Algorithm-1: Seeds-Generation on the basis of biological scoring matrices |
---|
1: Procedure: Seed Generation 2: Input: M1, M2, and M3 //Similarity Matrices 3: Input: str.t, seq.t and lseq.t //Similarity Thresholds 4: Output: Top-Nodes and Seeds 5: Seeds = [] 6: Sort M1, M2, M3 on the basis of scores 7: for all node pairs (a, b) do 8: if a ∉ Seeds and b ∉ Seeds and M1[a, b] ⩾ 0.8 then 9: Seeds.append(a, b) 10: end if 11: end for 12: for all node pairs (a, b) do 13: if a ∉ Seeds and b ∉ Seeds and M2[a, b] ⩾ 200 then 14: Seeds.append(a, b) 15: end if 16: end for 17: for all node pairs (a, b) do 18: if a ∉ Seeds and b ∉ Seeds and M3[a, b] ⩾ 4.0 then 19: if AlignmentLength(a, b) > 35 then 20: Seeds.append(a, b) 21: end if 22: end if 23: end for 24: Top-Nodes = Seeds //Top-Nodes are separated 25: for all node pairs (a, b) do 26: if a ∉ Seeds and b ∉ Seeds and M1[a, b] ⩾ str.t then 27: Seeds.append(a, b) 28: end if 29: end for 30: for all node pairs (a, b) do 31: if a ∉ Seeds and b ∉ Seeds and M2[a, b] ⩾ seq.t then 32: Seeds.append(a, b) 33: end if 34: end for 35: for all node pairs (a, b) do 36: if a ∉ Seeds and b ∉ Seeds and M3[a, b] ⩾ lseq.t then 37: if AlignmentLength(a, b) > 35 then 38: Seeds.append(a, b) 39: end if 40: end if 41: end for 42: end procedure |