Table 6.
Models | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|
RF | 0.71 | 0.71 | 0.71 | 0.70 |
AB | 0.68 | 0.69 | 0.68 | 0.68 |
ET | 0.73 | 0.73 | 0.73 | 0.72 |
LR | 0.72 | 0.72 | 0.72 | 0.71 |
MLP | 0.71 | 0.71 | 0.71 | 0.71 |
GBM | 0.73 | 0.73 | 0.73 | 0.72 |
kNN | 0.52 | 0.55 | 0.52 | 0.50 |
ER-VC | 0.74 | 0.74 | 0.74 | 0.74 |
RF: Random Forest; LR: Logistic Regression; MLP: Multilayer Perceptron; GBM: Gradient Boosting Machine; AB: AdaBoost, kNN: k Nearest Neighbours; ET: Extra Tree Classifier; BoW: Bag of Words; SMOTE: Synthetic Minority Oversampling Approach; ER-VC: Extreme Regression-Voting Classifier.