Table 5.
Models | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|
RF | 0.71 | 0.70 | 0.71 | 0.70 |
AB | 0.64 | 0.65 | 0.64 | 0.64 |
ET | 0.71 | 0.70 | 0.71 | 0.70 |
LR | 0.73 | 0.73 | 0.73 | 0.72 |
MLP | 0.71 | 0.71 | 0.71 | 0.71 |
GBM | 0.70 | 0.70 | 0.70 | 0.70 |
kNN | 0.66 | 0.65 | 0.66 | 0.65 |
ER-VC | 0.72 | 0.72 | 0.72 | 0.71 |
RF: Random Forest; LR: Logistic Regression; MLP: Multilayer Perceptron; GBM: Gradient Boosting Machine; AB: AdaBoost, kNN: k Nearest Neighbours; ET: Extra Tree Classifier; TF-IDF: Term Frequency-Inverse Document Frequency; SMOTE: Synthetic Minority Oversampling Approach; ER-VC: Extreme Regression-Voting Classifier.