Table 12.
Model | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|
TF-IDF | ||||
RF | 0.71 | 0.71 | 0.71 | 0.71 |
AB | 0.67 | 0.69 | 0.67 | 0.68 |
ET | 0.72 | 0.72 | 0.72 | 0.72 |
LR | 0.74 | 0.74 | 0.74 | 0.74 |
MLP | 0.70 | 0.69 | 0.70 | 0.70 |
GBM | 0.71 | 0.72 | 0.71 | 0.71 |
KNN | 0.52 | 0.70 | 0.52 | 0.42 |
ER-VC | 0.75 | 0.75 | 0.75 | 0.75 |
GloVe | ||||
RF | 0.61 | 0.61 | 0.61 | 0.61 |
AB | 0.54 | 0.55 | 0.54 | 0.54 |
ET | 0.58 | 0.57 | 0.58 | 0.58 |
LR | 0.60 | 0.60 | 0.60 | 0.59 |
MLP | 0.62 | 0.62 | 0.62 | 0.62 |
GBM | 0.54 | 0.54 | 0.54 | 0.54 |
KNN | 0.55 | 0.57 | 0.55 | 0.55 |
ER-VC | 0.63 | 0.62 | 0.63 | 0.62 |
BoW | ||||
RF | 0.69 | 0.71 | 0.69 | 0.70 |
AB | 0.67 | 0.69 | 0.67 | 0.68 |
ET | 0.58 | 0.57 | 0.58 | 0.58 |
LR | 0.73 | 0.73 | 0.73 | 0.73 |
MLP | 0.62 | 0.62 | 0.62 | 0.62 |
GBM | 0.72 | 0.73 | 0.72 | 0.72 |
KNN | 0.55 | 0.57 | 0.55 | 0.55 |
ER-VC | 0.73 | 0.74 | 0.73 | 0.74 |
RF: Random Forest; LR: Logistic Regression; MLP: Multilayer Perceptron; GBM: Gradient Boosting Machine; AB: AdaBoost, kNN: k Nearest Neighbours; ET: Extra Tree Classifier; GloVe: Global Vectors; SMOTE: Synthetic Minority Oversampling Approach; ER-VC: Extreme Regression-Voting Classifier; TF-IDF: Term Frequency-Inverse Document Frequency; BoW: Bag of Words.