cytokines have met these criteria as summarized in Table 

1. These cytokines encompass several major classes of extracellular ligands based on the 

types of their cognate receptors, including members of TGFβ family, members of TNF 

family, chemokines, ligands for receptor tyrosine kinases, and interleukins/interferons that 

signal through cytokine receptors. Although not all these cytokines have been defined for 

their mechanisms of myogenic action, there is a sizable number of reports on the cellular 

mechanisms of autocrine regulation in myogenesis by many of the cytokines. Remarkably, 

every stage of the myogenic process involves regulation by muscle-derived cytokines, and 

many cytokines contribute to myogenic regulation at more than one stage (Figure 2).
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Satellite cell activation and proliferation

Cytokines that have been reported to positively regulate satellite cell activation and myoblast 

proliferation in a muscle-autonomous manner include CCL2 [61], CXCL16 [62], FGFs 

(1, 2, 4, 6 and possibly others) [30, 38], G-CSF [63], HGF [43, 44], IFNγ [64], IGFs 

[29–31], IL-1 [65], IL-6 [66], LIF [67], NGF [68], PDGF [39–41], TGFβ [49, 50], and 

Sonic hedgehog (SHH) [69, 70]. These cytokines signal through their cognate receptors 

and intracellular signaling pathways well established to regulate proliferation of various cell 

types, including ERK, AKT, SMADs and STATs (Figure 3). SHH plays a critical role in 

embryonic myogenesis [71] and its expression is absent in adult muscles. Muscle injury 

reactivates SHH signaling, and pharmacological inhibition of the signaling is reported to 

impair regeneration [72]. While its receptor Ptch1 and downstream target Gli1 are expressed 

in mouse primary myoblasts and C2C12 cells, SHH itself is not produced by those cells 

[70]. Instead, injured myofibers appear to be the source of SHH production in vivo [72], 

making SHH a bona fide muscle-derived cytokine.

Myostatin, among its many reported inhibitory functions in muscle, negatively regulates 

satellite cell self-renewal and proliferation by impinging on the levels of the G1 cell cycle 

regulators p21CIP and Cdk2 [73, 74]. Similarly, activin A is also reported to negatively 

regulate satellite cell activation and proliferation [75]. TNFα inhibits regeneration of mdx 

muscles by suppressing satellite cell activation via NF-κB signaling and epigenetic silencing 

of Notch1 [76, 77].

Cell cycle withdrawal

Two events during the earliest stage of myogenic differentiation – cell cycle withdrawal 

and initiation of differentiation – are regulated by a large number of cytokines (Figure 

2). This is perhaps not surprising, as the commitment to differentiation is a point of 

no return for the cell fate. Muscle-derived Flt3L promotes C2C12 myoblast exit from 

the cell cycle, and knockdown of Flt3L impairs myoblast differentiation in vitro and 

muscle regeneration in vivo [78]. As an example of a ligand-receptor pair utilizing distinct 

signaling mechanisms in different biological contexts, Flt3L via its receptor Flt3 (an RTK) 

stimulates hematopoietic cell proliferation by activating ERK signaling [79], whereas in 

myoblasts Flt3L-Flt3 signaling activates cell cycle withdrawal by suppressing ERK through 

a non-canonical p120RasGAP pathway [78]. Brain derived neurotrophic factor (BDNF) is 

reported to be expressed in L6 [80], C2C12 [68], and both mouse [81] and human [82] 

primary myoblasts. Depletion or deletion of BDNF in primary myoblasts results in impaired 

cell cycle withdrawal and differentiation in vitro [81, 82], suggesting a positive role of 

BDNF in facilitating cell cycle exit of myoblasts. Similar to Flt3L, BDNF has an opposite 

effect in non-myogenic cells – it promotes cell proliferation in the subventricular zone 

and hippocampal dentate gyrus [83]. VEGF’s effect on suppressing cell proliferation at the 

onset of differentiation also makes it a likely candidate as a positive regulator of cell cycle 

withdrawal [84].

Interestingly, a large number of muscle-derived cytokines have been found to block 

cell cycle withdrawal and negatively regulate myogenic differentiation including, not 

surprisingly, many of the growth factors that promote myoblast proliferation – FGFs [38, 85, 
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86], PDGF [39–41], HGF [43, 44] and TGFβ [49, 50], as well as TNFα [87], BMP4/7 [88–

91], CXCL14 [92], and TNFSF10/TRAIL [93]. These cytokines belong to different classes 

and signal through different types of receptors, and yet, ERK signaling has emerged as a 

common downstream pathway responsible for modulating the cell cycle (Figure 3). It has 

been well established that the ubiquitous mitogenic signaling by ERK suppresses myogenic 

differentiation by preventing cell cycle withdrawal [94, 95], which requires the expression of 

cyclin dependent kinase inhibitor p21CIP [96, 97]. In principle, it is also possible that distinct 

downstream pathways can transduce the signals from different cytokines and converge on 

the cell cycle machinery.

Not all published studies reporting effects of cytokines on the early stage of differentiation 

directly examined their involvement in the cell cycle, but some of those cytokines 

may well be regulating cell cycle withdrawal. For instance, LIF is expressed in mouse 

primary myoblasts [98]; recombinant LIF inhibits myoblast differentiation at an early 

stage accompanied by reduced p21CIP expression and increased ERK activation, and 

inhibition of ERK signaling rescues differentiation in LIF-treated cells [99]. An earlier 

study in fact had reported LIF stimulating mouse primary myoblast proliferation [67]. 

These observations taken together strongly suggest that LIF negatively regulates myogenic 

differentiation through suppressing cell cycle withdrawal. Our RNAi screen [28] has led to 

the identification of additional 10 or so cytokines (belonging to several distinct families) 

that may negatively regulate myogenic differentiation by blocking cell cycle withdrawal (D. 

Kim & J. Chen, unpublished observations). It is not clear why myocytes secrete such a large 

number of distinct cytokines to modulate a single step of myogenesis. Do these cytokines 

support myoblast/satellite cell proliferation and simply need to be removed at the time of 

differentiation? The results of our unpublished preliminary studies do not seem to support 

this notion (R. Waldemer-Streyer, D. Kim, & J. Chen). Or is this arsenal of inhibitors of 

differentiation necessary for the maintenance of satellite cell pool? The knockdown of any 

one of those cytokines in myoblasts results in a differentiation phenotype, suggesting that 

these regulators are not redundant. How do they functionally interact? Do their signaling 

pathways interact and if so how?

Initiation of differentiation

Whereas the initiation of differentiation can be a direct consequence of cell cycle withdrawal 

regulated by the cytokines discussed above, some cytokines may regulate this process 

independently of cell cycle withdrawal. IGF1 and IGF2, through their receptor IGF1R, 

signal through the PI3K-AKT pathway to robustly activate the myogenic differentiation 

program [10, 100]. Mammalian target of rapamycin (mTOR) plays a multi-faceted role in 

the myogenic regulation by IGF2 [9]: (a) a rapamycin-sensitive and kinase-independent 

function of mTOR governs IGF2 expression in muscle cells [101–103]; (b) mTOR complex 

2 (mTORC2) is a kinase for AKT [104] and hence a positive regulator of IGF2 signaling; 

(c) mTOR complex 1 (mTORC1) dampens PI3K-AKT myogenic signaling through serine 

phosphorylation of IRS1 [105, 106].

SHH was also reported to promote C2 myoblast differentiation through the PI3K pathway 

[69], although another study found recombinant SHH to inhibit C2C12 differentiation 
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[70]. The marked differences between C2 and its subclone line C2C12 [107] could have 

contributed to this discrepancy. Alternatively, since SHH also stimulates myoblast/satellite 

cell proliferation [69, 70], the timing of SHH addition to cell culture could determine the 

outcome of proliferation versus differentiation.

Myostatin, acting through the activin type II receptor, has been shown to reduce MyoD 

expression and activity via Smad3, hence inhibiting the initiation of differentiation [108]. 

Signaling from mTORC1 and mTORC2 may also be involved in mediating myostatin 

inhibition of differentiation of human myoblasts [109]. Several other TGFβ family members 

may have a similar role as myostatin, including TGFβ1, GDF11, and activin A [55, 56, 109].

In addition to regulating satellite cell proliferation as discussed earlier, the autocrine function 

of IL-6 is necessary for myogenin expression and myotube fusion, which is impaired in 

C2C12 cells with IL-6 knockdown and mouse primary myoblasts with IL-6 KO [110, 111].

Myoblast migration and fusion

Upon cell cycle withdrawal and activation of the myogenic gene expression program, 

mononucleated myocytes fuse to form multi-nucleated myotubes/myofibers. Proper 

positioning or alignment of the cells is necessary for this fusion, which likely requires 

myocyte migration. Known to induce cell migration in a number of cell types, VEGF is 

reported to stimulate myoblast migration and differentiation [84, 112]. Both IL-6 [66] and 

IL-7 [113] also play a positive role in myoblast migration. The chemokine CXCL12 and 

its receptor CXCR4 are demonstrated to be critical regulators of myocyte migration and 

fusion [27]. Another chemokine, CXCL14, is reported to stimulate migration of C2C12 

cells as well [114]. In addition, Griffin et al. found a larger number of chemokines to be 

expressed at the mRNA levels during myoblast fusion, raising the possibility that a network 

of chemokines may regulate the fusion process [27]. Intracellular signaling pathways 

involving the Rho small GTPases are known to regulate actin cytoskeleton dynamics and 

cell migration [115, 116] and they can be downstream targets of muscle-derived cytokine 

signaling. Furthermore, it is possible that cytokine signaling can be linked to many of the 

regulators identified to control myoblast migration and myocyte fusion [5, 6].

There are two distinct phases of skeletal myocyte fusion during both embryonic and 

adult myogenesis in mammals – myoblast-myoblast fusion to form nascent myotubes and 

myoblast-myotube fusion to form mature myotubes/myofibers [6, 117]. Remarkably, the two 

fusion processes are separable at the molecular level, with a distinct set of molecules and 

signaling pathways regulating each [6, 117]. IL-4 was the first example of a muscle-derived 

cytokine that specifically regulates the second stage of myocytes fusion, reported by Horsley 

et al. [118]. However, the origin of this cytokine in vivo has been disputed [119]. Heredia et 

al., detected no IL-4 expression in regenerating muscles in vivo; instead, they demonstrated 

that eosinophils recruited to the muscle injury site produce IL-4 to regulate muscle resident 

fibro/adipocyte progenitor cells essential for myofiber regeneration [119]. mTOR is found to 

govern multiple stages of myogenic differentiation via distinct pathways, one of which is the 

regulation of second-stage myocyte fusion via a secreted factor [120]. Follistatin partially 

fulfills the criteria for this secreted factor as its expression in muscle cells is regulated by an 
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mTOR pathway involving microRNA-1 and HDAC4, although follistatin contributes to both 

stages of myocyte fusion [121].

Cell survival

Although not a direct step in the myogenic process, maintenance of myocyte survival is 

obviously necessary for the process. Among the muscle-derived cytokines, CNTF [122], 

IGF2 [37], SHH [70], TNFSF14 [123], and VEGF [84, 112] have been reported to support 

the survival of myoblasts. Signaling by the Ser/Thr kinase AKT is a major survival pathway 

in various cell types [124, 125] and, indeed, at least CNTF and TNFSF14 have been shown 

to signal through AKT to regulate myoblast survival [122, 123]. Other muscle-derived 

cytokines may exert pro-apoptotic effects. One example is IL-1, which has been reported 

to be expressed by human primary myoblasts; exogenous IL-1β induces myoblast apoptosis 

without affecting cell proliferation or fusion [126]. It is possible that optimal cell number/

density is controlled by counter-acting cytokine signaling to regulate muscle size during 

myogenesis.

Muscle-derived cytokines in myogenesis in vivo—The critical role of cytokines in 

muscle regeneration is well established, but immune cells at the site of muscle injury have 

been traditionally considered the main source of those cytokines [12, 13]. Although cytokine 

involvement in muscle diseases, such as muscular dystrophy, cachexia and sarcopenia, has 

been widely known, the emphasis is again on inflammation and immune cell-produced 

cytokines [127, 128]. Much of what we know to date about muscle-derived cytokines in 

regulating myogenesis came from in vitro studies. In the literature there is surprisingly 

a paucity of in vivo studies of myogenesis that entail modulating cytokine expression 

in a muscle-specific manner. Nevertheless, many of the cytokines covered in this review 

(i.e., expressed by muscle cells and have demonstrated myogenic functions) are reported 

to be expressed in myogenic cells or myofibers during acute injury-induced muscle 

regeneration, or in muscles undergoing satellite cell-dependent compensatory hypertrophy 

upon mechanical overload. In addition, some of the cytokines are expressed in dystrophic 

muscles, in Duchenne muscular dystrophy (DMD) for example, which undergo spontaneous 

cycles of degeneration and regeneration [129]. In Table 1 we include information of 

cytokine expression in the regenerating muscle, hypertrophic muscle, dystrophic muscle, 

and developing muscle. Below we discuss selected cytokines with evidence of functional 

involvement in the regeneration of normal or dystrophic muscles.

BDNF

Initially identified as a myokine produced in human skeletal muscles in response to exercise 

and found to confer autocrine/paracrine regulation of muscle metabolism [130, 131], the 

expression of BDNF is also upregulated in mouse regenerating muscles after injury [81]. 

BDNF is expressed in normal human skeletal muscles as well as by immune cells located 

near regenerating myofibers from patients of inflammatory myopathies [82]. A myogenic 

role of BDNF produced by human satellite cells post-exercise has been implicated by an 

increase in the number of BDNF+/myogenin+ cells [132]. Muscle regeneration is impaired 

in mice with targeted BDNF gene disruption driven by satellite cell-specific Myf5-Cre 
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[81], providing definitive evidence for a physiological role of muscle-derived BDNF in 

myogenesis.

FGF6

The expression of FGF6 is restricted to developing skeletal muscle during embryogenesis 

[133, 134] and also found in regenerating muscles post-injury [135, 136]. It is reported 

that FGF6-null mice have impaired muscle regeneration upon injury, most likely due 

to diminished satellite cell expansion [135], although another study found no defect in 

injury-induced muscle regeneration with FGF6−/− mice [137]. The phenotype of impaired 

regeneration in FGF6-null mice is corroborated by accelerated regeneration of injured 

mouse soleus muscle upon intramuscular delivery of recombinant FGF6 [136]. While these 

observations combined provide support for a function of muscle-derived FGF6, definitive 

evidence is yet to come from muscle-specific ablation of the cytokine.

IGF

The expression of both IGF1 and IGF2 in regenerating muscles is associated with 

regenerative capacity [138, 139]. Muscle-specific transgene expression of IGF1 in mice has 

been well studied, the effects of which include hypertrophy, accelerated regeneration upon 

injury, prevention of muscle decline in mdx mice, and enhanced muscle maintenance and 

regenerative capacity during aging [140–143]. Muscle-specific deletion of IGFR1 (hence 

impairment of both IGF1 and IGF2 signaling) suppresses muscle growth [144, 145]. 

However, muscle-specific knockout of IGF1 or IGF2 has not been reported and hence 

definitive genetic evidence for the autocrine function of IGF in vivo is still lacking.

Myostatin

Systemic knockout of myostatin in mice leads to drastically enhanced muscle growth 

[53], and a mutation in the bovine myostatin gene is responsible for the double-

muscled phenotype in cattle [146]. Since myostatin is almost exclusively expressed 

in skeletal muscles in mice [53], its systemic knockout provides sufficient evidence 

for a muscle-autonomous function. Muscle-specific expression of follistatin, which 

antagonizes myostatin, leads to enhanced muscle growth in mice to a similar degree 

as myostatin knockout [147]. The expression of myostatin is elevated in mechanically 

overloaded hypertrophic muscles but decreased in injury-induced regenerative muscles 

[148]. Nevertheless, myostatin KO may promote muscle regeneration and improve muscle 

strengths in the mdx mouse, a commonly used (albeit imperfect) model of DMD [149], 

making myostatin a potential therapeutic target for treating DMD [150, 151].

TNFα

Implicated as a major inflammatory mediator of muscle wasting in aging or disease [152–

154], recombinant TNFα inhibits myoblast differentiation in human and mouse cultures 

[87, 155, 156]. TNFα is reported to be expressed in regenerating myofibers of mdx mice, 

although the source of this cytokine in DMD can also be immune cells [76, 128, 157]. 

The elevated level of TNFα in the mdx dystrophic muscles may suppress regeneration 

by inhibiting satellite cell activation [76, 157]. However, interfering with endogenous 
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TNFα expression or signaling leads to inhibition of myoblast differentiation in vitro and 

reduction of muscle regeneration in vivo [158–161]. A model to potentially reconcile 

these paradoxical observations is that normal muscle-derived TNFα has a positive role 

in myogenic differentiation whereas immune cell- or dystrophic muscle-derived TNFα has 

a negative role. Concentrations of the cytokine and/or activation of distinct downstream 

signaling pathways may determine the outcome. Indeed, the MAP kinase p38 is a relevant 

target of TNFα signaling that supports myogenic differentiation [160, 161], whereas NF-κB 

mediates the inhibitory function of TNFα [76, 77, 87] (Figure 4).

IL-6

A pro-myogenic function of IL-6 in vivo is supported by the observations that expression 

of this cytokine is induced in satellite cells and growing myofibers during load-induced 

compensatory hypertrophy [66, 162], and that satellite cell-dependent hypertrophy is 

impaired in IL-6 KO mice [66]. LIF, which is closely related to IL-6, also has a critical 

role in compensatory hypertrophy [148, 163]. In addition, IL-6 and LIF are expressed 

in regenerating muscles after acute injury [98, 148, 164, 165], and a positive role of 

endogenous LIF in muscle regeneration in mice has been reported [165, 166]. IL-6 

expression is also upregulated in muscles of DMD [167] and young mdx mice [168], the 

latter manifest a disease phenotype similar to human patients. A decreased level of IL-6 

accompanies lessened dystrophy in adult mdx mice [169], suggesting a detrimental role of 

IL-6 in DMD disease severity. Indeed, forced expression of recombinant IL-6 in adult mdx 

mice recapitulates the severe phenotype of DMD in humans [169]. Conversely, treatment of 

mdx mice with an IL-6 receptor-blocking antibody led to enhanced muscle regeneration and 

alleviated morphological and functional defects of the dystrophic muscle [168]. However, 

another study employing a similar strategy did not find statistically significant improvement 

in mdx muscles [170]. The discrepancy between the two studies may be attributed to 

differences in the antibody dosing regimen and/or functional analyses. Administration of 

the IL-6 receptor-neutralizing antibody also normalized gastrointestinal dysfunction in mdx 

mice [171]. Therefore, it appears that elevated levels of IL-6 may exacerbate the dystrophic 

phenotype in DMD and that IL-6 could be a therapeutic target. Currently it is believed 

that transient and local production of IL-6, such as during injury-induced regeneration or 

load-induced compensatory hypertrophy, is associated with pro-myogenic effects, whereas 

chronic and systemically increased IL-6 levels are coupled with muscle atrophy [172]. 

In vitro, IL-6 has been reported to play both positive and negative roles in myogenic 

differentiation. The autocrine function of IL-6 promotes satellite cell proliferation, myoblast 

migration and differentiation [66, 110, 111] as discussed earlier. However, exogenous 

IL-6 treatment of C2C12 cells suppresses myogenic differentiation, possibly through down-

regulation of the kinases p90RSK and p70S6K [173]. This is reminiscent of the paradoxical 

roles of TNFα in differentiation discussed earlier (Figure 4).

IFNγ

Similar to TNFα and IL-6, paradoxical observations have been reported for the role of IFNγ 
in myogenesis. IFNγ is found to be expressed by both immune cells and muscle cells in 

regenerating muscles upon injury, and muscle regeneration is impaired in IFNγ KO mice 

or by the administering of an IFNγ receptor blocking antibody [64]. Clearly, IFNγ has a 
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positive function in myogenesis. However, administration of exogenous IFNγ also inhibits 

muscle regeneration in mice, whereas an IFNγ neutralizing antibody rescues regeneration 

in mice with elevated circulating levels of IFNγ and impaired regeneration as a result 

of KO of immunity-related GTPase family M1 protein (lRGM1) [174]. Consistent with 

these in vivo observations, antibody blocking of IFNγ receptor inhibits proliferation and 

fusion of C2C12 cells [64], and exogenous IFNγ also suppresses differentiation of C2C12 

[175] and human skeletal myoblasts [176]. Again, all these observations can be potentially 

reconciled by considering muscle-derived IFNγ pro-myogenic and pathological levels of 

IFNγ anti-myogenic. It should be noted, however, a role of muscle-derived IFNγ is yet to be 

demonstrated in vivo.

Concluding remarks and future directions

Released by infiltrating immune cells at skeletal muscle injury sites, cytokines play critical 

roles in facilitating muscle repair and regeneration. Although autocrine functions of a few 

muscle-secreted cytokines have been known for a long time, only in the last 10–15 years has 

the muscle emerged as a significant source of a large number of cytokines from all families. 

Many of these cytokines have now been assigned functions in the well-orchestrated process 

of myogenic differentiation, although many more remain to be functionally characterized. 

However, very few studies thus far have directly examined the source of cytokines (i.e., 

muscle versus immune cells) for their contribution to muscle regeneration in vivo. Filling 

this knowledge gap not only is of intellectual intrigue but can also lead to more effective 

designs of stem cell therapy in muscular dystrophy and other muscle diseases. To that end, 

the advent of CRISPR/Cas9 gene editing technology should enable more rapid generation 

of mice with muscle-specific ablation of cytokines. For instance, the recently reported 

transgenic mice with Cas9 expression driven by human skeletal actin (HSA)-Cre [177] and 

muscle creatine kinase (MCK)-Cre [178] would offer a convenient way to knock out or 

knock down cytokine genes of interest in muscle by delivering specific sgRNAs. Muscle-

specific activation of cytokine gene expression would also be informative and potentially 

applicable in therapeutics, and the CRISPR activation technology (CRISPRa) provides a 

powerful tool [179]. For instance, the dCas9-SunTag system [180, 181] can be combined 

with appropriate promoters [182] to drive Cre in order to achieve muscle-specific gene 

activation.

Many cytokines are detected at low levels in non-myeloid cell types including skeletal 

muscle cells. A potential implication is that individual cytokines may primarily contribute to 

fine-tuning mechanisms during differentiation and regeneration. Alternatively, it is possible 

that the local concentrations of muscle-derived cytokines are sufficiently high to support 

autocrine functions. To make matters more complicated, it is likely that many of the same 

cytokines are secreted by both muscle cells and immune cells, and that the source of a 

cytokine could determine its specific function, as we have seen with TNFα, IL-6 and IFNγ 
as examples. How does the muscle cell distinguish cytokines coming from different sources 

– what are the biochemical and cellular mechanisms for the differential signaling? How are 

muscle-derived cytokines regulated at the expression level and is there any inter-connectivity 

or hierarchy among them? Do these cytokines interact with each other at the signaling level 

to form a network in the regulation of the multiple processes of myogenesis? What would 
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be the heterogeneity, if any, within a muscle cell population in their production of and 

response to cytokines? Multi-pronged experimental approaches coupled with computational 

modelling may offer the best chance to delineate such a complex regulatory system.
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Abbreviations

BDNF brain-derived neurotrophic factor

BMP bone morphogenetic protein

CCL C-C motif chemokine ligand

CCN connective tissue growth factor (CTGF), cystein rich protein, and 

nephroblastoma overexpressed gene (NOV)

CNTF ciliary neurotrophic factor

CT-1 cardiotrophin-1

CXCL C-X-C motif ligand

DMD Duchenne muscular dystrophy

ERK extracellular signal-regulated kinase

FGF fibroblast growth factor

Flt3 fms like tyrosine kinase 3

Flt3L fms like tyrosine kinase 3 ligand

G-CSF granulocyte colony stimulating factor

GDF growth differentiation factor

GPCR G protein-coupled receptor

HGF hepatocyte growth factor

IFN interferon

IGF insulin-like growth factor

IL interleukin

LIF leukemia inhibitory factor

mTOR mammalian target of rapamycin

NGF nerve growth factor
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OSM oncostatin M

PDGF platelet-derived growth factor

PI3K phosphoinositide 3-kinase

RTK receptor tyrosine kinase

SHH sonic hedgehog

STAT signal transducer and activator of transcription

TGF transforming growth factor

TNF tumor necrosis factor

TNFSF TNF superfamily

VEGF vascular endothelial growth factor
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Figure 1. The sequential events of injury-induced muscle regeneration.
The expression of Pax7, MyoD, Myf5 and myogenin marks myocytes at different stages. 

MHC: myosin heavy chain.
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Figure 2. Muscle-derived cytokines involved in various stages of myogenesis.
Green: positive regulators; red: negative regulators.

Waldemer-Streyer et al. Page 30

FEBS J. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Schematic diagram of muscle-derived cytokine signaling regulating myogenic 
processes.
Five classes of cytokines and receptors are represented, and only the most downstream 

components of signaling pathways are shown. A major omission is SHH, which 

signals through its receptor Ptch1 and regulates satellite cell activation and proliferation, 

differentiation, and survival.
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Figure 4. Context-dependent TNFα signaling in myogenesis.
The source and concentration of TNFα can determine its downstream signaling pathways 

and effects on myogenesis.
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