Skip to main content
. 2022 Jul 21;8:20552076221109530. doi: 10.1177/20552076221109530

Table 5.

Classification results of machine learning models using TF-IDF without SMOTE.

Models Accuracy Precision Recall F1 score
RF 0.71 0.70 0.71 0.70
AB 0.64 0.65 0.64 0.64
ET 0.71 0.70 0.71 0.70
LR 0.73 0.73 0.73 0.72
MLP 0.71 0.71 0.71 0.71
GBM 0.70 0.70 0.70 0.70
kNN 0.66 0.65 0.66 0.65
ER-VC 0.72 0.72 0.72 0.71

RF: Random Forest; LR: Logistic Regression; MLP: Multilayer Perceptron; GBM: Gradient Boosting Machine; AB: AdaBoost, kNN: k Nearest Neighbours; ET: Extra Tree Classifier; TF-IDF: Term Frequency-Inverse Document Frequency; SMOTE: Synthetic Minority Oversampling Approach; ER-VC: Extreme Regression-Voting Classifier.