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Abstract

Purpose of review: Machine learning solutions are being increasingly used in the analysis of 

neuroimaging (NI) data, and as a result, there is an increase in the emphasis of the reproducibility 

and replicability of these data-driven solutions. While this is a very positive trend, related 

terminology is often properly defined, and more importantly, (computational) reproducibility that 

refers to obtaining consistent results using the same data and the same code is often disregarded.

Recent Findings: We review the findings of a recent paper on the topic along with other 

relevant literature, and present two examples that demonstrate the importance of accounting for 

reproducibility in widely used software for NI data.

Summary: We note that reproducibility should be a first step in all NI data analyses including 

those focusing on replicability, and introduce available solutions for assessing reproducibility. 

We add the cautionary remark that when not taken into account, lack of reproducibility can 

significantly bias all subsequent analysis stages.
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1 Introduction

As in multiple fields, in neuroscience as well, data-driven solutions are playing an 

increasingly important role. With this shift away from the traditional model-driven 

approaches, there is also an increased emphasis on the interpretability of solutions. This 

is due to the fact that, with data-driven solutions, we often do not have a clear connection 

to a physical model, however, it is through interpretation that we can gain insights about 

the problem and generalize it to other scenarios. Finally, reproducibility and replicability are 

intimately related to interpretability, as without these two basic requirements, interpretations 

are hardly useful. As a result, there is an increasing emphasis in the emphasis of these 

important properties, particularly in the analysis of neuroimaging (NI) data. However, most 

Corresponding Author: adali@umbc.edu, Phone:+1(410)455-3521 Fax: (410)455-3969. 

Conflicts of interest
None.

HHS Public Access
Author manuscript
Curr Opin Neurol. Author manuscript; available in PMC 2023 August 01.

Published in final edited form as:
Curr Opin Neurol. 2022 August 01; 35(4): 475–481. doi:10.1097/WCO.0000000000001081.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



often, it is difficult to compare the results across publications and to put them into proper 

context. One reason is that these terms, reproducibility and replicability, are not defined 

properly. They are used interchangeably, along with other properties such as robustness, 

consistency, and stability. Even more importantly, (computational) reproducibility, defined 

as obtaining consistent results using the same data and the same code [1] is most often, 

not even taken into account [2]. Our goal in this article is to emphasize the importance 

of reproducibility by reviewing the relevant work, as when not taken into account, it is 

likely to introduce significant bias into all subsequent stages of the analyses. This is an 

important concern for many of the widely used NI toolboxes. Here we provide examples 

using the Group ICA of fMRI Toolbox (GIFT) [3] for assessing data-driven functional 

network and the FreeSurfer software package [4] for the analysis and visualization of 

structural and functional neuroimaging data, though the issues we highlight are pervasive 

in the field, including many other iterative approaches, such as inverse modeling for 

magnetoencephalography and electroencephalography (M/EEG).

In addition, reproducibility is an important prerequisite for replicability. In literature, 

references to reproducibility often actually consider replicability, which is defined as 

consistency of results using the same code but with different data. Again, we follow the 

definitions given by the US National Academies of Sciences, Engineering, and Medicine 

[1], also promoted by [5]. Many studies including hyperparameter choice, effect sizes, or 

different generalization properties (of site, population, and so on) all rely on replicability 

studies. Hence, leaving out the critical reproducibility step in these evaluation poses a 

problem.

A recent overview, [2], starts with these definitions and underlines the importance of 

reproducibility as the starting point for all studies, including those on replicability. The 

focus in [2] is on unsupervised machine learning methods based on matrix and tensor 

decompositions (MTDs), which have found fruitful application in NI data analysis. In this 

review, we revisit the conclusions of [2] with an emphasis on applications in neuroscience, 

especially of independent component analysis (ICA) and review (the limited) work that 

addresses reproducibility in other machine learning solutions such as iterative optimization 

approaches including computational morphometry implemented in FreeSurfer.

2 Definitions: Reproducibility and Replicability

In the definition of reproducibility, obtaining consistent results using the same data and 

the same code, “same code” implies that a given algorithm is used with the same set of 

hyperparameters. Thus, the only source of variability is due to random initializations. Given 

that the cost functions for most data-driven methods are non-convex, one can only guarantee 

convergence to a local optimum. Since in most cases, closed form solutions do not exist, 

iterative techniques are employed, and most commonly, using random initializations, see 

e.g., [6–8]. Even when all algorithmic quantities are fixed, and the only variability is due to 

random initializations, the resulting decompositions can be quite different as demonstrated 

in [2]. Hence, for reproducibility, we should select an appropriate metric such as correlation 

to measure the consistency (repeatability, stability) of the final results.
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For replicability, consistency of the solutions with the same algorithm are studied using 

different data. Here, there are two ways the data can be different. In the first case, this 

can be due to sampling from the same dataset (e.g., different folds) with a goal such as 

selecting hyperparameters to be used for the final analysis, or studying properties such 

as effect sizes. Alternatively, different data might mean the use of a completely different 

dataset which is data collected with the same general goal but where the site, scanner, 

population is different. We identify the first case as partially different data and the second 

one as completely different data. In the first case, we could use a similarity metric as in 

the evaluation for reproducibility since the goal is obtaining essentially similar solutions, 

and in the second case, one would expect to replicate the general conclusions of the study, 

rather than obtaining estimates that are very close to each other. The terminology used 

for replicability and reproducibility varies in the literature, the two terms often being used 

interchangeably [9], with reproducibility used for referring to what we call replicability 

[10, 11]. Other terms used include stability [12, 13], repeatability [14], similarity [15], and 

(algorithmic) reliability [16]. Thus, while consulting other references, it is important to 

remember the definitions we make here, in this section, and when we talk about replicability, 

we do consider partially different data.

3 Two case studies for reproducibility: ICA of fMRI Data and FreeSurfer

Almost all of current work in NI data analysis concentrates on replicability—even though 

it might be called reproducibility. One notable exception has been in the application of 

ICA to fMRI analysis where the practice has been using multiple runs with different 

initializations, and then selecting one run as the one for further study. in the following, 

we review metrics used for reproducibility in ICA, which are also used in other matrix and 

tensor decompositions, and then present two examples that demonstrate the importance of 

assessing reproducibility in ICA as implemented in GIFT, and for another widely used NI 

toolbox, FreeSurfer.

3.1 Reproducibility in ICA of fMRI

Characterizing reproducibility in ICA of fMRI data requires use of a well-defined best run 
selection mechanism. Three solutions proposed for this task are ICASSO [16], minimum 

spanning tree (MST) [17], and Cross ISI [6]. ICASSO is the first systematic approach 

introduced for ICA, specifically for the FastICA algorithm, where a highly repeatable 

solution is selected by performing multiple runs followed by a clustering step of the 

estimated components to select a set of estimates. In [18], the approach is modified such that 

a single run (and the estimates from that run) can be selected rather than a set of estimates 

that might come from different runs as reconstructing the original fMRI observation set 

is important. In [8], another modification of ICASSO is proposed where the number of 

clusters is determined using a lowrank graph approximation whereas in ICASSO, this 

is a user-defined parameter. In MST, components across multiple ICA runs are aligned 

and a one sample t-test is used to evaluate the reproducibility of estimated components, 

and the best run is selected using the run most highly correlated to this given tmap. 

For ICA, inter-symbol interference (ISI) is a frequently used global distance metric for 

performance evaluation when the ground truth is available. It is a normalized quantity, with 
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zero indicating perfect separation and takes the inherent permutation and scaling ambiguities 

in ICA into account. Cross ISI is defined by replacing the true mixing matrix—which is 

unavailable in practical implementations—with the demixing matrix estimates from other 

runs, such that the average distance of each run to all the others are calculated. The run 

with the smallest distance to all others yield the most reproducible run. All three metrics are 

included in GIFT and have been used for best run selection [6, 17–19].

Reproducible solutions are also more interpretable—Model-based solutions are 

usually fully interpretable through their connection to the physical model. Matrix and tensor 

decompositions, while allowing the discovery of structure in the data in an unsupervised 

manner, can also result in fully interpretable solutions, by which we mean we can associate 

the rows/columns of the final factor matrices with (physical) quantities of interest. In other 

data-driven solutions like multilayered neural networks, interpretability generally requires a 

subsequent analysis stage, e.g., generation of heat maps [20].

Linear mixing model of independent component analysis (ICA) provides a good match 

to fMRI data where the observations are modeled through the linear mixing of intrinsic 

functional networks (FN) with their temporal modulations [21]. This is a key reason 

for the success of ICA in application to fMRI analysis [22, 23]. In addition, the ICA 

model is unique under very general conditions [24], which is an essential property when 

interpretability is the goal. Interpretation of estimated components without guarantees on 

their uniqueness would make little sense.

A functional network connectivity (FNC) map is a measure of the covariance or cross-

correlation of the timecourses of the components estimated by ICA. As such, it provides 

an effective summary of interactions between functional networks. In [2], the desirable 

match of the ICA model for fMRI analysis is demonstrated with an example using FNC 

maps, which we reproduce in Figure 1. GIFT is used to perform ICA analysis using the 

entropy bound minimization (EBM) algorithm with 176 subjects (88 healthy controls (HCs) 

and 88 patients with schizophrenia) from https://coins.trendscenter.org/, and 28 components 

were selected as functionally relevant (see [2] for experimental details). The FNC maps 

corresponding to the run with the lowest Cross-ISI (best run) and the one to lowest Cross-ISI 

among 100 runs with random initializations are shown in the figure. We observe higher 

connectivity within functional domains, and the expected anti-correlations with DMN to 

other networks for the best run, while these aspects are weaker for the run with the highest 

Cross-ISI. These results provide examples where the selection of most reproducible run also 

results in better interpretability.

Bias and variance dilemma: Algorithmic variability might be desirable—It is 

also worth noting that a highly reproducible solution is not always attractive. This is due to 

the bias variance dilemma in estimation theory, where a solution lacking flexibility might 

not be able to capture the informative characteristics of the data and might yield a high bias, 

difference from the “truth”. In ICA, the most frequently used algorithm Infomax [25] which 

is also the first algorithm applied to fMRI analysis [22] is rather stable as it uses a fixed 

nonlinearity. While this nonlinearity provides a good match to most of the sources in fMRI, 

which tend to be super-Gaussian in nature, it cannot as reliably capture certain networks like 
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the default mode network (DMN) [6] and certain noise and interference components, whose 

estimation help improve estimation of the components of interest. In these cases algorithms 

with flexible density models such as the EBM might provide a better overall decomposition. 

In addition, an algorithm taking properties such as smoothness of the voxels in fMRI data, 

entropy rate bound minimization (ERBM) might be even more attractive by providing a 

better match to the properties of fMRI data [6]. This bias variance dilemma for the two 

algorithms is demonstrated with a simulated example in [2] where another important point is 

made: if only Cross-ISI is used in the evaluation of reproducibility, one might end up with a 
highly sub-optimal solution with high bias.

Similarly, in [15], evaluation of accuracy versus reproducibility is proposed for a canonical-

polyadic decomposition model to determine the order. The argument is similar, the true 

order for the model (number of components in the decomposition) provides a better model 

match, and hence will be more reproducible and will achieve the desirable bias and variance 

tradeoff.

3.2 Computational morphometry estimated via FreeSurfer

FreeSurfer [4, 26] is arguably one of the most widely used tools for computational 

morphometry, and offers the ability to compute metrics estimated along a surface including 

cortical thickness. Freesurfer constructs a cortical surface model by aligning the data to a 

spherical atlas. The result then allows a number of anatomical measures including cortical 

thickness, surface area, curvature, and more, defined at each point on the cortex. The 

optimization approach in FreeSurfer is iterative and thus depends on initial conditions. 

The default option in FreeSurfer is to use a nonrandom, single estimation. While there is 

an option to vary the random seed, this only applied to the cortical estimation, not the 

subcortical, and it is not widely used. This has important implications in studies that use 

FreeSurfer, as seen in Figure 2, the percent change in volume and the change in volume 

(max-min) across regions within a single run goes up to almost 20% and over 650mm3 

with an average change of about 5% and 230mm3. This level of variability can easily 

impact individual classification performance and even group level differences. In addition, 

FreeSurfer results are often used as head models in M/EEG studies, and as such can also 

impact the solutions in those cases.

3.3 Summary and other machine learning solutions

As our two examples demonstrate, without guarantees on reproducibility, use of toolboxes 

such as the GIFT, FreeSurfer, and inverse approaches such as dipole modeling might yield 

suboptimal solutions, potentially introducing undesirable bias to following post-processing 

steps. While tools like GIFT [6, 17–19] and certain dipole modeling approaches [27] have 

included approaches to account for computational variability for over 15 years, other tools 

such as FreeSurfer have implemented partial solutions such as an option to vary the random 

seed for cortical (but not subcortical) estimates, and yet, this is missing in many other widely 

used tools in NI analysis. In addition, variability due to initialization also plays an important 

role in the training of deep nets, another important class of machine learning solutions, since 

again, we have a nonconvex optimization problem.
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A closely related concept to reproducibility is that of interpretability. In solutions like ICA, 

interpretability is direct due to their intimate connection to the linear blind source separation 

problem, where the assumption is that there are a number of linearly mixed latent variables 

of interest. This allows direct investigation of the output for reproducibility as in the example 

in Figure 1, and also suggests that with a good model match, the most reproducible solution 

is also the most interpretable. In other data-driven solutions like deep nets, interpretability 

takes an indirect form and generally requires a second-level analysis, e.g., generation of 

heat maps in multilayered neural networks [20]. In this case, incorporation of available 

prior information about the data and/or the problem is likely to improve interpretability and 

provide some model match. Examples include reliable modeling assumptions, e.g., for task 

NI data, or priors such as sparsity and smoothness. MTD allow one to take such information 

into account naturally through their connection with simple modeling assumptions, and this 

can be an option for deep nets as well, and indeed this is a very recent trend, see [28] for a 

recent overview. With better model match and interpretability, we can gain insights about a 

disorder, help explain the associated mechanisms, so that one can come up with preventive 

measures and devise new treatment strategies.

We remind the reader that our definition of reproducibility and replicability follows previous 

definitions [1,2] and refers to use of the same data and the same algorithm. As we noted, 

terminology widely varies in literature, with reproducibility often used to actually refer to 

replicability (with our definition) where the datasets differ, e.g., one might study variability 

due to use of multi site data [29], or use of different scanners, pulse sequences, and/or 

scanning sessions [30–32]. While outside the scope of our current review, these are very 

important considerations as well, and replicability should be always considered along with 

(computational) reproducibility, which we address.

Our guidance on reproducibility related to machine learning applications to NI data can have 

im- portant implications in many areas relevant to neurology. For example, the use of NI 

data, whether it be at the level of networks, regions, or voxels, to provide individual level 

predictions, will be heavily dependent on the input features computed from that subject. This 

concern is applicable to any type of NI data, including volumetric studies, brain function, 

structural/function connectivity, and more. Without accounting for stochastic variation in the 

input features, one can easily obtain opposite answers along a given decision boundary (e.g., 

patient versus control, or typical vs atypical). Secondly, as more large-scale open datasets 

are available, given the scale of computation, preprocessed features (e.g., brain volumes, 

functional networks) are often downloaded and used by the community. The stochastic 

variability in the estimation of these features is rarely, if ever, assessed, leading to a potential 

for large-scale bias across the community as these data are used to train models. And 

finally, the variation can also impact the brain regions which are highlighted as predictive or 

relevant for a given test, potentially leading to incorrect pointers towards underlying brain 

mechanisms. This can be further complicated by the fact that variability can change across 

the brain, and potential interact with the variable being studied (e.g., the developing or 

ageing brain), resulting in incomplete or misleading conclusions. On a more optimistic note, 

there are existing ways to address the above concerns as we have discussed in this review. 

However, it is important that the community is made aware of, and adopts, solutions that can 
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facilitate replicability and reproducibility in the use of machine learning approaches applied 

to neuroimaging data.

4 Conclusion

We introduced the important concept of reproducibility in NI data analysis, and noted that 

it should be the initial step in all analyses, including studies for replicability. We provided 

examples from widely used toolboxes for neuroimaging, and noted that without guarantees 

on reproducibility, their use might yield suboptimal solutions, potentially introducing 

undesirable bias to following post-processing steps. Today, this component is missing from 

many of these tools, and as more large-scale studies share preprocessed features (such as 

cortical volumes and connectomes), it is critical to accurately capture the variability related 

to the generation of these features.
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Bullet points

• (Computational) reproducibility should be a first step in all neuroimaging data 

analyses including those focusing on replicability.

• As more large-scale open datasets are available, given the scale of 

computation, preprocessed features are often downloaded and used by the 

community, most often without assessing their reliability.

• Most of the widely used toolboxes for neuroimaging today do not provide a 

tool to assess the reproducibility of features obtained through their use.

• Without guarantees on reproducibility of features used in subsequent 

analyses, their use might yield suboptimal solutions, potentially introducing 

undesirable bias to following post-processing steps.

• It is important that the community is made aware of, and adopts, solutions 

that can facilitate replicability and reproducibility in the use of machine 

learning approaches applied to neuroimaging data.
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Figure 1: 
Functional network connectivity (FNC) maps for (a) run with the lowest Cross-ISI (best 

run); and (b) run with the highest Cross-ISI (low reproducibility). Note that the best run 

result has better interpretability. (AUD: Auditory; MOT: Sensorimotor; VIS: Visual; ATTN: 

Attentional, and FRONT: Frontal networks; DMN Default mode network.)
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Figure 2: 
Variability in volume (max-min) and percent signal change in various brain regions 

produced by FreeSurfer while using different random seeds.
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