Skip to main content
. 2022 Jul 11;12:937050. doi: 10.3389/fonc.2022.937050

Table 3.

Selected features and the coefficients of features in final radiomics model.

Features Coefficients in model
BPGT vs. MPGT
CE-T1WI_wavelet-HLL_ GLCM_ autocorrelation 2.233
ADC_ wavelet-LHL_ GLCM_ cluster shade 1.698
CE-T1WI_ wavelet-HLL_ NGTDM_ complexity -0.355
FS-T2WI_ wavelet-HLL_ GLDM_ small dependence emphasis -0.422
ADC_ original_ shape_ sphericity -0.499
ADC_ wavelet-LHH_ GLCM_ mcc -1.488
PA vs. MPGT
ADC_ wavelet-LHL_ GLCM_ cluster shade 2.890
FS-T2WI_ wavelet-HLH_ GLSZM_ size zone non-uniformity normalized 1.620
CE-T1WI_ wavelet-HLL_ GLCM_ autocorrelation 1.388
ADC_ wavelet-LLH_ GLCM_ correlation -0.135
ADC_ wavelet-LHL_ first-order_ skewness -0.342
CE-T1WI_ wavelet-HLL_ GLSZM_ zone entropy -0.881
ADC_ original_ shape_ sphericity -3.566
WT vs. MPGT
ADC_ wavelet-HHH_ GLSZM_ zone variance 1.512
CE-T1WI_ wavelet-HLH_ GLRLM_ run-variance 1.033
ADC_ wavelet-HHH_ GLSZM_ large area emphasis 0.223
FS-T2WI_ wavelet-HHH_ GLSZM_ gray level non-uniformity -1.020
PA vs. WT
ADC_ wavelet-LHL_ first-order_ median 3.509
CE-T1WI_ wavelet-LLH_ first-order_ kurtosis 1.102
FS-T2WI_ wavelet-LLL_ first-order_ skewness 0.920
ADC_ wavelet-HLH_ GLCM_ correlation 0.535
CE-T1WI_ wavelet-LLH_ GLCM_ idn 0.340
ADC_ original_ first-order_ 10percentile -0.531
FS-T2WI_ wavelet-HHL_ GLCM_ small dependence high gray level emphasis -1.413
ADC_ wavelet HHH_ GLSZM_ size zone non-uniformity normalized -1.504

GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; Vs, versus; PA, pleomorphic adenomas; WT, Warthin tumor; BPGT, benign parotid gland tumor, MPGT, malignant parotid gland tumor; FS-T2WI, fat-saturated T2-weighted image, CE-T1WI: contrast-enhanced T1-weighted image.