Skip to main content
. 2022 Jul 24;22:191. doi: 10.1186/s12911-022-01917-3

Table 7.

Configural effects for predicting high and low behavioural intentions towards m-health

Configural models for predicting high behavioural intentions towards m-health Configural models for predicting low behavioural intentions towards m-health
BI = f (PE, EE, SI, FC, HM, PV, HB, SQ and QL)  ~ BI = f (PE, EE, SI, FC, HM, PV, HB, SQ and QL)
Configural Models (Sufficient causal recipes) Raw coverage Unique Coverage Consistency Configural Models (Sufficient causal recipes) Raw coverage Unique Coverage Consistency
Model 1: ~ EE*SI* ~ FCI*HM*PV*HA*SQ* ~ QL 0.721 0.010 0.986 Model 1: ~ PE* ~ EE*SI* ~ PV* ~ HA *SQ*QL 0.811 0.145 0.949
Model 2: PE* ~ EE*SI* ~ FCI*HM*PV*HA*SQ 0.714 0.018 0.986 Model 2: ~ PE* ~ EE*SI* ~ PV* ~ HA 0.711 0.031 0.803
Model 3: PE*EE*SI*FC*HM*PV*HA* QL 0.546 0.015 0.995
Solution coverage: 0.767 Solution coverage: 0.900
Solution consistency: 0.856 Solution consistency: 0.824

Performance expectancy = PE, Effort expectancy = EE, Social influence = SI, Facilitating condition = FC, Hedonic motivation = HM, Price value = PV, Habit = HA, Service quality = SQ, Quality of life = QL, Behavioural intention = BI, Use behavior = UB