Table 10.
Classification results of machine learning models using GloVe with SMOTE.
Models | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|
RF | 0.73 | 0.73 | 0.73 | 0.73 |
AB | 0.58 | 0.58 | 0.58 | 0.58 |
ET | 0.75 | 0.75 | 0.75 | 0.75 |
LR | 0.60 | 0.59 | 0.60 | 0.59 |
MLP | 0.65 | 0.67 | 0.65 | 0.69 |
GBM | 0.63 | 0.63 | 0.63 | 0.63 |
kNN | 0.64 | 0.64 | 0.64 | 0.63 |
ER-VC | 0.73 | 0.73 | 0.73 | 0.73 |
RF: Random Forest; LR: Logistic Regression; MLP: Multilayer Perceptron; GBM: Gradient Boosting Machine; AB: AdaBoost, kNN: k Nearest Neighbours; ET: Extra Tree Classifier; GloVe: Global Vectors; SMOTE: Synthetic Minority Oversampling Approach; ER-VC: Extreme Regression-Voting Classifier.