Table 8.
Models | Accuracy | Precision | Recall | F1 score |
---|---|---|---|---|
RF | 0.81 | 0.82 | 0.81 | 0.81 |
AB | 0.71 | 0.72 | 0.71 | 0.71 |
ET | 0.82 | 0.83 | 0.82 | 0.82 |
LR | 0.82 | 0.82 | 0.82 | 0.82 |
MLP | 0.81 | 0.81 | 0.81 | 0.81 |
GBM | 0.80 | 0.81 | 0.80 | 0.80 |
kNN | 0.64 | 0.73 | 0.64 | 0.55 |
ER-VC | 0.85 | 0.85 | 0.85 | 0.84 |
RF: Random Forest; LR: Logistic Regression; MLP: Multilayer Perceptron; GBM: Gradient Boosting Machine; AB: AdaBoost, kNN: k Nearest Neighbours; ET: Extra Tree Classifier; TF-IDF: Term Frequency-Inverse Document Frequency; SMOTE: Synthetic Minority Oversampling Approach; ER-VC: Extreme Regression-Voting Classifier.