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Abstract

Purpose: Real-time three-dimensional(3D) magnetic resonance(MR) imaging is challenging 

because of slow MR signal acquisition, leading to highly under-sampled k-space data. Here, we 

proposed a deep learning-based, k-space-driven deformable registration network(KS-RegNet) for 

real-time 3D MR imaging. By incorporating prior information, KS-RegNet performs a deformable 

image registration between a fully-sampled prior image and on-board images acquired from 

highly-under-sampled k-space data, to generate high-quality on-board images for real-time motion 

tracking.

Methods: KS-RegNet is an end-to-end, unsupervised network consisting of an input data 

generation block, a subsequent U-Net core block, and following operations to compute data 

fidelity and regularization losses. The input data involved a fully-sampled, complex-valued prior 

image, and the k-space data of an on-board, real-time MR image(MRI). From the k-space data, 

under-sampled real-time MRI was reconstructed by the data generation block to input into the 

U-Net core. In addition, to train the U-Net core to learn the under-sampling artifacts, the k-space 

data of the prior image was intentionally under-sampled using the same readout trajectory as 

the real-time MRI, and reconstructed to serve an additional input. The U-Net core predicted a 

deformation vector field that deforms the prior MRI to on-board real-time MRI. To avoid adverse 

effects of quantifying image similarity on the artifacts-ridden images, the data fidelity loss of 

deformation was evaluated directly in k-space.

Results: Compared with Elastix and other deep learning network architectures, KS-RegNet 

demonstrated better and more stable performance. The average(±s.d.) DICE coefficients of KS-

RegNet on a cardiac dataset for the 5-, 9-, and 13-spoke k-space acquisitions were 0.884±0.025, 

0.889±0.024, and 0.894±0.022, respectively; and the corresponding average(±s.d.) center-of-mass 

errors(COMEs) were 1.21±1.09, 1.29±1.22, and 1.01±0.86 mm, respectively. KS-RegNet also 

provided the best performance on an abdominal dataset.
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Conclusion: KS-RegNet allows real-time MRI generation with sub-second latency. It enables 

potential real-time MR-guided soft tissue tracking, tumor localization, and radiotherapy plan 

adaptation.
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Deep Learning; U-Net

1. Introduction

Treatment efficacy of radiotherapy depends on the accuracy of delivering radiation doses 

to tumors and sparing surrounding normal tissues (Verellen et al. 2007). Precise tumor 

localization, together with the advances of conformal dose delivery, helps to pinpoint the 

radiation dose to tumors and improve the disease control probability (Tubiana and Eschwege 

2000; Verellen et al. 2007). However, knowledge of tumor positions can be undermined 

by internal anatomical motion such as respiratory or cardiac motion, adding uncertainties 

to tumor localization. These uncertainties necessitate large treatment margins to be added 

beyond the tumor boundaries, which inevitably increases the radiation dose to normal 

tissues (Langen and Jones 2001). The introduction of image-guided radiotherapy allows 

frequent imaging before, during and after radiotherapy treatments for tumor localization, and 

enables margin reduction to improve the precision of radiotherapy (Xing et al. 2006; Jaffray 

2012; Maund et al. 2014; Dhont et al. 2020). Among the available imaging modalities, 

magnetic resonance (MR) imaging is a non-invasive technique of high spatial resolution 

and superior soft tissue contrast (Foltz and Jaffray 2012; Liu et al. 2015; Liu et al. 2016). 

In comparison to computed tomography, MR imaging acquires anatomical and functional 

images without utilizing ionizing radiation, thus eliminating ionizing radiation damages to 

patients. In addition, the versatility of MR imaging acquisition protocols allows various 

contrast enhancement patterns, which helps to differentiate between healthy and tumorous 

tissues (Stemkens, Paulson, and Tijssen 2018). As a result, there are growing interests in 

MR-guided radiotherapy that combines a linear accelerator with a MR imaging scanner for 

tumor tracking and localization (Mutic and Dempsey 2014; Sawant et al. 2014; Kupelian 

and Sonke 2014; Menten, Wetscherek, and Fast 2017; Raaymakers et al. 2017; Stemkens, 

Paulson, and Tijssen 2018; Henke et al. 2018; Corradini et al. 2019; Gani et al. 2021). An 

ultimate goal of the MR-guided radiotherapy is to track tumors in real time and adaptively 

modify the treatment in an online fashion (Pollard et al. 2017). The real-time monitoring 

of three-dimensional (3D) anatomical motion requires low latency in MR acquisition, 

reconstruction and registration. However, a major drawback of MR imaging is its long 

acquisition time, as MR signals are sequentially measured in so-called k-space, which can 

take up to tens of minutes to achieve full sampling.

In order to reduce the acquisition time, k-space data may be under-sampled for a MR scan. 

However, under-sampling may violate the Nyquist-Shannon sampling theorem (Shannon 

1984), leading to aliasing artifacts in reconstructed images. Conventional methods to 

accelerate MR imaging include parallel imaging and model-based compressed sensing, 

which can recover the missing data through reconstruction algorithms. Parallel imaging uses 
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phased array coils to encode additional spatial information. Corresponding reconstruction 

algorithms can use this information to synthesize the missing k-space data or to remove 

the aliasing artifacts in reconstructed images (Pruessmann et al. 1999; Griswold et al. 2002; 

Lustig and Pauly 2010; Uecker et al. 2014). However, the maximal acceleration potential 

is limited by multiple factors, including the signal-to-noise ratio and the number of coils 

(Roemer et al. 1990; Hamilton, Franson, and Seiberlich 2017). Model-based compressed 

sensing enables significant imaging acceleration by exploiting the sparsity underlying MR 

images and incoherent measurements (Lustig, Donoho, and Pauly 2007; Ravishankar and 

Bresler 2011; Feng et al. 2017; Chen et al. 2019; Ravishankar, Ye, and Fessler 2020). 

However, the model-based compressed sensing usually needs a time-consuming nonlinear 

iterative reconstruction, and the reconstructed images can be overly smoothed for highly 

under-sampled k-space data (Jaspan, Fleysher, and Lipton 2015; Ravishankar, Ye, and 

Fessler 2020).

For real-time 3D MR imaging, more aggressive k-space under-sampling is required, which is 

often challenging for the conventional MR reconstruction algorithms. In order to further 

accelerate MR image acquisition, several methods have been investigated. Due to the 

success of deep learning (DL) in solving computer vision problems, the combination of 

DL and compressed sensing has been explored (Schlemper, Caballero, et al. 2018; Yang 

et al. 2018; Hammernik et al. 2018; Quan, Nguyen-Duc, and Jeong 2018; Qin et al. 

2019; Zeng et al. 2019; Kustner et al. 2020; Yan et al. 2020; Zhang et al. 2020; Liu, 

Liu, et al. 2020; Sandino et al. 2021; Kofler et al. 2021; Ran et al. 2021). DL-based 

compressed sensing demonstrated dramatic reduction in the reconstruction time while still 

achieved high-quality images with more aggressive under-sampling factors. Schlmeper et 

al. developed a cascaded DL network to reconstruct dynamic 2D cardiac MR sequences, 

using DL for de-aliasing in the image domain (Schlemper, Caballero, et al. 2018). Similar to 

dictionary learning-based compressed sensing, convolutional neural networks were cascaded 

to perform de-aliasing of under-sampled MR images. To enforce k-space data fidelity, data 

consistency layers were interleaved between the cascaded convolutional neural networks. 

They demonstrated a 2D image can be reconstructed in about 23 milliseconds (ms) using 

11-fold under-sampling. Yang et al. proposed a conditional generative adversarial network to 

solve the de-aliasing problem (Yang et al. 2018). Better reconstruction details were attained 

when the network training was driven by a loss function consisting of adversarial loss, 

image domain and k-space data fidelity loss, and perceptual losses. They achieved a 5 

ms reconstruction for a 2D brain image. Exploiting the spatial-temporal redundancies in a 

sequence of dynamic images, Küstner et al. proposed a DL network for 3D cardiac cine MR 

image reconstruction (Kustner et al. 2020). The network alternates between data consistency 

layers and four-dimensional (4D) U-Nets performing complex-valued spatial and temporal 

convolutions. They demonstrated a scan time of less than 10 s and a reconstruction time 

of about 5 s for a single-breath-hold 3D cine of 16 cardiac phases. In addition to these 

image-domain-based DL methods, reconstructing MR images directly from raw k-space data 

using DL was also proposed. Zhang et al. designed an interpretable network based on the 

iterative process of primal dual hybrid gradient algorithm (Zhang et al. 2020). Their network 

architecture was based on a variant of total variation models in which the difference operator 

and total variation regularization terms were replaced by a learned linear operator and 
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subnetwork, respectively. They showed a 64 ms test runtime on a 2D brain image. Sandino 

et al. proposed a cascaded DL network framework incorporating an ESPIRiT-based extended 

coil sensitivity model to improve the robustness to SENSE-related field-of-view limitations 

(Sandino et al. 2021). They showed better reconstruction of 2D cardiac cine images when 

compared to ESPIRiT.

While there has been tremendous progress in the DL-based compressed sensing, majority 

of the works were focused on 2D MR reconstruction. In image-guided radiotherapy, 3D 

volumetric MR imaging is more relevant, as 3D morphologies of tumors are needed for 

accurate treatment planning and beam delivery, and 3D motion information is desired 

for tumor tracking. In addition, these DL-based methods have only been tested for 

under-sampling factors ≲ 20, which may not meet the real-time 3D imaging requirement. 

Moreover, to apply these reconstruction algorithms in MR-guided radiotherapy, additional 

steps of image registration or segmentation are required to further localize tumor from 

the reconstructed images, adding additional latency in motion tracking. Compared to 

these image reconstruction-based algorithms, a new category of real-time imaging uses 

a deformation-driven approach to incorporate fully-sampled prior information to tackle 

the under-sampling issue (Asif et al. 2013; Zhao et al. 2019) and achieve simultaneous 

motion tracking. In particular, Huttinga et al. have developed methods to solve real-time 

MR images from deforming a prior fully-sampled MR image, based on limited k-space 

sampling (Huttinga et al. 2020; Huttinga et al. 2021). By these methods, B-spline-based 

motion models are developed to estimate non-rigid motion fields by k-space data matching. 

However, these methods were very computationally intensive, taking minutes to hours 

to generate a 3D image (Huttinga et al. 2021), which defeats the purpose of real-time 

imaging. DL-based methods have also been investigated to estimate motions for real-time 

MR imaging (Schlemper, Oktay, et al. 2018; Pham et al. 2019; Liang et al. 2020). Terpstra et 

al. reported a motion estimation algorithm by which two-dimensional (2D) MR images were 

first reconstructed from under-sampled k-space data, then followed by a motion estimation 

step using a multi-resolution DL network (Terpstra et al. 2020). They demonstrated high-

quality deformation vector fields (DVFs) can be estimated in 60 ms at an under-sampling 

factor of 25. Based on their 2D model, Terpstra et al. developed a supervised multiresolution 

DL network that performs 3D motion estimation (Terpstra et al. 2021) from under-sampled 

MRIs. They reported a 200-ms latency including both MR acquisition and motion estimation 

with an error of < 2 mm. Like their 2D model, the 3D network was trained in a supervised 

manner that requires ‘gold-standard’ DVFs derived from high-quality, fully-sampled images. 

However, such DVFs are very difficult to obtain, especially for natural under-sampled 

images (not synthesized from retrospective under-sampling). Moreover, since the ‘gold-

standard’ DVFs were solved by some other methods, the intrinsic biases presented in these 

methods to solve the DVFs may further propagate into the supervised deep learning model 

and bias its prediction. Stemkens et al. proposed a patient-specific, model-based method 

of 3D abdominal motion estimation (Stemkens et al. 2016). The motion estimation was 

based on a patient-specific motion model which was used in combination with fast 2D 

cine-MR images. The motion model was obtained from a principal component analysis 

of inter-volume DVFs derived from a pre-treatment 4D MRI. They reported a temporal 

resolution less than 500 ms with an average error of 1.45 mm. The motion estimation 
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relies on the principal component analysis based motion model that may have difficulty 

in estimating unobserved motion, such as translation and rotation. Feng et al. proposed a 

method with a total latency about 300 ms (Feng, Tyagi, and Otazo 2020). Their method 

consists of an offline matching between motion-resolved 3D images and corresponding 

motion signatures, and an online matching system between an acquired motion signature 

and a corresponding image from the offline database. However, if there are inconsistencies 

between the offline learning and online matching signature signals, such as a baseline drift, 

the method can lead to inaccurate motion state estimation. The method cannot re-solve 

motion that is not contained in the offline database, either.

To address the above-mentioned challenges towards real-time imaging, we proposed an end-

to-end, unsupervised DL-based framework to estimate motions from prior MR images, using 

highly under-sampled k-space data of real-time new images. The k-space-driven registration 

network is termed KS-RegNet. KS-RegNet used a deformation-driven approach (Huttinga 

et al. 2020; Terpstra et al. 2020; Huttinga et al. 2021; Zhang 2021), by generating real-time 

MR images from deforming a prior high-quality setup MR image taken before treatment 

starts. KS-RegNet is able to estimate 3D motion fields, in contrast to Refs. (Schlemper, 

Caballero, et al. 2018; Kofler et al. 2021). It enables efficient motion estimation (within 

600 ms) from severely under-sampled data. In KS-RegNet, a U-Net-based architecture 

(Ronneberger, Fischer, and Brox 2015) was trained to predict the motion field between the 

prior image and highly under-sampled real-time images. We used the U-Net architecture, 

as it comprises multiple encoding and decoding layers to promote local and global feature 

extraction, and is able to make accurate predictions based on learned high-dimensional 

non-linear relations. The data fidelity loss of KS-RegNet is based on k-space data matching, 

which avoids computing similarity metrics directly on artifacts-ridden images. In order to 

enhance the registration accuracy and robustness, we also intentionally under-sampled the 

k-space data of the prior MR image, and fed the under-sampled prior image as an additional 

input into the KS-RegNet, such that the network was trained to perceive under-sampling 

artifacts.

We applied the proposed KS-RegNet on a multi-slice cardiac cine MR dataset and a 

liver 4D-MRI dataset to evaluate its performance on two types of motion (cardiac and 

respiratory). The heart shows complex contraction and relaxation motions during a cardiac 

cycle. On the other hand, liver or diaphragm motion due to breathing shows more extended, 

bulk movement along the superior-inferior direction. In addition, cardiac and abdominal 

MR images exhibit distinct features and qualities. Accordingly, the cardiac and abdominal 

images have different k-space data distributions and motion-induced modulations. We tested 

KS-RegNet on both datasets to evaluate its capability on accurately predicting various kinds 

of motion fields on different MR images. Ablative studies were performed to generate other 

variants of the DL network for comparisons. We also compared KS-RegNet against Elastix 

(Klein et al. 2010), an open-source deformable registration software package. Finally, 

we tested the robustness of KS-RegNet against under-sampling factor variations between 

training and testing, and against the image quality degradations of the fully-sampled prior 

images.
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2. Materials and Methods

2.1. Problem formulation and assumptions

We considered the real-time motion estimation a deformable image registration problem 

between two 3D, complex-valued MR images (MRI) Isrc and Itar. For our purpose of real-

time MR imaging, Isrc represents a fully-sampled prior MR image (source) and Itar denotes 

the real-time MR image to be estimated (target). The availability of the fully-sampled source 

MR images is guaranteed because, in MR-guided radiotherapy, they are always acquired 

for patient setup correction, inter-fractional anatomical verification, and plan adaptation 

(Raaymakers et al. 2017; Gani et al. 2021). Deformable image registration is to determine 

a geometric transformation that aligns the source Isrc and the target Itar images such that 

features in both images are associated based on an identical coordinate system (Brock et al. 

2017). The transformation usually takes the form of a DVF, d(x). that deforms the source 

image as:

I′src(x) = Isrc(x + d(x)), (1)

where x denotes the coordinates of the deformed image voxels.

As the MR images were taken at two distinct time points, two assumptions were made 

regarding to the MR signal acquisition. We assumed that the steady-state condition was 

held for the transverse magnetization (Huttinga et al. 2020). The steady-state condition 

demands a sufficient short readout time, spatially slowly varying magnetic fields, and that 

the deformations do not alter the relaxation mechanism. This condition is valid under the 

field strength (1.5 T) of today’s clinical MR scanners (Huttinga et al. 2020). We also 

assumed that the spin density is minimally altered through deformation, which is a common 

assumption adapted in most deformable registration algorithms (Sotiras, Davatzikos, and 

Paragios 2013; Oh and Kim 2017; Balakrishnan et al. 2019). Thereby it is not necessary to 

correct for the MR signals strength changes resulting from the variation of the spin density. 

Under both conditions, the deformed source image will match the target image as:

Itar(x) = I′src(x) = Isrc(x + d(x)) . (2)

For real-time MR imaging, the k-space data of the target images, taken on-board, are highly 

undersampled. And the reconstructed target images are of degraded quality. Hence, direct 

registration between a fully-sampled source image and an under-sampled target image will 

be challenging for traditional deformable registration algorithms. Therefore, a DL-based 

deformable registration network (KS-RegNet) was employed. The DL network was trained 

to register between fully-sampled and highly under-sampled MR images to predict DVFs. 

The network training was driven by the optimization process:

d(x) = argminθ L Isrc, Itar , (3)
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where θ denotes the network parameters, and L is the objective (loss) function quantifying 

the performance of the registration.

2.2. K-space-driven registration network (KS-RegNet)

2.2.1. Workflow overview—The general workflow of KS-RegNet is presented in Fig. 

1. The workflow consists of an input data generation block, a subsequent U-Net core 

block for DVF prediction, and following layers with operations to compute data fidelity 

and regularization losses. The input raw data involve a source image obtained with 

fully-sampled k-space data, and the k-space data of a real-time target image along an 

undersampled readout trajectory. To pre-process the raw data for input into the U-Net core, 

we reconstructed the limited k-space data to an under-sampled target image by an inverse 

non-uniform fast-Fourier-transform (NUFFT) based reconstruction layer, to register with the 

fully-sampled source image. In addition, the k-space data of the fully-sampled source image 

was intentionally under-sampled using the same trajectory as the real-time target image, 

and reconstructed using the inverse NUFFT layer to serve as additional input channels to 

the U-Net. These three complex-valued images (fully-sampled source image, under-sampled 

target image, and intentionally under-sampled source image) were then combined as six 

parallel channels (each complex-valued image consists of two feature channels, representing 

the real and imaginary signals) and fed into the U-Net core. The channel separation is 

necessary for complex-valued data, as they are not well supported in current deep learning 

backends.

The U-Net core outputs a DVF composed of three Cartesian components, for the 

deformation fields along the x, y, and z directions, respectively. The DVF subsequently 

went through a diffeomorphic integration layer for fine-tuning as well as inverse 

DVF generation, to promote topology-preserving and inverse-consistent diffeomorphic 

registration (Balakrishnan et al. 2019; Dalca et al. 2019). During the training stage, the 

resulting forward and inverse DVFs went through two separate paths to quantify the 

registration accuracy. In the first path, the forward DVF deformed the source image to 

define a forward similarity loss. To avoid measuring image similarity on artifacts-ridden 

under-sampled images, we used a NUFFT layer to generate k-space data from the deformed 

source images. The re-projected k-space data of the deformed images were compared with 

the k-space data of the target images to assess their differences as the network loss. In 

the second path, the inverse DVF was applied to deform the deformed source image (by 

the forward DVF) back, to compare with the original source image in the k-space domain, 

since a fully-sampled target image was not available for direct inverse registration. The 

unsupervised training setup requires no gold-standard reference DVFs, which are difficult, if 

possible, to obtain. Details of the layers and operators used in the network are described in 

the following sections.

2.2.2. Details of network layers, operators and data

K-space data sampling trajectory: In this study, all the k-space data were sampled from 

2D trajectories, and 3D images were stacks of these 2D images. In detail, the k-space 

readout trajectories were along radial directions with a golden-angle azimuthal spacing 

for each slice, and the same radial sampling was used along the stacked slices. Radial 
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sampling was used because it usually permits fast scan time without sacrificing spatial 

resolution (Winkelmann et al. 2007), and is more robust to motion as the k-space center 

is traversed by each spoke (Stemkens, Paulson, and Tijssen 2018). Our framework can be 

readily generalized to other k-space sampling patterns, including 3D readout trajectories 

(e.g., stack-of-stars (Chandarana et al. 2011; Zhou et al. 2017) with Cartesian encoding 

in the slice-direction, or Koosh ball trajectories (Mendes Pereira et al. 2019)) without 

limitation.

Reconstruction (inverse NUFFT) and k-space data generation (NUFFT) layers: As 

the U-Net inputs used parallel channels of MR images, the target images need to be 

reconstructed from the on-board, under-sampled k-space data before feeding into the 

network. To introduce domain knowledge and to reduce the complexity and error bound 

of the network, we incorporated a preconfigured, non-trainable MR imaging reconstruction 

operator as the reconstruction layer, instead of training the reconstruction layer directly from 

raw k-space and reconstructed image data (Zhu et al. 2018). In detail, we adopted the inverse 

NUFFT operator used in the TorchKbNufft package (Muckley et al. 2020). The inverse 

NUFFT operator first interpolates off-grid radial k-space data to on-grid Cartesian locations 

using the Kaiser-Bessel kernel, and then applies density compensation on the re-gridded data 

to account for the fact that high-frequency components are less sampled in radial readout 

trajectories (Pipe and Menon 1999). In the end, FFT is applied to reconstruct MR images 

from the density-compensated and re-gridded k-space data.

Since the data fidelity losses of KS-RegNet were defined in k-space to assess the image 

registration accuracy, NUFFT layers were also implemented to transform the MR images 

into the k-space domain. The NUFFT layer is a reverse operation of the reconstruction layer. 

It applies the non-uniform Fourier transform to evaluate the k-space data at the frequencies 

specified by the radial readout trajectory. Note that the NUFFT layer takes complex-valued 

MR image data as input. Since each complex-valued MR image was separated into two 

channels (real and imaginary) before feeding into the U-Net, the correspondingly-deformed 

real and imaginary channels were re-combined into a complex-valued channel before being 

fed into each NUFFT layer.

Under-sampling layer: The k-space data of the fully-sampled source images were 

intentionally under-sampled with the same under-sampling trajectory as the target images, to 

form a third image input into the U-Net. The undersampling layer comprises a NUFFT and 

a reconstruction layer. By sharing the same under-sampling trajectory as the target image, 

the under-sampled source image provides additional information to inform the network of 

inherent under-sampling artifacts, to potentially reduce these artifacts’ impacts on image 

registration accuracy.

U-Net core architecture: We adopted the same U-Net core architecture as the Voxelmorph 

package (Balakrishnan et al. 2019; Dalca et al. 2019), which proves effective in solving both 

global and local deformation fields. The U-Net consists of a contraction and an expansion 

path with skip connections. The contraction path is composed of four blocks. Each block 

contains a convolution layer with a stride of 2 to down-sample the image volume, and 

a leaky rectified linear unit (ReLU) activation function with a negative slope of 0.2. The 
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expansion path, symmetric to the contraction path, also contains four blocks. Each block 

involves a convolution layer with a stride of 1, a leaky ReLU activation function, and an 

up-sampling layer that doubles the image size. After up-sampling, the feature maps are 

concatenated with the counterparts in the contraction path through the skip connections 

to facilitate feature sharing and localization. The contraction and expansion paths are 

connected by a convolution layer with a stride of 1 and a leaky ReLU activation function. 

All convolution layers share the same kernel size of 3×3×3. The feature number of the first 

layer is 16, and 32 for the rest of the layers. Two additional convolution layers with a leaky 

ReLU activation function are added after the last block, and the feature number is reduced 

from 32 to 16. Lastly, a convolution layer is added as a conversion layer transforming the 

feature map to 3 channels, each channel representing the DVF along one Cardinal direction 

(x, y and z). The last convolution layer uses a padding of 1 to maintain the image size.

Diffeomorphic integration layer: A diffeomorphism is a geometric deformation which is 

one-to-one correspondence and, as well as its inverse, differentiable. Hence, constraining 

DVFs to diffeomorphisms preserves topological properties under the deformations, such 

as smoothness of surfaces or other features associated to anatomy (Beg et al. 2005). 

A diffeomorphic DVF can be obtained by integrating a stationary velocity field using 

the scaling and squaring algorithm (Arsigny et al. 2006). The diffeomorphic integration 

layer first scales the DVFs yielded from the U-Net core according to the number of 

integration steps. Then the scaled DVFs are treated as the starting velocity field and 

integrated iteratively using the spatial transform layer to obtain the diffeomorphic DVFs. 

The integration steps were empirically set to 7 in this study.

The inverse DVFs were obtained by reversing the forward DVFs (i.e., d−1 (x) ≈ − d(x)), 

and then integrating the corresponding velocity fields to generate the diffeomorphic inverse 

DVFs. The diffeomorphic integration layers were adopted from the Voxelmorph package 

(Balakrishnan et al. 2019; Dalca et al. 2019).

Spatial transform layer: The spatial transform layer deforms an input image using the 

DVF, by trilinear interpolation (Jaderberg et al. 2015). KS-RegNet uses the spatial transform 

layer to deform the fully-sampled source image with a forward DVF [see Eq. (1)], and also 

to deform the target image with an inverse DVF d−1 to promote inverse consistency (Yang 

et al. 2008). The inverse DVF deforms the target image to match with the source image. As 

mentioned, due to the lack of fully-sampled target images, we used the forwardly-deformed 

source images as the target images for inverse registration:

I″src(x) ≈ I′src x + d−1(x) , (4)

where the double prime indicates the source image is first forwardly transformed by d, and 

then inversely deformed via d−1.

2.3. Loss functions

To train the network, two loss functions were defined to measure the deformable registration 

data fidelity. The similarity metric was defined in k-space, as similarity in the image domain 
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may not faithfully reflect the registration accuracy due to under-sampling aliasing and other 

artifacts. The first loss function measures the similarity between the input k-space data of 

the target image, and the k-space data of forwardly-deformed source image. In this study we 

used the mean absolute squared error between the two complex-valued k-space data as the 

similarity metric [Eq. (5)].

Lkspace I ′src, I tar = 1
Nk

∑
i = 1

Nk
I ′src ki − I tar ki

2, (5)

where I (k) denotes the Fourier transform of I(x), Nk is the number of sampling points 

in k-space, and ki indicates the ith sampling frequency. Note that since the k-space data 

typically concentrate in the low-frequency region, the low-frequency error contributes most 

of the k-space loss. Although the motion signal is mostly low-frequency itself (Pipe 1999; 

Chen, Zhang, and Pang 2005; Liao et al. 1997), and may not be affected by the bias 

toward low-frequency k-space data, for some extreme cases the network may ignore some 

fine-detailed local deformations corresponding to high-frequency k-space data.

Since deformable image registration is an ill-posed problem, constrains are necessary to 

restrict the solution space to obtain a physically and physiologically plausible motion field. 

To enforce the inverse consistency, the second loss function is introduced to measure the 

similarity between inversely deformed target images and the source images.

Linversion I″src, I src = 1
Nk

∑
i = 1

Nk
I″src ki − I src ki

2 . (6)

The k-space sampling trajectory used in Eq. (6) is the under-sampled readout trajectory 

of the real-time MR image. In addition to the data fidelity losses, a third loss function 

is introduced to further regularize the smoothness of the DVFs. It calculates the mean 

deformation energy of the DVF via:

Lsmootℎness(d) = 1
3 ∑

l = x, y, z

1
N ∑

i = 1

N ∂dl xi
∂x

2
+ ∂dl xi

∂y
2

+ ∂dl xi
∂z

2
, (7)

where dl denotes a Cartesian component (x, y, z) of d, and N is the number of image voxels. 

The derivative is calculated using forward finite difference.

Finally, the total loss function is a weighted sum of the three loss functions:

L = λkspace Lkspace + λinversion Linversion + λsmootℎness Lsmootℎness, (8)

where λ are the weighting factors. In this work, λkspace= 1.0, λinversion= 4.0, and 

λsmoothness= 0.04 were adopted for the cardiac dataset, and λkspace= 1.0, λinversion= 4.0, 

and λsmoothness= 0.02 were used for the abdominal dataset by trial-and-error experiments.
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2.4. Dataset curation

KS-RegNet was tested on a cardiac MRI dataset and an abdominal MRI dataset to evaluate 

its capability to accurately predict DVFs describing cardiac and respiratory motions, 

respectively. The following describes the details and pre-process steps of the cardiac and 

abdominal datasets.

2.4.1. Cardiac dataset—Multi-slice cardiac cine MR data from an open-access multi-

coil k-space dataset (OCMR) were used in this study to train and evaluate the proposed 

KS-RegNet framework (Chen et al. 2020). The dataset included scans collected by three 

Siemens MAGNETON scanners: Prisma (3T), Avanto (1.5T), and Sola (1.5T) (Siemens AG, 

Munich, Germany). While the dataset includes both fully-sampled and undersampled 3D 

scans, only subjects of fully-sampled scans were used in this study as they can provide 

fully-sampled ‘gold-standard’ images for evaluation. The 3D multi-slice cine images of 

each subject were acquired in planar mode, and the slices were collected in the short-axis 

view covering from base to apex. The MR scans were acquired using the gradient-echo 

steady-state free precession pulse sequence, based on various acquisition parameters such 

as magnetic field strength, field-of-view, and resolution. Table 1 summarizes the imaging 

acquisition parameters of the subjects involved in our study. The cardiac cycles of the 

subjects were partitioned into different number of bins, and the cardiac bins started from the 

end of diastole for all subjects.

In order to simulate under-sampled k-space data, we first reconstructed the complex-valued 

MR images from the fully-sampled k-space data provided by the OCMR dataset, using 

a reconstruction algorithm with adaptive coil sensitivity map estimation (Walsh, Gmitro, 

and Marcellin 2000). The reconstruction was performed slice by slice, and the volumetric 

MR images were a stack of the reconstructed 2D images. As the images were acquired 

in different sizes, the reconstructed images were then resampled to a uniform size of 

256×256×32 using trilinear interpolation. In addition, voxel values of the resampled images 

were further normalized, such that the maximum absolute voxel value across the real and 

imaginary parts of a complex-valued image is one.

2.4.2. Abdominal dataset—The abdominal dataset contains 9 subjects with liver 

cancer. The dataset was shared from the Hong Kong Polytechnic University, with the study 

approved under an umbrella institutional review boards protocol. Unlike the OCMR dataset, 

the abdominal 4D-MRI data were post reconstruction (without access to the raw k-space 

data). The abdominal data were collected in planar mode and then retrospectively sorted into 

4D-MRIs, all with a slice thickness of 5 mm (36-60 slices per 4D bin, dependent on subject). 

The image in-plane resolutions vary between 1.41×1.41 mm2 to 1.88×1.88 mm2 among 

different subjects, with inplane dimension all at 256×256. Except for one subject, all of them 

had 4D-MRIs with 10 respiratory-resolved bins. These 4D-MRIs are magnitude-only, so no 

phase information can be retrieved from the dataset. Table 2 summarizes the acquisition 

parameters of the subjects in the dataset.

The liver MRIs were resampled to a uniform size of 256×256×32 with the in-plane 

resolution intact. The slice thickness (5 mm) was also kept the same during re-sampling, 
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and peripheral slices outside of liver were cut off. Since the MR images are magnitude-

only, additional processing steps were added in the study to simulate complex-valued 

MR images, using phase simulation strategies similar to (Zhu et al. 2018; Terpstra et al. 

2020). We first synthesized the phase map on the first respiratory bin of each 4D-MRI set, 

using sinusoidal functions, to simulate phase-modulated, complex-valued MR images. To 

propagate the phase map onto the remaining 4D MR bins, we registered the MR image 

at the first respiratory bin to the MR images at the other 4D bins using Elastix (Klein 

et al. 2010), and used the resulting DVFs for image and phase map propagation. After 

the DVF-based propagation, we simulated a set of complex-valued 4D MR images with 

phase-modulation. While these synthesized phase maps recapture some phase information 

lost in the post reconstruction, we acknowledge that there remains some information, such as 

tissue-dependent phase information, not simulated through the augmentation.

For each patient subject in the dataset, 20 sequences of phase maps were simulated for 

network training. The synthesized phase maps were assumed to take 3D sinusoidal forms 

with four combined spatial frequencies along each Cartesian dimension (Zhu et al. 2018; 

Terpstra et al. 2020). Along each Cartesian direction, the four spatial frequencies were 

randomly selected between 1.25×10−3 mm−1 and 2.50×10−3 mm−1 which correspond to 

wavelengths of 800 mm and 400 mm, respectively, with a random phase shift being added 

to each frequency. Because of the phase-map augmentation, the network performance can 

depend on the number of synthesized phase maps. Therefore, we examined the registration 

accuracy with different levels of phase-map augmentation to assess the robustness of the 

training process (See the supplementary material). In addition to the above case of 20 

phase maps, we also trained KS-RegNet without the phase-map augmentation and with 40 

sequences of phase maps. In addition to the synthesized phase maps, Gaussian noise was 

separately added to the real and imaginary parts of the complex-valued MR images at each 

respiratory bin, to augment network training and testing. We generated 40 noise maps with 

zero mean and standard deviation randomly selected between 3.0×10−3 and 5.0×10−3.

2.5. Network training and evaluation

2.5.1. Cross-validation and data augmentation—As only limited subjects were 

available in the cardiac and abdominal datasets, cross-validation was used to evaluate the 

performance of the proposed framework. For the cardiac dataset, the 8 subjects were equally 

partitioned into 4 subsets. For each round of the cross-validation, the model was trained on 

the subjects in 3 subsets, and tested on the subjects in the remaining subset (e.g., subject 

No. 3-8 for training and subject No. 1-2 for testing). For the abdominal dataset, the 9 

subjects were equally divided into 3 subsets for a 3-fold cross-validation. For each fold, at 

each training step of KS-RegNet, we randomly selected a subject and two of its cardiac or 

respiratory bins from the training set, as the source and the target. While only 6 subjects 

were involved in each training set, there were 3,124 to 3,436 unique registration pairs of 

cardiac images (depending on cross-validation fold), and 536 to 600 registration pairs of 

abdominal images available for training, by using this randomization strategy. On top of 

this randomization strategy, in order to further avoid overfitting and to improve robustness, 

data augmentation was used on-the-fly during the training stage. For each pair of source 

and target images, we added random in-plane translations and reflections. The geometric 
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augmentations (i.e., the translation and reflection) alter the k-space data. However, they do 

not affect the forward and inverse k-space similarity losses. For instance, translation of an 

object in the image domain corresponds to adding a linear phase in the frequency domain. 

Since the k-space losses were defined as the mean absolute square difference in Eqs. (5) 

and (6), the linear phase modulation has no effect on the calculated loss value. Therefore, 

this augmentation can improve the translational invariance of KS-RegNet, and the network is 

trained more robust.

In addition to these geometric transformations, the cardiac MR images were also rotated 

with a random phase angle (between real and imaginary channels) for additional data 

augmentation. The abdominal dataset, on the other hand, was augmented via randomizations 

using the 20 synthesized phase maps and the 40 noise maps (Sec. 2.4.2). For each training 

example, the phase and noise maps were randomly and independently chosen on-the-fly to 

enlarge the variation of the augmentation.

After the above mentioned randomizations and augmentations, we then used the complex-

valued, fully-sampled source MRI as the source image, and the under-sampled k-space data 

of the target bin as the target k-space data, to feed into KS-RegNet for training. The k-space 

under-sampling was performed on the MRIs based on a radial sampling pattern, using the 

NUFFT operator from the TorchKbNufft package. For each slice, the sampling pattern 

was based on a radial readout trajectory with various numbers of spokes, with each spoke 

of 256 evenly distributed sampling points. The radial trajectory starts from some initial 

azimuthal angle, and the angle between two adjacent spokes is increased by the golden-ratio 

angle (111.25°). The initial azimuthal angle was randomly selected on-the-fly during the 

training stage. We simulated three readout trajectories of 13, 9, and 5 spokes, corresponding 

to under-sampling factors of around 31, 45, and 80, respectively (Terpstra et al. 2020). 

The under-sampling factor is defined as the ratio of the number of spokes required for a 

fully-sampled reconstruction to the number of spokes simulated for under-sampling.

The network was trained on a graphic processing unit card (NVIDIA Tesla V100). The 

framework was implemented in Python with the PyTorch 1.7.1 library (Paszke et al. 2019). 

The Adam optimizer was used for optimization, with an initial learning rate set to 0.0004. 

The learning rate was adaptively reduced by 20% if the loss stopped improving over 5 

epochs. The network iterated 100 steps in an epoch, and each step had a batch size of 4. 

When the training loss stopped decreasing even with the adapted learning rate, the training 

was stopped and the model was used for testing. The numbers of training epochs used for 

13-, 9-, and 5-spoke cases were 120, 70, and 60, respectively. It took about 90-120 hours to 

train a model with 13-spoke trajectories for the cardiac and abdominal datasets.

For testing, we used the first cardiac or respiratory bin as the prior (source) image, and used 

the trained KS-RegNet to predict DVFs between the first bin and all other remaining bins. 

The testing was repeated for the models trained using different under-sampling ratios (5-13 

spokes).

2.5.2. Evaluation Metrics—The accuracy of KS-RegNet was evaluated by contour-

based metrics including the 95th percentile Hausdorff distance (HD95), DICE coefficient, 
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and center-of-mass error (COME). Let X and Y be the sets of the deformed and ‘gold-

standard’ target contours, respectively. The HD95 (Taha and Hanbury 2015) between X and 

Y is defined by

dH = max P95% d(x, Y ), P95% d(y, X) , (9)

where P95% denotes the 95th percentile operation and

d(x, Y ) = min
y ∈ Y

∥ x − y ∥ . (10)

Given two contours V1 and V2 as binary volumetric sets, the DICE coefficient is defined as

DICE = 2 × V 1 ∩ V 2
V 1 + V 2

, (11)

where |Vj| denotes the cardinality of Vj, (j = 1, 2). It evaluates the degree of the overlap 

between the two contours. Higher value of the DICE coefficient represents a better overlap, 

with highest value 1 representing identical sets. In order to calculate the DICE coefficients 

for contour-based DVF evaluation, we manually segmented anatomical features in the MR 

images. For the cardiac dataset, we segmented the left ventricles for all subjects across all 

cardiac bins. Left ventricle was chosen because it displays well-defined boundary in the 

short-axis view and can be used to quantify the registration accuracy with a high confidence 

level. For the abdominal dataset, we manually segmented liver tumors in the images of 

the first respiratory bin and propagated the contours onto the other bins using the Elastix 

DVFs (which were used to simulate the complex-valued 4D-MRIs). After obtaining the 

‘gold-standard’ contours for both datasets, the contours of the first bin were deformed to 

all other bins by applying the DVFs predicted from the network for comparison. Finally, 

the DICE coefficients were calculated between the deformed and ‘gold-standard’ contours. 

The COME, in addition, measures the center-of-mass distance between the deformed and 

‘gold-standard’ contours.

2.5.3. Comparison with other methods

Comparison with conventional registration methods: Elastix was compared to KS-

RegNet for the cardiac study (Klein et al. 2010). Since the abdominal MR images used 

in the network training were generated using Elastix (see Sec. 2.4.2), the comparison is 

biased in favor of the Elastix-based methods. Thus, only the cardiac dataset were used to 

compare with the Elastix methods. The Elastix deformable registration was evaluated under 

two settings. In the first setting, Elastix performed a registration between a fully-sampled 

source image and an under-sampled target image, to reflect the current standard practice 

of image registration. Because of disparate image qualities between the two images, the 

registration is expected to be challenging. In the second setting, the k-space of the source 

image was under-sampled to match that of the target image to reconstruct an intentionally 

under-sampled source image, and the registration was performed between the under-sampled 
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source and target images. After the registration, the fully-sampled source image was 

deformed using the DVF estimated from the under-sampled pairs. For both settings, the 

registrations were performed on the images sampled by 5-, 9-, and 13-spoke trajectories. The 

performance of Elastix was similarly evaluated in terms of the HD95, DICE coefficient, and 

COME. Wilcoxon signed-rank test was performed to assess the statistical significance of the 

registration result differences between KS-RegNet and Elastix.

Ablative studies and robustness tests: To demonstrate the benefits of adding the 

intentionally under-sampled source image as the third set for KS-RegNet input, we 

performed an ablative study by removing this under-sampled image from the input, and 

trained a network to compare with KS-RegNet. This network is termed KS-RegNet-nup 

with nup indicating no under-sampled prior, to distinguish from KS-RegNet. In addition, to 

demonstrate the benefits of defining the data fidelity losses in k-space instead of the image 

domain, we performed another ablative study by defining the loss directly on the under-

sampled image pairs (with the fully-sampled source image removed from the U-Net input). 

This network is termed RegNet. Another variant of RegNet that retains the fully-sampled 

source image is also tested to evaluate whether accessing the fully-sampled source image 

helps the motion estimation, even though it is not directly used to quantify the similarity 

losses. The results are presented in the supplementary materials (section 3) due to the length 

limitation.

Two robustness tests were performed to examine the sensitivity of KS-RegNet to various 

under-sampling factors, and to degradations of the prior image quality. In the first robustness 

test, a network trained with one under-sampling factor was also tested on k-space data 

featuring different under-sampling factors, without re-training. For example, the network 

trained on the k-space data sampled with 13-spoke trajectories was used to make a 

prediction of DVFs on the k-space data of 9- and 5-spoke trajectories. We performed this 

test on KS-RegNet and KS-RegNet-nup, to evaluate if the additional under-sampled source 

image input of KS-RegNet can help to enhance the robustness. Since KS-RegNet relies 

on high-quality prior images to register between the prior and under-sampled images, it 

is critical to understand the sensitivity of KS-RegNet to the quality of the prior images, 

considering that it may vary across MR scans. Therefore, in the second robustness test, 

the prior images were intentionally degraded before feeding into KS-RegNet for DVF 

prediction. To control and quantify the degradation, the k-space data of a fully-sampled 

prior image were firstly computed using a radial readout trajectory with a uniform angular 

spacing, and radial spokes were randomly removed from the readout trajectory according 

to the degradation factor. Finally, the degraded prior image was reconstructed from the 

degraded k-space data, and used as the prior image to feed into KS-RegNet. We used a radial 

trajectory of 403 spokes to compute the k-space data, and controlled the degradation by 

removing 10%-80% of the radial spokes.

Shao et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results

3.1. Qualitative comparison of cardiac MR images

Figures 2(a) and 2(c) compare images by different methods for two study subjects. The 

k-space spoke number is 13, corresponding to an under-sampling factor of 31. The first 

and last columns show, respectively, the fully-sampled source image and the fully-sampled 

‘gold-standard’ target image, in the short-axis view (first row) and the long-axis views 

(third and fifth rows). The source and target images correspond to the diastole and 

systole cardiac phases, respectively. The second column shows the under-sampled target 

image directly reconstructed by NUFFT. The third column shows the registered image, 

by registering between under-sampled (US) source and US target images using Elastix. 

The following three columns present the registered images from DL-based registrations: 

RegNet, KS-RegNet-nup, and KS-RegNet. The even rows show the differences between the 

corresponding images and the target image in the three views. The images of the Elastix 

registrations between the fully-sampled source and US target images are not presented 

because the registration errors were substantially larger than the other methods. Figures 2(b) 

and 2(d) compare line profiles located by the horizontal dashed lines in the target images 

of Figs. 2(a) and 2(c). It can be observed from the even rows that the deformed images by 

KS-RegNet had the smallest differences from the target images, which are corroborated by 

the line profiles.

3.2. Qualitative comparison of abdominal MR images

Figure 3 presents a comparison of the DL-based methods (RegNet, KS-RegNet-nup, and 

KS-RegNet) for two subjects in the abdominal dataset. The respiratory bins of the source 

and target images are end-of-inhale and end-of-exhale phases, respectively. The first, third, 

and fifth rows are the MR images in the axial, coronal, and sagittal views, respectively. 

The k-space spoke number is 13. The results of Elastix are not presented because Elastix 

was used to generate the phase-modulated images, and thus the registration performance is 

biased in favor of the Elastix-based methods. Figures 3(b) and 3(d) compare line profiles 

located by the horizontal dashed lines in the target images of Figs. 3(a) and 3(c) in the three 

views.

From the difference images of the DL-based methods (columns 3-5), it can be observed that 

KS-RegNet provides the best registration accuracy, especially in the region near the liver 

boundary. Since the intensity and contrast of the liver is relatively low, the image differences 

within the liver are not as prominent as the cardiac cases. Nevertheless, from the line profiles 

it can be observed that KS-RegNet deforms the source images well to match with the target 

images.

3.3. Quantitative comparison of registration accuracy for the cardiac dataset

Figure 4 quantitatively compares the registration accuracy of different registration methods 

on the cardiac dataset using boxplots at three different under-sampling factors. For 

comparison, the HD95s, DICE coefficients, and COMEs between the fully-sampled (FS) 

source and target images are also presented as the first boxplot (i.e., source) of each subject.
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KS-RegNet made an accurate DVF prediction for this subject, as compared to other 

methods. Of all the methods, the FS-to-US Elastix had the worst performance in terms 

of HD95 and DICE coefficient. For most of subjects in the 5- and 9-spoke cases, their 

DICE coefficients were even worse than those without deformation (i.e., source), which 

demonstrated the challenges of registering two images of unmatched image qualities.

The volume-based HD95, DICE coefficient, and COME show fluctuations as the under-

sampling factor varies. The distributions of the DICE coefficient and COME of each subject 

can fluctuate, especially for the methods of US-to-US Elastix and KS-RegNet-nup [e.g., the 

COME of the US-to-US Elastix of the subject No. 4; the COME of the KS-RegNet-nup 

of the subject No. 8 in Figs. 4(c), 4(f), and 4(i)]. This fluctuation reflects the instability of 

these algorithms under highly under-sampled scenarios. In general, KS-RegNet performed 

better than the other methods for all under-sampling factors with demonstrated stability and 

consistency, demonstrating its robustness to various under-sampling patterns.

Table 3 presents the mean (±s.d.) of the HD95s, DICE coefficients, and COMEs for different 

methods, and the results of the Wilcoxon signed-rank tests between KS-RegNet and the 

other methods. The FS-to-US Elastix registrations were not included because of its low 

registration accuracy. The proposed KS-RegNet had the best registration accuracy for all 

under-sampling factors. Except for the statistical test between KS-RegNet and US-to-US 

Elastix of the 13- and 9-spoke cases, all statistical tests showed p-values < 0.05.

3.4. Quantitative comparison of registration accuracy for the abdominal dataset

Figure 5 shows the boxplots of HD95, DICE coefficient, and COME of the subjects in the 

abdominal dataset. The Elastix results (FS-to-US and US-to-US) are not included as Elastix 

was used to generate phase-modulated MR images and would bias the comparison. The 

mean (±s.d.) of the HD95s, DICE coefficients, and COMEs for different methods, and the 

results of the Wilcoxon signed-rank tests between KS-RegNet and the other methods are 

presented in Table 4.

Comparing the DICE coefficients and COMEs among all subjects, KS-RegNet has the best 

performance for most of the subjects. While the variations for other methods gradually 

increase as the number of spoke decreases, KS-RegNet shows a relatively stable registration 

accuracy. Table 4 shows that KS-RegNet has the best performance across all three under-

sampling factors with p-values < 0.05. Note that the relatively large COMEs are partially 

contributed by the large slice thickness of the 4D-MRI liver dataset (5 mm), thus the error is 

within the dimension of a single voxel.

3.5. Robustness tests

3.5.1. Robustness to under-sampling factor variations (between training and 
testing)—Figure 6 presents the results of the robustness test on the cardiac dataset. The 

spoke numbers specified in the subfigure titles are the numbers of spokes used to train the 

networks, and the spoke numbers given by the axis labels are the numbers of spokes used for 

testing. The performance of Elastix (US-to-US) is also given for each number of spokes as a 

benchmark, and the training spoke number denotation does not apply to Elastix.
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The comparison shows that KS-RegNet was more robust, with its registration performance 

relatively stable under various degrees of under-sampling factors, even if the network was 

trained using data of a different under-sampling pattern. The KS-RegNet trained on the 

13-spoke trajectories had only a mild decrease of its performance when it was tested on the 

5- and 9-spoke trajectories [Figs. 6(g–h)]. On the other hand, KS-RegNet-nup had a more 

significant increases of the COME and decrease of DICE coefficient, especially for the cases 

where the network was trained with 9- and 13-spoke trajectories [Figs. 6(d–i)].

The results of the robustness test on the abdominal dataset are presented in Fig. 7. The 

results of Elastix are not shown because it is used to generate phase-modulated images for 

training and will bias the comparison. KS-RegNet has stable performance when the under-

sampling patterns varies, especially for the 13-spoke training scenario. The narrow box of 

KS-RegNet-nup in Fig. 7(a) is due to the clustering of data at the 5-mm slice thickness. The 

comparisons in Figs. 6 and 7 demonstrate that adding the intentionally under-sampled source 

images into network input, as in KS-RegNet, helps to improves registration accuracy and 

enhances the robustness to the under-sampling factor variations between training and testing.

3.5.2. Robustness to source image quality—Figures 8 presents the robustness test 

results to the prior image quality for the cardiac and abdominal studies. The quality of 

the prior image was intentionally degraded by removing 20%, 50%, and 80% of radial 

spokes from the fully-sampled readout trajectory. For comparison, we also present the 

metrics between the fully-sampled source and target images and the results of KS-RegNet 

using fully-sampled source images in the first and second boxplots, respectively. Based 

the degraded prior image, we did similar studies to predict DVFs between the prior image 

and under-sampled target image (based on 5-, 9- and 13- radial spokes per slice). Only 

results for the 13-spoke under-sampling patterns are presented here (see supplementary 

material for the 5- and 9-spoke results). However, we found consistent trends of the 5- and 

9-spoke under-sampling patterns with the 13-spoke cases. It can be observed that there is 

no significant reduction in the registration accuracy when the source image quality was 

degraded during the tests.

The COMEs of subjects 3 and 5 in the abdominal dataset [Fig. 8(d)] exhibit a 

counterintuitive behavior that the COME decreases as the under-sampling factor increases. 

For subject 3, we found it has some unique anatomical features that are not shown in 

the training dataset. The fluctuations for subjects 3 and 5 are also likely due to the 

statistic fluctuation of the deep learning model, which is trained using a small dataset. The 

uncertainties from introducing under-sampling artifacts to high-quality prior images, and the 

relatively low resolution along the slice direction, may also play a role.

4. Discussion

In this study, we proposed a DL-based framework (KS-RegNet) for real-time motion 

estimation of on-board MR images. Due to the temporal resolution requirement of real-time 

MR imaging, on-board k-space data are highly under-sampled. The reconstructed images, 

therefore, suffer from severe under-sampling artifacts. The degraded image quality hinders 

accurate motion estimation and target localization. By incorporating high-quality prior 
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information, KS-RegNet estimates motion by performing a deformable image registration 

between a fully-sampled, complex-valued MR image and the highly under-sampled, on-

board k-space data. The network training was designed as un-supervised, thus eliminating 

the needs to generate gold-standard DVFs for network training, which proves a challenging 

task. In addition, instead of the image domain, KS-RegNet measures the accuracy of the 

deformable registration in the k-space domain, thus avoiding defining a similarity metric on 

images impacted by under-sampling aliasing and other artifacts. KS-RegNet also uses an 

intentionally under-sampled source MR image as an additional input, to train the network to 

perceive under-sampling artifacts and reduce their effects on registration accuracy.

Our results demonstrated the capabilities of KS-RegNet to predict DVFs associated with 

cardiac and respiratory motions on different anatomic sites. Compared with Elastix and 

other network architectures (i.e., RegNet and KS-RegNet-nup), KS-RegNet had the best 

registration accuracy and its performance was stable at various tested under-sampling factors 

(Figs. 2–7 and Tables 3–4). The qualitative comparisons in Figs. 2 and 3 show that even 

though the reconstructed target images by NUFFT suffer from under-sampling artifacts, our 

framework was able to accurate estimate the motion. Tables 3 and 4 show that KS-RegNet 

had the lowest mean HD95s and COMEs and highest mean DICE coefficients for the three 

under-sampling factors. The ablative studies and robustness tests supported the benefit of 

training the network to learn the under-sampling artifacts by introducing an intentionally 

under-sampled source image as input (Figs. 4–7). With the additional under-sampled source 

image as input to perceive the artifacts, KS-RegNet showed comparable accuracy under the 

three different under-sampling factors (Figs. 4–5) and remained accurate even if the under-

sampling pattern changed between the training and testing (Figs. 6–7). Even KS-RegNet was 

trained with high-quality, fully-sampled prior images, it shows robustness to degradations of 

the quality of the prior images (Fig. 8).

4.1. Comparison with other works

To register large and complex deformations, multi-resolution pyramid scheme is usually 

employed to prevent the algorithm from being trapped in a local minimum during 

optimization. In such a scheme, the deformable registration is started at a low resolution, and 

the resolution is progressively increased at consecutive levels to fine-tune the registration. 

This scheme has been used in Elastix (Klein et al. 2010) and in DL-based methods 

(Terpstra et al. 2020; Jiang et al. 2020; Fu et al. 2020; Terpstra et al. 2021). We tested 

this scheme preliminarily on the cardiac dataset, but found it of limited benefits, which 

potentially could be due to the small training sample size. The multi-resolution scheme can 

be further evaluated when a larger sample size becomes available. Another way to further 

improve the performance of the proposed framework is to combine image registration with 

image reconstruction, by adding additional reconstruction blocks such as the cascaded DL 

networks (Schlemper, Caballero, et al. 2018; Kustner et al. 2020; Kofler et al. 2021), to 

further enhance the accuracy of the output real-time MR image.

Terpstra et al. recently reported a framework for real-time MR-guided radiotherapy (Terpstra 

et al. 2020). They divided their workflow into consecutive image reconstruction and motion 

estimation steps, and evaluated different method combinations in the two steps. When 
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the framework was tested on 2D cine MR images under various under-sampling factors, 

the combination of NUFFT for reconstruction and SPyNET (Ranjan and Black 2017) for 

motion estimation performed the best for large under-sampling factors (> 30). However, 

ground-truth DVFs were needed to train SPyNET. As deformable registration is an ill-posed 

problem, it is difficult to obtain the ground-truth DVFs. Estimated ground-truth DVFs may 

contain inherent errors which will propagate into the network parameters to affect the 

registration accuracy. Instead, our DL network was trained in an unsupervised fashion and 

no ground-truth DVFs are required. Similar to our k-space-driven deformable registration 

strategy, Huttinga et al. have reconstructed motion fields directly from under-sampled 

k-space data, by developing a B-spline-based motion model that explicitly associates the 

k-space data of a deformed object to a reference image (Huttinga et al. 2020; Huttinga et al. 

2021). While their iterative method had proved accurate for severely under-sampled data, it 

was very time-consuming, which may prohibit its application in real-time 3D MR imaging.

Küstner et al. (Kustner et al. 2021) proposed a deep-learning based approach to estimate 

motion directly from k-space data. Their network design was inspired by an extension 

of the local all-pass technique to k-space. The local all-pass technique considers a non-

rigid deformation as local translational displacement and, together with the Fourier shift 

property, performs image-domain registration by finding an all-pass filter in k-space. 

Küstner extended this idea and implemented it with a deep learning network. The inputs of 

their network are the source and target k-space data, and their network was trained to predict 

DVFs in the image domain. They compared their method against traditional image-based 

registrations, and they found that their network outperformed the image-based methods. 

However, similar to Terpstra et al. (op. cit.), their network training was performed in a 

supervised manner which requires ‘gold-standard’ DVFs to be provided for training. On the 

other hand, our KS-RegNet is an unsupervised model that does not require ‘gold-standard’ 

DVFs for training. It gives our method a unique advantage, since true ‘gold-standard’ DVFs 

are very difficult, if possible, to obtain, especially for natural under-sampled images not 

generated from retrospective under-sampling. Our KS-RegNet uses k-space data to directly 

define the loss and drive the DVF solution, which can be more conveniently deployed. It also 

reduces potential biases of using ‘gold-standard’ DVFs solved by some other methods to 

train the model, since these methods may present their intrinsic biases in solving the DVFs, 

depending on what motion model is assumed.

4.2. Impacts of artifacts from the fully-sampled source MR images

KS-RegNet adopts the deformation-driven approach to solve the under-sampling issue in 

the real-time MR imaging, thus assuming the availability of high-quality, fully-sampled 

source MR images. Since the image quality may be inconsistent across MR scans, we 

performed a robustness test of KS-RegNet to the prior image quality with various degrees of 

degradation by under-sampling the k-space of the prior image (Sec. 3.5.2). However, besides 

the under-sampling artifacts, there may be other causes that can degrade the prior image 

quality, such as those caused by motion, Gibbs ringing, and inhomogeneous magnetic B0 

fields. In the following we discuss ramifications and implications of some common artifacts 

that may appear in the fully-sampled prior images and the potential solutions.
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The fully-sampled prior information is used in two places in the workflow (Fig. 1), where (i) 

the prior images are fed as the input channels into the U-Net core, and (ii) the k-space data 

of the prior images/deformed prior images are re-projected to quantify the inverse/forward 

similarity loss during the network training. The artifacts both affect the k-space data and the 

reconstructed images, and may propagate into the registration. Physiological motion, such 

as blood flow, respiratory, or cardiac motion, is a principal cause of MR image artifacts. 

Motion artifacts cause spin signal dephasing and/or incorrect phase in the k-space data, and 

they manifest spurious features in the reconstructed images such as blurring and ghosting 

(i.e., misregistration). There are several approaches to minimize the consequence of motion 

artifacts: (i) one can use dynamic or four-dimensional (4D) imaging techniques to sort the 

MR signals into semi-static motion bins, such that images reconstructed out of each bin 

will present reduced motion artifacts (Feng et al. 2016). (ii). One can use pulse sequences 

with velocity compensating encoding gradients (Zaitsev, Maclaren, and Herbst 2015). (iii) 

Since the ghosting appears in the phase encoding direction, its effect can be reduced by 

golden-angle radial readout trajectories whose phase encoding direction varies during the 

signal acquisition (Zaitsev, Maclaren, and Herbst 2015). Thus, these misregistered image 

features are reduced due to incoherent k-space sampling. In addition, the central k-space 

data are sampled for each readout spoke. Since motion signals are concentrated in the central 

k-space, radial readout trajectories are more robust against inter-view motion (Stemkens, 

Paulson, and Tijssen 2018). (vi) The blurring and ghosting can be further reduced by a 

deep learning model that is trained to eliminate these artifacts (Liu, Kocak, et al. 2020). 

In our KS-RegNet model training and evaluation, we used a motion state of dynamic 

cardiac MRIs or 4D liver MRIs as the prior image, which effectively minimizes the motion-

induced artifacts. Also, our algorithm is evaluated via gold-angle radial sampling, which also 

suppress the motion artifacts.

Gibbs ringing artifact results from an insufficient sampling of high-frequency k-space data 

and manifests intensity oscillations near sharp edges in the image domain. We expect 

mild Gibbs ringing artifact has minimal effects on the registration accuracy since the low-

frequency k-space data are more important for motion estimation. The Gibbs ringing artifact 

can also be reduced with a deep learning model (Zhang et al. 2019). The artifacts from 

inhomogeneous magnetic B0fields can be caused by multiple sources including hardware 

imperfection and air-tissue interfaces in body. The inhomogeneous field leads to incorrect 

phase, thus causing signal loss or image distortion. The inhomogeneity can be reduced by 

magnetic shimming (Belov et al. 1995).

In summary, we can use semi-static images extracted from motion-resolved dynamic MRIs 

or 4D MRIs as the prior and use radial sampling of k-space to effectively suppress the 

motion artifacts. Other artifacts like Gibbs ringing may have limited effects on motion 

estimation and can also be effectively suppressed through additional post-processing. For the 

clinical cardiac and abdominal images evaluated in this study, we did not observe obvious 

registration quality degradation from the above mentioned artifacts.
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4.3. Generalization to 3D k-space readout trajectory

In our study, the volumetric MR images were formed by a series of separately-acquired 

2D radial k-space trajectories (Sec. 2.2.2), to concur with the acquisition protocols of the 

evaluation datasets (Sec. 2.4). However, our framework can be readily generalized to 3D 

readout trajectories such as a stack-of-stars or Koosh-ball trajectories (Chandarana et al. 

2011; Zhou et al. 2017; Mendes Pereira et al. 2019), as the reconstruction layer and the 

NUFFT operator in the framework accept both 2D and 3D readout trajectories. The 3D 

acquisition has several advantages over the 2D acquisition, which may be more favorable 

in real-time 3D MR imaging. As the signal-to-noise ratio is linearly proportional to the size 

of the excited volume, the slice thickness in a 2D acquisition is usually at least 3-4 mm 

(Stemkens, Paulson, and Tijssen 2018). Moreover, the relatively worse image resolution in 

the slice direction may not allow accurate image re-sampling in arbitrary directions (Kustner 

et al. 2020). Since 2D acquisition requires selective excitation at different slices, it may also 

suffer from slice crosstalk due to an imperfect slice excitation profile. Low resolution in 

the slice direction is also likely to hinder accurate motion estimation along this direction. 

On the other hand, 3D acquisition generates isotropic high-resolution images for accurate 

re-sampling. In addition, the entire volume is excited in a 3D acquisition, which leads to 

higher imaging signal-to-noise ratio for potentially higher motion estimation accuracy. Due 

to accessibility issues to MRIs acquired with 3D trajectories, evaluations of KS-RegNet with 

3D trajectories were not performed in this study and remained to be investigated in future.

4.4 Prospect of real-time MR imaging

Realization of real-time MR-guided radiotherapy depends on an MR scan of low latency 

and fast adaptation of treatment plans. For the proposed framework, the latency for tumor 

localization in an MR scan can be broadly divided into MR signal acquisition and network-

based DVF prediction. The MR acquisition comprises a measurement of the k-space data 

specified by a readout trajectory and data processing and transfer. Consider a pulse sequence 

with a repetition time of 2.8 ms (e.g., (Terpstra et al. 2020; Borman et al. 2018)) and a 

5-spoke/slice radial trajectory, the MR acquisition latency is around 224 ms for a 3D image 

of 32 slices. The overall execution time for the proposed network can be divided into the 

image reconstruction latency (i.e., the reconstruction layer in Fig. 1) and inference time 

(i.e., the U-Net core). The inference time is between 140 ms and 150 ms, and the image 

reconstruction time is around 200 ms. Thus the overall execution time to make a DVF 

prediction from the acquired k-space data is around 300-400 ms. The computation time 

for the DVF prediction is based on a NVIDIA Tesla V100 graphic processing unit card, 

and it can vary among different configurations of hardware. There are additional latencies 

not included such as data transfer and image/contour deformation, though these latencies 

are much smaller than the latencies of the MR acquisition and DVF prediction. Therefore, 

the latency of tumor localization is about 600 ms for the provided scenario, which is at 

the borderline of 500 ms latency bound for the real-time purpose (Dietz, Fallone, and 

Wachowicz 2019). Note that the acquisition latency depends on the pulse sequence and 

under-sampling factor (i.e., the number of radial spokes) applied in a MR scan, and therefore 

the time can be further shortened if a 3D trajectory is used for MR acquisition. For example, 

for the 3D golden-mean radial Koosh-ball trajectory, it has been shown that an acquisition 

of a 146-slice 3D image takes only 132 ms using a steady-state spoiled gradient echo 
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sequence (TR = 4.40 ms, TE = 1.80 ms) and a 30-spoke trajectory (Huttinga et al. 2021), 

which translates to image acquisition latency of 66 ms (Borman et al. 2018). For the image 

reconstruction latency, we performed a preliminary test, and the execution time for a 3D 

NUFFT to reconstruct an image size of 146×146×146 was around 250 ms for the 3D radial 

readout trajectory with a 30-spoke trajectory. Therefore, the total latency can be limited 

below 500 ms (66 ms + 250 ms + 150 ms = 466 ms). Moreover, algorithm optimization and 

dedicated hardware to improve the efficiency of NUFFT and DVF computations can further 

reduce the latency (Knoll et al. 2014; Shih et al. 2021).

4.5. Limitations and future directions

In order to test our framework, we simulated under-sampled k-space data from fully-

sampled 4D MR images which were collected retrospectively. However, in practice on-board 

k-space data are acquired in real time to guide radiotherapy. Accordingly, there may exist 

features in the real-time k-space data that were not simulated by our method. For example, 

the signal-to-noise ratio of the real-time k-space data may differ from the fully-sampled data. 

Fast pulse sequences such as balanced steady-state free precession and k-space encoding 

schemes with significant jumps in k-space can be employed to reduce MR scan time. While 

for these pulses, pulsed magnetic field gradient can induce eddy currents leading to residual 

spin dephasing which, in turn, introduces spurious features in reconstructed images. While 

strategies have been developed to mitigate the effects of the eddy current (Bieri, Markl, 

and Scheffler 2005), future assessment of the robustness of the network to the noises and 

artifacts is warranted, with potential further developments to improve the utility of the 

framework in real-time MR imaging.

Recently, Shimron et al. raised a concern that using open-access databases without sufficient 

precaution may lead to biased, overly-optimistic results (Shimron et al. 2021). In particular, 

raw k-space data are frequently zero-padded in commercial MR scanners before the MR 

image reconstruction. As a result, when the reconstructed images are used to simulate 

on-board under-sampled k-space data using a variable-density readout trajectory such as a 

radial trajectory, the under-sampling ratio can be overestimated. For the cardiac dataset, we 

used the raw k-space data to reconstruct complex-valued MR images, and no zero-padding 

was used in the reconstruction. Thus for the cardiac data the under-sampling ratio is 

unlikely to be overestimated. For the abdominal dataset, however, the MR images were 

post-reconstruction. Therefore, this dataset is susceptible to potential overestimation of the 

under-sampling ratio since the pre/post-processing steps of these MRIs are not fully known. 

We would like to emphasize that although our evaluation is based on retrospectively under-

sampled data from fully-sampled data (such that the fully-sampled target MRI can naturally 

serve as the ‘gold-standard’ reference to evaluate the accuracy of the deformed source 

image), retrospectively sampling is not a requirement to train our model. The KS-RegNet 

can be trained with native under-sampled k-space data and a high-quality prior image since 

the loss is defined in k-space. It does not need both fully-sampled source and target MRIs to 

provide ‘ground-truth’ DVFs for supervision, which is the case for the supervised methods 

as reported by Küstner et. al. (Kustner et al. 2021) and Terpstra et. al. (Terpstra et al. 2021).
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In our framework, to tackle the under-sampling artifacts and distortions, we intentionally 

under-sampled the k-space data of prior images and fed the under-sampled prior images 

to the network, to improve the registration accuracy and the robustness of our model. In 

addition to the under-sampled prior images, the network training was driven by quantifying 

data fidelity directly on k-space data to avoid calculating the losses in the artifact-ridden 

MR images. To further regularize the predicted DVFs, inverse consistency and the energy 

of the DVFs were added to the loss function (Sec. 2.3). We found that using the above 

strategies provides adequate accuracy for our framework for under-sampling ratios up to 80 

(i.e., 5-spoke radial trajectory) [Figs. 4(a–c) and Figs. 5(a–c)]. However, we acknowledge 

that our framework may fail under more aggressive under-sampling factors, and additional 

regularizations such as the spatial-temporal redundancy or contextual losses are required to 

complement the k-space data fidelity. Statistical dimension reduction techniques including 

principal component analysis can also be potentially grafted with the current network to 

further improve the motion estimation accuracy. However, exploiting these redundancies 

and additional regularizations are beyond the scope of the current work and remain to be 

incorporated into future studies.

The proposed framework was evaluated using small-scale cardiac and abdominal datasets of 

various MR acquisition parameters (Tables 1 and 2). A major hurdle to increase the dataset 

size is the limited availability of 4D MR dataset with raw, fully-sampled k-space data. As 

the datasets contain a small number of subjects due to limited data availability, we employed 

the randomization strategy in training to substantially increase the number of unique training 

samples (Sec. 2.5.1). Moreover, multiple data augmentation strategies were employed to 

avoid overfitting and improve the robustness of the trained network. Cross-validation was 

also used to evaluate the framework and assess its generalizability to independent datasets. 

With the above strategies, the issue of small sample size can be mitigated. However, we 

acknowledge that a larger cohort including both healthy subjects and patients will help 

to better support the proposed scheme. Moreover, with a large cohort, it is possible to 

comprehensively test on a wide variety of tumor geometries to better quantify, not only the 

effects of breathing, but also the accuracy of KS-RegNet to localize tumors in various shapes 

and sizes.

5. Conclusions

In conclusion, we have proposed and presented an end-to-end, unsupervised DL network 

that can estimate motion fields in real time from on-board k-space data. Our results show 

that KS-RegNet performs well for highly under-sampled cardiac and abdominal MR images 

and is robust to varying under-sampling factors. The same network can be readily adapted 

to different k-space sampling trajectories, and to different anatomic sites. Future studies 

enrolling more patients and MR acquisition protocols are warranted to further evaluate its 

accuracy and robustness.
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Figure 1. 
Workflow of the proposed k-space-driven registration network (KS-RegNet) that performs 

a deformable image registration between a fully-sampled source image and an on-board, 

highly under-sampled target image.
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Figure 2. 
Comparison of cardiac MR images by different methods. Subfigures (a) and (c) present the 

images from different methods in three views (odd rows), and the differences between these 

images and the target images (even rows). The methods are indicated on top of each column. 
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The spoke number used for k-space is 13. Figures (c) and (d) show the line profiles located 

by the horizontal dashed lines in the target images.

Shao et al. Page 32

Phys Med Biol. Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of abdominal MR images by different methods. Subfigures (a) and (c) present 

the images from different methods in the axial, coronal, and sagittal views (odd rows), and 

the differences between these images and the target images (even rows). The methods are 

indicated on top of each column. The spoke number used for k-space sampling is 13. Figures 

(c) and (d) show the line profiles located by the horizontal dashed lines in the target images.
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Figure 4. 
Boxplots of 95th percentile Hausdorff distances (HD95s), DICE coefficients, and center-of-

mass errors (COMEs) of different methods for all subjects in the cardiac dataset, using 

different numbers of k-space spokes for motion estimation. For comparison, the first boxplot 

of each subject (i.e., source) presents the HD95, DICE coefficient, and COME between 

the fully-sampled source and target images. The COMEs for the FS-to-US Elastix method 

of the subject No. 3 are substantially worse than the others, and were not included in the 

corresponding boxplots.
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Figure 5. 
Boxplots of HD95s, DICE coefficients, and COMEs of different methods for all subjects 

in the abdominal dataset, using different numbers of k-space spokes for motion estimation. 

The spoke numbers are given in the subfigure title. For comparison, the first boxplot of 

each subject (i.e., source) presents the HD95, DICE coefficient, and COME between the 

fully-sampled source and target images.
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Figure 6. 
Robustness test of KS-RegNet and KS-RegNet-nup on the cardiac dataset. The networks 

were trained under the k-space spoke numbers indicated by the subfigure title, and tested 

for different under-sampling factors specified by the axis labels. For comparison, the results 

of Elastix registration between under-sampled (US) source and US target images are also 

given, and the training spoke number denotation does not apply to Elastix results.
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Figure 7. 
Robustness test of KS-RegNet and KS-RegNet-nup on the abdominal dataset. The networks 

were trained under the k-space spoke numbers indicated by the subfigure title, and tested for 

different under-sampling factors specified by the axis labels.
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Figure 8. 
Robustness test results of KS-RegNet to the quality variations of source images. The quality 

of source images was controlled by under-sampling their k-space data by 20%, 50% and 

80%, respectively. The first and second rows respectively present the results of the cardiac 

[Figs. 8(a–b)] and abdominal [Figs. 8(c–d)] datasets. For comparison, the first and second 

boxplots of each subject show the metrics between the source and target images, and the 

results of KS-RegNet using fully-sampled, non-degraded prior images, respectively.
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Table 1.

MR imaging acquisition parameters of the subjects in the cardiac dataset.

Subject
Field-of-view 
(x×y×z mm3)

Volume Size 
(x×y×z)

Resolution 
(mm3)

No. of 
Cardiac 

bins

Echo time 
(millisecond s, 

ms)

Repetition 
time (ms)

Flip angle 
(degrees)

Field 
strength 

(T)

1 760×285×80 384×144×10 1.98×1.98×8.0 25 1.53 36.60 33 3.0

2 720×309×112 384×156×14 1.88×1.98×8.0 22 1.49 35.64 70 1.5

3 720×270×80 320×120×10 2.25×2.25×8.0 30 1.43 28.50 70 1.5

4 760×285×96 384×144×12 1.98×1.98×8.0 19 1.49 35.64 70 1.5

5 760×285×96 384×144×12 1.98×1.98×8.0 25 1.49 35.64 70 1.5

6 760×285×96 384×144×12 1.98×1.98×8.0 21 1.49 35.64 70 1.5

7 600×233×66 288×112×11 2.08×2.08×6.0 18 1.41 39.34 40 3.0

8 760×285×96 384×144×12 1.98×1.98×8.0 25 1.49 35.64 70 1.5
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Table 2.

MR imaging acquisition parameters of the subjects in the abdominal dataset.

Subject
Field-of-view 
(x×y×z mm3)

Volume Size 
(x×y×z)

Resolution 
(mm3)

No. of 
slices

No. of 
respiratory 

bins

Echo 
time 
(ms)

Repetition 
time (ms)

Flip angle 
(degrees)

Field 
strength 

(T)

1 480×480×180 256×256×36 1.88×1.88×5.0 36 6 1.13 3.01 50 1.5

2 480×480×200 256×256×40 1.88×1.88×5.0 40 10 1.13 3.01 50 1.5

3 480×480×200 256×256×40 1.88×1.88×5.0 40 10 1.13 3.01 50 1.5

4 480×480×215 256×256×43 1.88×1.88×5.0 43 10 1.13 3.01 50 1.5

5 360×360×200 256×256×40 1.41×1.41×5.0 40 10 1.13 3.01 50 1.5

6 480×480×300 256×256×60 1.88×1.88×5.0 60 10 1.13 3.01 50 1.5

7 420×420×240 256×256×48 1.64×1.64×5.0 48 10 1.13 3.01 50 1.5

8 360×360×210 256×256×42 1.41×1.41×5.0 42 10 1.13 3.01 50 1.5

9 480×480×200 256×256×40 1.88×1.88×5.0 40 10 1.13 3.01 50 1.5
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Table 3.

Mean (±s.d.) HD95s, DICE coefficients, COME, and Wilcoxon signed-rank test results of different methods. 

The Wilcoxon signed-rank tests are between the KS-RegNet and the other methods.

Number of spokes Method
Mean (±s.d.) p-value

HD95 (mm) DICE coefficient COME (mm) HD95 DICE coefficient COME

5

KS-RegNet 4.97±2.78 0.884±0.025 1.21±1.09 -- -- --

KS-RegNet-nup 6.45±1.80 0.807±0.064 2.22±1.96 < 10−3 < 10−3 < 10−3

RegNet 6.24±1.88 0.797±0.051 1.82±1.85 < 10−3 < 10−3 < 10−3

Elastix (US to US) 6.23±2.89 0.849±0.029 1.88±1.93 < 10−3 < 10−3 < 10−3

9

KS-RegNet 4.74±2.62 0.889±0.024 1.29±1.22 -- -- --

KS-RegNet-nup 5.72±1.90 0.846±0.040 1.81±1.49 < 10−3 < 10−3 < 10−3

RegNet 6.09±1.91 0.821±0.040 1.61±1.56 < 10−3 < 10−3 < 10−3

Elastix (US to US) 6.33±3.32 0.863±0.038 1.59±1.70 < 10−3 0.007 0.107

13

KS-RegNet 4.51±2.82 0.894±0.022 1.01±0.86 -- -- --

KS-RegNet-nup 4.99±2.21 0.868±0.024 1.36±0.92 < 10−3 < 10−3 < 10−3

RegNet 5.93±1.97 0.835±0.042 1.49±1.40 < 10−3 < 10−3 < 10−3

Elastix (US to US) 5.77±3.24 0.869±0.043 1.58±1.73 < 10−3 0.069 < 10−3
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Table 4.

Mean (±s.d.) HD95s, DICE coefficients, COME, and Wilcoxon signed-rank test results of different methods. 

The Wilcoxon signed-rank tests are between the KS-RegNet and the other methods.

Number of spokes Method
Mean (±s.d.) p-value

HD95 (mm) DICE coefficient COME (mm) HD95 DICE coefficient COME

5

KS-RegNet 4.54±2.45 0.694±0.167 4.60±2.91 -- -- --

KS-RegNet-nup 5.91±3.77 0.566±0.221 6.56±4.61 < 10−3 < 10−3 < 10−3

RegNet 5.17±3.14 0.693±0.151 5.14±3.35 0.002 0.049 0.005

9

KS-RegNet 3.88±2.98 0.751±0.128 3.91±2.72 -- -- --

KS-RegNet-nup 4.11±2.51 0.712±0.141 4.36±2.75 0.241 < 10−3 < 10−3

RegNet 4.37±2.51 0.713±0.156 4.62±3.23 0.011 < 10−3 < 10−3

13

KS-RegNet 3.25±1.90 0.766±0.106 3.48±2.00 -- -- --

KS-RegNet-nup 4.04±2.53 0.739±0.151 3.89±2.44 < 10−3 0.009 0.003

RegNet 4.43±2.45 0.712±0.149 4.54±2.93 < 10−3 < 10−3 < 10−3
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