Skip to main content
. 2022 Jul 20;42(7):1019–1025. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.07.08

表 1.

不同方法在MR脑影像超分辨率任务上的测试结果

Metrics of different methods in super-resolution task for routine brain MRI

Item Interpolation FSRCNN U-net SRFBN SCSR MSCSR
FSRCNN: Fast super-resolution convolutional neural network, SRFBN: Super-resolution feedback Network, SCSR: Structure-constrained super-resolution network, MSCSR: Multi-modality structure-constrained super-resolution network. PSNR: Peak signal-to-noise ratio, SSIM: Structural similarity. GM: Gray matter, WM: White matter, CSF: Cerebrospinal fluid.
  PSNR 14.47±0.60 19.39±0.75 21.83±0.78 24.40±0.68 26.34±0.89 33.11±0.86
  SSIM 0.943±0.006 0.978±0.003 0.989±0.002 0.992±0.001 0.995±0.001 0.996±0.001
Volume Error
  GM 19 622(3%) 68 610(10%) 209 725 (33%) 8372 (1%) 14 799 (2%) 9967(1%)
  WM 84 461 (18%) 48 629(10%) 159 236 (34%) 9383 (2%) 6207 (1%) 8455 (2%)
  CSF 98 681 (35%) 13 918(5%) 83 004 (30%) 7818(3%) 10 300 (3%) 24 187 (8%)