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Deregulated inflammatory responses are involved in 
numerous human disorders, encompassing not only 
infectious and autoimmune disorders but also neuro­
logical, cardiovascular, renal, hepatic and neoplas­
tic conditions1–4. On the one hand, disproportionate, 
unwarranted or unresolving inflammation can act as a 
bona fide disease driver, as in the case of chronic inflam­
matory bowel disease1. On the other hand, uncontrolled 
inflammatory responses may aggravate the course of 
conditions that originate from non-​inflammatory cues, 
such as myocardial infarction3. Moreover, inefficient 
inflammatory reactions facilitate the persistence of 
infectious pathogens5 and enable the emergence and 
progression of malignant lesions in the context of fail­
ing cancer immunosurveillance6. Of note, inflammatory 
reactions may affect the course of specific diseases in 
opposing manners, largely depending on the intensity 
and duration of inflammation. For example, whereas 
indolent, chronic inflammation has been associated 
with oncogenesis and accelerated tumour progression in  
various settings7, potent inflammatory responses culmi­
nating in the engagement of adaptive immunity under­
lie the beneficial effects of numerous cancer therapies, 
including conventional chemotherapeutics8, targeted 
anticancer agents9 and radiotherapy10. Moreover, recent 
findings indicate that numerous components of the 
molecular cascades underlying inflammation are key 
for normal embryonic and postembryonic development, 
at least in specific settings such as neurodevelopment11. 
These examples highlight the crucial requirement 
for regulated inflammatory responses in organismal 
development and homeostasis.

Inflammation is generally initiated by the activa­
tion of pattern recognition receptors (PRRs) that are 
expressed by both immune and non-​immune cells12. 
Importantly, PRRs can be activated not only by viral 
and bacterial molecules associated with infection — 
so-​called microorganism-​associated molecular patterns 
or pathogen-​associated molecular patterns — but also 
by endogenous molecules that are commonly referred 
to as damage-​associated molecular patterns (DAMPs)12. 
In physiological conditions, DAMPs — which include 
nucleic acids, small metabolites such as ATP and pro­
teins such as calreticulin — are generally unable to 
drive PRR signalling because they cannot gain physical 
access to PRR-​containing subcellular compartments13. 
However, cellular stress and death can be accompanied 
by considerable alterations in the permeability of various 
cellular compartments, which enables PRR activation by 
DAMPs and the consequent initiation of inflammatory 
responses12. For example, ATP functions as a DAMP 
only upon release into the extracellular environment 
when it can bind to cognate receptors expressed on 
myeloid cells, such as the purinergic receptors P2RY2 
and P2RX7 (refs.14,15).

On the basis of these considerations, it would 
seem likely that mitochondria have an important 
role in the control of inflammatory responses, for at 
least three reasons16. First, mitochondria are widely 
considered as the evolutionary remnants of ances­
tral Alphaproteobacteria (the ancestors of modern 
Gram-​negative bacteria)17, and some mitochondrial 
components have considerable similarity with bacte­
rial molecules, suggesting that they might function as 
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PRR ligands. For example, in contrast to nuclear DNA 
(but similarly to bacterial genomes), the mitochondrial 
genome is circular and not associated with histones18. 
Second, mitochondria have two membranes — the 
inner mitochondrial membrane (IMM) and the outer 
mitochondrial membrane (OMM) — which together 
offer a dual layer of control segregating mitochon­
drial DAMPs (mtDAMPs) from their cognate PRRs18.  

Third, mitochondria have a major role in the control of  
apoptotic and necrotic forms of regulated cell death (RCD)  
(Box 1), which ultimately involves irreversible mitochon­
drial permeabilization (and hence loss of mitochondrial 
compartmentalization)19. Thus, mitochondria offer a 
unique platform for DAMP redistribution, PRR signal­
ling and inflammation in the context of failing adapta­
tion to cellular stress (which is linked to RCD initiation), 
the ultimate goal being to elicit innate and adaptive 
immune responses in support of organismal homeostasis 
(despite the irreversible loss of cellular fitness)20. Indeed, 
as we discuss herein, mitochondria are master regulators 
of inflammatory responses, not only as they contain sev­
eral bona fide DAMPs but also as they provide a physi­
cal scaffold for the activation of some PRRs21. Moreover, 
various cellular responses elicited by RCD-​associated 
mitochondrial outer membrane permeabilization (MOMP), 
including autophagy and caspase activation, directly 
affect the regulation of inflammatory processes22,23.

Here we discuss the molecular mechanisms through 
which mtDAMPs elicit inflammation (especially, but 
not exclusively, intracellular mechanisms), the signal 
transduction cascades through which mitochondria 
control inflammatory processes and the relevance of 
mitochondria-​regulated inflammation in human dis­
ease. This is particularly relevant not only as multiple 
fields of biomedical research have begun to realize the 
impact of dysregulated inflammation in disease but also 
as mitochondria-​targeting agents are now being used for 
the clinical management of specific neoplasms, raising 
considerable expectations for further development in the 
context of cancer immunotherapy24.

mtDAMP signalling pathways
Findings from multiple, independent research teams 
have identified several signal transduction cascades 
through which mitochondrial dysfunction elicits 
inflammatory reactions, including (but not limited to)  
intracellular signalling through cyclic GMP–AMP  
synthase (cGAS) and stimulator of interferon response 
cGAMP interactor 1 (STING1), as activated by mito­
chondrial DNA (mtDNA), and through the inflammas­
ome, as induced by mtDNA and reactive oxygen species  
(ROS) (Fig. 1).

cGAS–STING1 signalling. cGAS is a nuclear and cyto­
solic protein that responds to cytosolic double-​stranded 
DNA (dsDNA) molecules by catalysing the formation of 
cyclic GMP–AMP (cGAMP), a second messenger that 
initiates an inflammatory response via STING1 (ref.25) 
(Box 2). Although initial studies focused on exogenous26 
and nuclear27 dsDNA species as key cGAS activators, 
it rapidly became clear that mtDNA gaining access to 
the cytosol as a consequence of MOMP (Box 1) or other 
forms of mitochondrial dysfunction can also promote 
cGAS signalling, although this is tightly inhibited by 
apoptotic caspases28–30 (see later). Subsequent studies 
showed that whereas mtDNA, naked dsDNA and dsDNA 
bound to proteins that introduce a specific curvature 
(such as TFAM, a mitochondrial transcription factor, 
and high mobility group box 1 (HMGB1), a nuclear non-​
histone DNA-​binding protein) potently activate cGAS, 

Box 1 | Regulation of cell death by mitochondria

Mitochondrial outer membrane permeabilization (MOMP), as initiated by the proapop-
totic pore-​forming proteins BCL-2-​associated X, apoptosis regulator (BAX) and BCL-2 
antagonist/killer 1 (BAK1), is a key step in at least two types of caspase-​dependent  
regulated cell death: intrinsic apoptosis, and extrinsic apoptosis in type II cells (such as 
hepatocytes)19. Irrespective of whether the lethal stimulus originates from the intracellu-
lar microenvironment or the extracellular microenvironment, MOMP enables the trans
location of cytochrome c from the mitochondrial intermembrane space to the cytosol. 
This results in the assembly of an apoptotic peptidase-​activating factor 1 (APAF1)- and 
caspase 9 (CASP9)-​containing supramolecular complex that is commonly known as the 
apoptosome and elicits activation of the ‘executioner’ caspase CASP3 as one of the final 
steps in the apoptotic cascade45. In physiological conditions, MOMP is actively prevented 
by anti-​apoptotic members of the BCL-2 protein family, including BCL-2 itself as well as 
BCL-2-​like protein 1 (BCL-2L1; best known as BCL-​XL) and MCL1. However, in the pres-
ence of an apoptotic stimulus, the transcriptional or post-​translational activation of 
BH3-​only proteins, such as BH3-​interacting domain death agonist (BID) or BCL-2-​binding 
component 3 (BBC3; best known as PUMA), culminates in the activation of proapoptotic 
members of the BCL-2 family, such as BAX and BAK1, which oligomerize into the outer 
mitochondrial membrane to precipitate MOMP. Of note, BAX and BAK1 activation by 
BH3-​only proteins can result from a direct molecular interaction as well as from the dis-
placement of BAX or BAK1 from inhibitory interactions with BCL-2, BCL-​XL or MCL1 
(ref.45) (see the figure, panel a). Canonical inducers of MOMP as part of intrinsic apopto-
sis include DNA-​damaging agents, endoplasmic reticulum stressors and microtubular 
poisons45.

Mitochondria also regulate a necrotic variant of regulated cell death that is commonly 
known as mitochondrial permeability transition (MPT)-​driven necrosis19. In this case, 
mitochondrial permeabilization is initiated at the inner mitochondrial membrane by the 
opening of a hitherto poorly defined supramolecular pore known as the permeability 
transition pore complex (PTPC) that is positively regulated by peptidylprolyl isomerase F 
(PPIF)56. In contrast to MOMP-​driven apoptosis, MPT-​driven necrosis does not mech
anistically depend on caspase activation (which can nonetheless occur as a bystander  
phenomenon), but rather involves rapid ATP depletion and oxidative damage to 
macromolecules56 (see the figure, panel b). Oxidative stress and calcium overload are 
common triggers of MPT-​driven necrosis56.

BH3-only protein

MitochondrionBAX

BAK1

BCL-2

a

b

Steady state MOMP

Steady state MPT

BAX–BAK1
pore

Matrix

Apoptosis

Regulated necrosis

Outer 
mitochondrial 
membrane

Inner
mitochondrial 
membrane

Closed PTPC
Open PTPC

PPIF

Cytochrome c 

Dysregulated ion 
and water influx

www.nature.com/nri

R e v i e w s

160 | March 2023 | volume 23	



0123456789();: 

histone-​bound nuclear dsDNA (in other words, chro­
matin) is a poor cGAS activator and inhibits cGAS sig­
nalling driven by naked dsDNA31,32. At least in part, this 
reflects the strong physical interactions between cGAS 
and histones, which result in structural reconfigurations 
that conceal the cGAS DNA-​binding site, prevent cGAS 
dimerization and favour cGAS inactivation by mitotic 
kinases33–35. Taken together, these observations deline­
ate a system that prevents unwarranted cGAS activation 
in physiological settings (for example, during mitosis 
when chromatin becomes exposed to cytosolic cGAS, 
or during programmed cell death, which often involves 
widespread and irreversible MOMP but is accompa­
nied by robust caspase activation)35,36, but preserves the 
ability to initiate inflammatory responses in situations 
of danger. This is particularly (but not exclusively) true 
for pathogen infection, because multiple intracellular 
pathogens, including Mycobacterium tuberculosis, type 1  
herpes simplex virus (HSV-1), dengue virus, influenza 
virus, encephalomyocarditis virus and severe acute res­
piratory syndrome coronavirus 2 drive mitochondrial 
dysfunction and/or MOMP, culminating in mtDNA 
release30,37–41. Furthermore, the apoptotic caspases that 
would otherwise inhibit cGAS signalling after MOMP 
are often disabled by proteins encoded by intracellular 
pathogens as a strategy to extend the lifespan of host cells 
during infection42.

Release of mtDNA in the course of MOMP generally 
involves the proapoptotic pore-​forming proteins BCL-2-​ 
associated X, apoptosis regulator (BAX) and BCL-2 
antagonist/killer 1 (BAK1)43,44 (Box 1). Mechanistically, 
MOMP as initiated by BAX and BAK1 rapidly impairs 
mitochondrial respiration owing to the loss of soluble 
components of the electron transport chain, such as 
cytochrome c, hence compromising the ability of mito­
chondria to preserve metabolic homeostasis and ionic 
equilibrium across the IMM45. In this setting, BAX–
BAK1 pores in the OMM enable the extrusion of the 
IMM into the cytosol (driven by increasing osmotic 
pressure in the mitochondrial matrix), culminating in 
IMM breakdown and mtDNA spillage43,44. Intriguingly, it 
seems that a large fraction of mtDNA exiting mitochon­
dria does not diffuse freely in the cytosol but instead 
remains associated with the permeabilized organelles43 
(which explains, at least in part, the ability of mitophagy 
to inhibit cGAS signalling driven by MOMP)46,47  
(see later). Recent data indicate that the relative levels of  
BAX and BAK1 have a key role in determining the 
speed of mtDNA release in the course of MOMP, largely 
reflecting structural and kinetic aspects of pore assembly 
by either of these proteins in the absence of its counter­
part, with BAK1 accelerating and BAX decelerating 
the response in the context of negligible effects on the 
release of proapoptotic factors normally confined within 
the intermembrane space, such as diablo IAP-​binding  
mitochondrial protein (DIABLO; best known as SMAC)48.

Of note, although MOMP was initially conceived as 
an ‘all-​or-​nothing’ phenomenon that would necessar­
ily result in cell death45, sublethal instances of MOMP 
that affect only a fraction of the mitochondrial pool 
and do not engage RCD — known as ‘minority MOMP’ 
— have been described in various physiological and 

pathological settings49,50. In the context of sublethal 
stress conditions, minority MOMP, which is actively 
prevented by mitochondrial fusion as a consequence 
of BCL-2 redistribution51, not only enables inflamma­
tory reactions driven by mtDAMPs52,53 but also favours 
DNA damage upon activation of DNA fragmentation 
factor subunit-​β (DFFB)49, which can further activate 
inflammatory pathways.

Intriguingly, various examples of BAX-​independent 
and BAK1-​independent mtDNA release have recently 
been described. For example, proteolytically activated 
BH3-​interacting domain death agonist (BID) has 
been shown to function as a bona fide mitochondrial 
pore-​forming protein (rather than as an activator of 
BAX and BAK1) in human cells responding to Shigella 
infection54. Along similar lines, mild mitochondrial 
stress that does not result in MOMP and RCD has been 
associated with mtDNA release via a voltage-​dependent 
anion channel (VDAC)-​dependent mechanism37,55. This 
is particularly intriguing as various isoforms of VDAC 
are involved in the regulation (but are not required for 
the execution) of mitochondrial permeability transition 
(MPT)-​driven regulated necrosis56 (Box 1), suggesting 
that MPT may also drive mtDNA leakage. In line with 
this possibility, pharmacological inhibitors of the per­
meability transition pore complex, which is commonly 
viewed as the core mediator of MPT, have been shown 
to limit cytosolic mtDNA accumulation and expression 
of interferon-​stimulated genes55,57. Moreover, mutant 
TAR DNA-​binding protein (TARDBP) has been 
reported to accumulate at mitochondria and initiate 
an MPT-​like response that involves VDAC oligomeri­
zation and culminates in cGAS activation in models of 
amyotrophic lateral sclerosis58. As MPT generally does 
not cause robust caspase activation (see later), it would 
be tempting to suggest that mtDNA release by MPT 
leads to greater cGAS activation than mtDNA release 
by MOMP. However, the permeability transition pore 
complex forms pores of 1.5–3-​nm diameter59, whereas 
dsDNA requires pores with a diameter of 3 nm or greater 
to diffuse60. Moreover, MPT seems to proceed efficiently 
with only one to nine open permeability transition pore 
complexes per mitochondrion, which is less than the 
number of BAX–BAK1 oligomers believed to under­
lie MOMP (more than 20)48,61. That said, both MPT and 
MOMP can ultimately result in the complete breakdown  
of mitochondrial membranes to enable mtDNA release. 
Molecular studies elucidating the possibility that MPT 
may be superior to MOMP at enabling cGAS activation 
by cytosolic mtDNA are urgently awaited.

In summary, despite several unknowns, an abun­
dant literature shows the ability of mtDNA to drive 
potent inflammatory responses upon engagement of 
cGAS and STING1, especially in conditions of limi­
ted apoptotic caspase activation (for example, upon 
MPT, or upon MOMP in the presence of viral caspase  
inhibitors)42 (Fig. 1).

Inflammasome signalling. In addition to being a potent 
cGAS agonist, cytosolic mtDNA can also drive the 
activation of inflammasomes, which are supramole­
cular platforms for the activation of caspase 1 (CASP1), 
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in osmotic swelling of the 
mitochondrial matrix and, 
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CASP4 and CASP5 (as well as CASP11, the mouse 
homologue of human CASP4 and CASP5)62. Initial 
work on inflammasomes, specifically the inflammasome 
that contains NLR family pyrin domain-​containing 3  
(NLRP3) as a sensing component, revealed that vari­
ous microorganism-​associated molecular patterns 
elicit robust CASP1 activation and consequent pro­
teolytic maturation of IL-1β and IL-18 (refs.63,64). 
Subsequent work identified oxidized mtDNA released 
into the cytosol upon mitochondrial dysfunction 
as a potent NLRP3 inflammasome activator65 and 
also delineated a feedforward loop through which 

inflammasome activation facilitates mtDNA release via a 
ROS-​dependent mechanism that connects downstream 
NLRP3 activation to increased upstream MPT66,67. In 
line with the observation that a significant fraction of 
mtDNA accessing the cytosol remains associated with 
permeabilized mitochondria43, both NLRP3 and the 
inflammasome adaptor PYD and CARD domain con­
taining (PYCARD; best known as ASC) relocalize to the 
mitochondria-​associated endoplasmic reticulum upon 
MOMP, via a process that depends on mitochondrial 
ROS68. Moreover, optimal NLRP3 inflammasome sig­
nalling seems to involve a physical interaction between 
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NLRP3 and thioredoxin-​interacting protein (TXNIP), 
a nuclear protein that relocalizes to mitochondria dur­
ing oxidative stress69,70, as well as cardiolipin, an IMM-​
restricted tetraacylated phospholipid71. Taken together, 
these observations delineate a close association between 
mitochondrial dysfunction and NLRP3 inflammasome 
activation.

Interestingly, although various ROS-​dependent 
mechanisms have been invoked to sustain NLRP3 
inflammasome signalling downstream of mitochon­
drial dysfunction72, ROS inhibitors seem to disrupt 
inflammasome priming (the synthesis of inflammas­
ome components), but not activation (the acquisition 
of proteolytic activity)73. In line with this notion, recent 
data suggest that oxidative phosphorylation is involved 
in NLRP3 signalling driven by acute exposure to bac­
terial lipopolysaccharide (LPS) plus ATP74 through 
a ROS-​independent mechanism linked to preserved 
intracellular ATP availability via phosphocreatine75, 
although ROS seem to be necessary for long-​term 
inflammasome activation upon prolonged exposure to 
β-​amyloid. Moreover, conventional inflammasome acti­
vators such as LPS plus ATP seem to (elicit and) require 
mtDNA neosynthesis for optimal NLRP3 inflammas­
ome signalling76. Indeed, NLRP3 inflammasome acti­
vation by LPS can be impaired not only by mtDNA 
depletion66,77 but also by the deletion of Tfam76, which is 
required for mtDNA replication and maintenance78, the 
deletion of Cmpk2 (ref.76), which encodes a rate-​limiting 

enzyme that supplies deoxyribonucleotides for mtDNA 
synthesis79, or the inhibition of mtDNA synthesis with 
the antidiabetic agent metformin80. That said, experi­
mental strategies that deplete mtDNA also impair oxi­
dative phosphorylation as they limit the abundance of 
specific subunits of the electron transport chain, sug­
gesting that — at least in some settings — inhibition of 
NLRP3 signalling downstream of mtDNA depletion 
may result from, or at least be aggravated by, intracel­
lular ATP shortage. These observations suggest that the 
relative importance of cGAS signalling versus NLRP3 
signalling induced by cytosolic mtDNA may be largely 
influenced by cellular bioenergetics.

Of note, NLRP3 inflammasome activation by LPS 
plus ATP was initially proposed to occur independently 
of BAX and BAK1, the key MPT regulator peptidyl­
prolyl isomerase F (PPIF), mitochondrial antiviral 
signalling protein (MAVS; a signal transducer in the 
molecular cascade detecting foreign, altered or ectopic 
RNA) and the mitophagy protein parkin RBR E3  
ubiquitin protein ligase (PRKN)81. Rather, this was 
shown to involve CASP8 and components of the necro­
ptotic machinery, notably receptor-​interacting serine/ 
threonine kinase 3 (RIPK3)81. More recently, BAX acti­
vation and BAK1 activation have been shown to promote  
CASP8-​dependent NLRP3 inflammasome activation 
as a consequence of inhibitor of apoptosis protein (IAP) 
degradation, and to elicit an NLRP3-​independent 
pathway culminating in IL-1β maturation82,83, most 
likely upon activation of a supramolecular complex 
commonly referred to as the ripoptosome83. The rea­
sons underlying these apparently discrepant findings 
as to the roles of BAX, BAK1 and MOMP in conven­
tional inflammasome activation remain to be fully 
elucidated. At least potentially, BAX-​independent and 
BAK1-​independent inflammasome activation may 
involve some degree of gasdermin cleavage (which can 
be catalysed by inflammasome-​activated CASP1 as well 
as by MOMP-​driven CASP3 activation)84, as both gas­
dermin D (GSDMD) and GSDME have been shown to 
permeabilize mitochondria and favour mtDNA release 
coupled to ROS production85,86. As an alternative, the 
MPT has been implicated in at least some instances of 
NLRP3 inflammasome signalling in a recent preprint 
(not peer reviewed)87.

mtDNA also activates inflammasomes that use absent 
in melanoma 2 (AIM2) as a sensing component88, which 
overall resemble their NLRP3-​containing counterparts in 
terms of their capacity to elicit CASP1-​dependent IL-1β  
and IL-18 maturation in response to cytosolic dsDNA of 
various origins89, including both foreign dsDNA90 and 
endogenous dsDNA91. Interestingly, whereas NLRP3 
inflammasomes seem to preferentially respond to oxi­
dized DNA65, their AIM2-​containing counterparts have 
been suggested to preferentially recognize non-​oxidized 
DNA76. That said, both Francisella tularensis infection 
and non-​alcoholic fatty liver disease drive mitochondrial 
damage coupled to AIM2 inflammasome activation 
upon mitochondrial ROS generation and cytosolic accu­
mulation of oxidized mtDNA92,93. Along similar lines, 
Pseudomonas aeruginosa infection triggers the activation 
of NLR family CARD domain-​containing 4 (NLRC4) 

Inhibitor of apoptosis 
protein
(IAP). A member of a protein 
family that inhibits apoptosis 
by antagonizing the catalytic 
activity of caspases and 
functioning as a ubiquitin ligase 
to control upstream apoptotic 
signal transduction.

Ripoptosome
A supramolecular complex 
containing receptor-​interacting 
serine/threonine kinase 1 
(RIPK1) and RIPK3 that 
promotes cell death coupled  
to inflammatory responses  
in various stress conditions  
(for example, exposure to 
genotoxins and allergens).

Fig. 1 | Main mechanisms of mitochondrial DAMP signalling. Various mitochondrial 
components and products that are released as a consequence of mitochondrial dysfunc-
tion (and potentially cell death) drive inflammatory responses upon accumulation in the 
cytosol or the extracellular environment. Mitochondrial DNA (mtDNA), which can exit 
mitochondria via BCL-2-​associated X, apoptosis regulator (BAX) and BCL-2 antagonist/
killer 1 (BAK1) pores or via the permeability transition pore complex (PTPC), is a potent 
activator of cyclic GMP–AMP synthase (cGAS), resulting in stimulator of interferon 
response cGAMP interactor 1 (STING1) signalling and consequent synthesis of cytokines 
such as interferon-​β1 (IFNβ1), IL-6 and tumour necrosis factor (TNF). Cytosolic mitochon-
drial RNA (mtRNA) has similar effects, although they depend on retinoic acid-​inducible 
gene I protein (RIG-​I), melanoma differentiation-​associated protein 5 (MDA5) and mito-
chondrial antiviral signalling protein (MAVS). This pathway is promoted by the BAX–
BAK1-​dependent release of Era-​like 12S mitochondrial rRNA chaperone 1 (ERAL1), 
which favours MAVS stabilization at the mitochondrial surface. Moreover, upon release 
from dysfunctional mitochondria, both mtDNA and reactive oxygen species (ROS) can 
drive IL-1β and IL-18 secretion as a consequence of inflammasome signalling. Electron 
transport chain (ETC) functions also seem to affect inflammasome activation inde-
pendently of ROS as they preserve intracellular ATP availability through phosphocreatine 
(PCr). ATP can be released by dying cells through lysosomal secretion and pannexin 1 
(PANX1) channels, mediating both chemotactic and immunostimulatory effects on 
antigen-​presenting cells (APCs) by binding to the purinergic receptors P2RX7 and 
P2RY2. Upon BAX–BAK1 oligomerization during apoptosis, diablo IAP-​binding mito-
chondrial protein (DIABLO; best known as SMAC) release not only favours caspase acti-
vation (not shown) but also rewires NF-​κB signalling from canonical to non-​canonical 
programmes. Along similar lines, mtDNA (be it naked or complexed with the mitochon-
drial transcription factor TFAM) and N-​formyl peptides (other mitochondrial compo-
nents), which accumulate in the extracellular milieu upon regulated cell death, cause 
neutrophil activation via Toll-​like receptor 9 (TLR9) or advanced glycosylation end 
product-​specific receptor (AGER) and formyl peptide receptor 1 (FPR1), respectively. 
Finally, extracellular cardiolipin (which is normally restricted to the inner mitochondrial 
membrane) can be presented by dendritic cells (DCs) on the MHC class I-​like molecule 
CD1d, resulting in the activation of γδ T cells. DAMP, damage-​associated molecular  
pattern; ER, endoplasmic reticulum; IKK, IκB kinase; IRF, interferon regulatory factor;  
NIK (official name MAP3K14), mitogen-​activated protein kinase kinase kinase 14;  
TBK1, TANK-​binding kinase 1; TCR, T cell receptor.
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inflammasomes via a process that involves ROS gene­
ration and oxidized mtDNA release by mitochondria94. 
Taken together, these observations highlight the impor­
tance of oxidation for robust inflammasome signalling 
elicited by mtDNA.

In summary, mtDNA and mitochondrial ROS func­
tion as major DAMPs for inflammasome activation at 
the core of a complex pathway that intersects at multiple 
nodes with the molecular machinery for regulation of 
RCD (Fig. 1).

Other inflammatory pathways. mtDNA and other 
mitochondrial components can also elicit inflamma­
tory reactions via various PRRs distinct from cGAS and 
inflammasomes95.

Naked as well as protein-​bound mtDNA molecules 
are potent activators of Toll-​like receptor 9 (TLR9) and 
advanced glycosylation end product-​specific receptor 
(AGER; also known as RAGE)96,97, two PRRs that are 
abundantly expressed in the endosomal compartment 
of myeloid cells (notably neutrophils)13. Naked mtDNA 
largely functions as a TLR9 agonist96, reflecting the 
limited methylation of CpG islands found in the mito­
chondrial genome98 and hence its considerable similar­
ity to bacterial DNA (the prototypical TLR9 activator)99. 
Conversely, mtDNA complexed with TFAM or HMGB1, 
which relocalizes from the nucleus to the cytosol in the 
course of various stress responses (including inflammas­
ome activation)100, has immunostimulatory effects upon 
binding to TLR9 or AGER97,101. Recombinant TFAM has 
also been shown to drive cytokine secretion by cultured 
human monocytes and primary microglial cells102, but 
the underlying mechanisms and pathophysiological  
relevance of this process remain to be clarified.

Importantly, activation of these inflammatory path­
ways most often requires mtDNA (be it naked or protein 
bound) to be released into the extracellular micro­
environment as a consequence of RCD, where mtDNA 
functions as an autocrine, paracrine or endocrine 

immunostimulatory cue12. However, cells with increased 
vesicular trafficking (such as plasmacytoid dendritic 
cells) have been shown to engage endosomal TLR9 sig­
nalling upon mild mitochondrial dysfunction as a con­
sequence of cytosolic mtDNA accumulation coupled 
to autophagic uptake and endosomal shuttling101,103,104. 
Along similar lines, signalling through glutamate recep­
tors as a consequence of metabolic changes culminating 
in extracellular glutamate accumulation has recently 
been shown to promote the release of mtDNA-​loaded 
mitochondria-​derived vesicles (MDVs) by breast can­
cer cells independently of RCD. This is a PTEN-​induced 
putative kinase 1 (PINK1)-​dependent process that 
results in autocrine and/or paracrine TLR9 activation105. 
At odds with that study105, PRKN (a PINK1 interactor) 
has been proposed to actively divert mtDAMPs from 
inclusion in MDVs that are secreted as part of mito­
chondrial quality control106,107. The reasons underlying 
this apparent discrepancy remain to be fully elucidated. 
Of note, mtDAMP-​containing MDVs seem to be actively 
produced by monocytes responding to inflammatory 
cues during sepsis, potentially resulting in limited neu­
trophil chemotaxis108. Moreover, although unrelated 
to inflammatory responses, the horizontal transfer of 
mtDNA-​containing MDVs from live cancer-​associated 
fibroblasts to tumour cells has been observed in vari­
ous models of hormone-​resistant breast cancer109. These 
studies exemplify settings in which mtDNA can be 
released (and potentially function as a DAMP) by cells 
that are not succumbing to RCD.

Another inflammatory pathway that can be stimu­
lated by mitochondria involves the PRRs that respond to 
foreign, altered or ectopic RNA — known as RIG-​I-​like 
receptors (RLRs)110. In this setting, mitochondria can 
not only function as a source of RLR-​activating RNA 
species as a consequence of mitochondrial dysfunction 
and MOMP53,111 but can also provide a cellular scaffold 
for optimal RLR signalling by hosting the key signal 
transducer MAVS on the OMM112. Specifically, mito­
chondria have been shown to release mitochondrial 
RNA (mtRNA) species that activate the RLR mela­
noma differentiation-​associated protein 5 (MDA5; also 
known as IFIH1) upon depletion of polyribonucleotide 
nucleotidyltransferase 1 (PNPT1; a key component of 
the supramolecular complex responsible for mtRNA 
degradation), via a mechanism that involves BAX–
BAK1-​driven MOMP111. Moreover, mtDNA breaks 
have been reported to drive the BAX–BAK1-​dependent 
release of mtRNA into the cytosol, which activates 
retinoic acid-​inducible gene I (RIG-​I; also known as 
DDX58) but not MDA5 (ref.53). Why some mtRNA spe­
cies preferentially activate MDA5 versus RIG-​I remains 
to be elucidated. At least potentially, this may reflect 
cell type-​specific differences in the expression of spe­
cific PRRs or signal transducers thereof, as suggested by 
recent work on PNPT1 silencing in human pancreatic 
β-​cells113. Finally, release of the mitochondrial matrix 
protein Era-​like 12S mitochondrial rRNA chaperone 1  
(ERAL1) via BAX–BAK1 pores formed in response  
to viral infection has recently been shown to sustain 
antiviral responses by promoting MAVS polymerization  
at the OMM, which is crucial for optimal inflammatory 

Box 2 | Principles of cGAS–STING1 signalling

In the presence of double-​stranded DNA (dsDNA) species, including (but not limited to) 
mitochondrial DNA (mtDNA), cyclic GMP–AMP synthase (cGAS) dimers catalyse syn-
thesis of the second messenger cyclic GMP–AMP (cGAMP). cGAMP, as well as other 
cyclic dinucleotides of microbial origin (for example, cyclic-​di-​AMP and cyclic-​di-​GMP), 
promotes the dimerization and consequent activation of stimulator of interferon 
response cGAMP interactor 1 (STING1) at the interface between the endoplasmic  
reticulum and the endoplasmic reticulum–Golgi intermediate compartment (ERGIC). 
STING1 activation culminates in the recruitment of (at least) three different compo-
nents with kinase activity: TANK-​binding kinase 1 (TBK1), mitogen-​activated protein 
kinase kinase kinase 14 (MAP3K14; best known as NIK) and the heterotrimeric IκB kinase 
(IKK) complex25,211. The recruitment of TBK1, NIK and IKK at the ER–ERGIC surface 
transduces STING1 activation to different transcriptional modules via dedicated tran-
scription factors. Specifically, whereas TBK1 catalyses mainly the activating phospho-
rylation of interferon regulatory factor 3 (IRF3), NIK and IKK promote non-​canonical  
NF-​κB signalling and canonical NF-​κB signalling, respectively25,211. IRF3 activation by 
STING1 generally results in potent type I interferon responses that are associated with 
antiviral and anticancer effects46, whereas the net outcome of NF-​κB signalling elicited 
by cGAS differs depending on setting, ranging from immunostimulation coupled to effi-
cient cancer immunosurveillance (as in the case of canonical NF-​κB responses elicited 
in the course of immunogenic cell death)212 to indolent inflammation favouring meta-
static cancer dissemination (as in the case of non-​canonical NF-​κB responses driven by 
genomic instability)213,214.

Non-​canonical NF-​κB 
signalling
A transcriptional response 
generally initiated by the 
NIK-​driven activation of NF-​κB 
heterodimers composed  
of RELB and p52.

Canonical NF-​κB signalling
A transcriptional response 
generally initiated by the 
TAK1-​driven activation of 
NF-​κB heterodimers composed 
of RELA and p50.
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responses driven by RLR-​activating viral RNA114. 
Intriguingly, MAVS resembles many other PRRs in 
their ability to control both cellular fate and inflamma­
tory responses115. Thus, MAVS can promote RCD as part 
of its cell-​intrinsic homeostatic function, but this is also 
connected to immune signalling via TANK-​binding 
kinase 1 (TBK1), IκB kinase (IKK) and NLRP3 inflam­
masome activation116. These observations are in line with 
an abundant literature demonstrating that the molecular 
regulation of RCD may have evolved to control the kinet­
ics and immunological manifestations of the process 
rather than the occurrence of cell death itself23,117,118.

At least four other mitochondrial components, 
namely SMAC, N-​formyl peptides, cardiolipin and 
cytochrome c, have been shown to promote inflamma­
tory responses. SMAC release downstream of MOMP is 
transduced in both proapoptotic and pro-​inflammatory 
signalling pathways via members of the IAP family119. 
In addition to unleashing caspase activity, inhibition 
of IAPs by cytosolic SMAC (as well as by pharmaco­
logical agents commonly known as SMAC mimetics)  
shifts NF-​κB signalling from the canonical to the non- 
canonical pathways upon stabilization of mitogen- 
activated protein kinase kinase kinase 14 (MAP3K14; 
best known as NIK)120,121, a process that is orchestrated 
by BAX–BAK1 oligomers122. Accordingly, loss of the 
IAP-​encoding genes Birc2 and Birc3 in adult mice causes 
aberrant cell death and inflammation, which are fully res­
cued by Casp8 deletion plus pharmacological inhibition 
of NIK123. Moreover, SMAC mimetics have been shown 
to mediate anticancer effects that at least in some models 
involve the activation of antitumour immune responses 
upon macrophage repolarization124. Intriguingly, SMAC 
mimetics can also have direct immunomodulatory effects 
on T cells, for example by reprogramming CD4+ T cell 
differentiation from a T helper 17 (TH17)-​type pheno­
type to a TH2-​type phenotype125. Thus, whereas cytosolic 
mtDNA or mtRNA generally elicits a multipronged 
TBK1-​dependent inflammatory response, SMAC-​driven 
inflammation seems to involve mainly altered NF-​κB 
signalling.

N-​formyl peptides and cardiolipin normally reside 
in the mitochondrial matrix and IMM, respectively, but 
the structural disruption that accompanies late-​stage 
RCD generates cellular fragments containing mitochon­
drial remnants that — unless taken up by professional 
phagocytes126 — continue to degrade in the extracellu­
lar microenvironment. Extracellular N-​formyl peptides 
function as potent neutrophil activators upon bind­
ing to formyl peptide receptor 1 (ref.96). Extracellular 
cardiolipin not only promotes overexpression of the 
non-​polymorphic MHC class I-​like molecule CD1d on 
antigen-​presenting cells (APCs)127 but also can be found 
associated with CD1d on the APC surface, resulting in 
activation of a cardiolipin-​specific population of T cells 
expressing the unconventional γδ T cell receptor128. 
Whether cardiolipin is loaded on CD1d directly at the 
APC surface or intracellularly remains to be clarified. 
Extracellular cytochrome c has been proposed to have 
TLR4-​dependent immunostimulatory effects in cul­
tured cell models of human microglia129, but whether 
this pathway is activated as a response to RCD in vivo 

has not been specifically addressed. Along similar lines, 
the intra-​articular injection of recombinant cytochrome 
c has been suggested to promote arthritis in mice via a 
mechanism that involves neutrophils and monocytes130, 
but whether cytochrome c accumulating in the synovial 
microenvironment downstream of RCD in vivo aetio­
logically contributes to arthritis remains to be formally 
demonstrated.

Finally, although ATP and haem are not mitochon­
drial components in the strictest sense, they are 
produced by mitochondria and mediate robust immuno­
modulatory effects upon release into the extracellular 
microenvironment131,132. Specifically, ATP released  
by cancer cells undergoing immunogenic cell death12, 
via a mechanism that involves lysosomal secretion 
and pannexin 1 channels133, has been shown to recruit 
APC precursors to the tumour microenvironment134 
through a P2RY2-​dependent mechanism14, and to 
stimulate them through P2RX7, culminating in inflam­
masome activation and IL-1β synthesis in support 
of immunosurveillance15. Extracellular haem, which 
functions as a mixed TLR4 and AGER agonist135,136, 
has been associated with multiple immunomodula­
tory effects, including endothelial cell and microglial 
activation135,137, as well as IL-1β release by macrophages 
downstream of NLRP3-​dependent CASP1 activation 
plus NLRP3-​independent CASP4 and CASP5 activa­
tion coupled to RCD132. The mechanistic involvement 
of TLR4 or AGER in this latter pathway has not been 
clarified.

In summary, numerous mitochondrial components 
and products can promote inflammation through var­
ious mechanisms (Fig. 1). Whether such a preferential 
position in the control of inflammatory reactions reflects 
the evolutionary origin of mitochondria remains to be 
formally established. Irrespective of this possibility, 
eukaryotic cells have evolved a wide range of mecha­
nisms to control inflammatory responses elicited by 
mitochondria, as discussed next.

Regulation of mtDAMP signalling
As MOMP participates in multiple physiological pro­
cesses, including cellular differentiation, embryonic 
and postembryonic development, and the mainte­
nance of adult tissue homeostasis36,50 (Box 3), numer­
ous safeguards have evolved to prevent unwarranted 
mitochondria-​driven inflammation (Fig. 2). Here we 
describe the mechanisms through which apoptosis and 
autophagy suppress inflammatory responses potentially 
driven by mitochondria in physiological settings.

Apoptosis. In the context of apoptosis, widespread MOMP  
results in the assembly of a cytosolic supramolecular 
CASP9-​containing platform that culminates in the acti­
vation of executioner caspases such as CASP3, CASP6 
and CASP719 (Box 1). Although executioner caspases have 
long been considered as the causative factors of apop­
totic RCD, accumulating evidence suggests that they 
might instead have a major role in controlling its kinet­
ics and immunological manifestations23,117,118. In line 
with this notion, pharmacological or genetic inhibition 
of CASP9 or executioner caspases (most often CASP3)  

Immunogenic cell death
A variant of regulated cell 
death that is sufficient,  
in immunocompetent and 
syngeneic settings, to elicit an 
adaptive immune response to 
dead cell-​associated antigens.
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is required for MOMP-​inducing agents, including 
BH3 mimetics and radiotherapy, to drive robust syn­
thesis of interferon-​stimulated genes but does not 
quantitatively affect the cytotoxic response to these 
agents28,29,122,138,139. At least in part, this reflects the abi­
lity of executioner caspases to cleave and hence inac­
tivate not only cGAS but also interferon regulatory 
factor 3 (IRF3), which signals downstream of STING1, 
and MAVS140. Moreover, executioner caspases promote 
the exposure of phosphatidylserine on the surface of 
dying cells141, which rapidly recruits phagocytes for 
the immunologically silent uptake and degradation of 
dying cells142. Finally, even in the absence of a phago­
cytic system, when executioner caspases are inactive, the 
transition between MOMP (when cells retain plasma 
membrane integrity and at least some metabolic func­
tions) and cell death (which is characterized by plasma 
membrane permeabilization and complete metabolic 
shutdown) is delayed, potentially allowing an extended 
temporal window for the synthesis and secretion of  
pro-​inflammatory factors downstream of MOMP143.

Autophagy. Sublethal (or prelethal) MOMP activates 
robust mitophagic responses that dispose of permea­
bilized or otherwise dysfunctional mitochondria via 
lysosomes144,145, which limits the availability of mito­
chondrial components, including mtDNA and ROS, 
for PRR signalling or release into the extracellular 
microenvironment upon RCD146. In line with this, 
pharmacological or genetic strategies for autophagy 
inhibition or impaired lysosomal degradation have 
been consistently associated with increased signalling 
through cGAS46, the inflammasome66 and TLR9 (ref.103) 
as a consequence of increased availability of mtDAMPs 
in the cytosol. Similar results have been obtained with 
experimental approaches for the selective inhibition of 
mitophagy (rather than autophagy in general), includ­
ing deletion of the key mitophagy genes Pink1 and 
Prkn147,148, administration of palmitic acid149 and stim­
ulation with tumour necrosis factor47. Furthermore, 
active inflammasome signalling has been shown to 
engage an NF-​κB-​dependent response that promotes the 

PRKN-​dependent mitophagic clearance of permeabi­
lized mitochondria77 as well as the autophagic clearance 
of inflammasomes themselves150, most likely as part of 
an adaptative pathway aimed at the restoration of cel­
lular and inflammatory homeostasis. A similar mech­
anism is elicited (at least initially) by cGAS signalling, 
which reportedly promotes mitophagy upon activation 
of TBK1 or IKKα downstream of STING1 (refs.151,152). 
PRKN has also been shown to promote the recovery of 
cellular homeostasis in the context of sublethal MOMP 
by catalysing the ubiquitylation-​dependent inactivation 
of BAK1 (ref.144). Conversely, mitophagy inactivation 
has been shown to accompany full-​blown inflammatory 
responses driven by unrecoverable mitochondrial dys­
function, at least in part reflecting the CASP1-​dependent 
cleavage of PRKN elicited by robust inflammasome 
activity153. Of note, PRKN-​dependent mitophagy may 
also prevent the packaging of mtDAMPs into MDVs that 
are secreted as part of mitochondrial quality control107, 
which would otherwise drive inflammatory reactions 
in neighbouring cells106. Taken together, these obser­
vations delineate a refined system whereby autophagy 
(in particular, mitophagy) prevents the initiation and 
favours the inhibition of inflammatory responses driven 
by mitochondria, which require mitophagy inhibition 
(potentially involving CASP1-​dependent PRKN degra­
dation plus a feedforward loop linking robust inflam­
masome activation back to aggravated mitochondrial 
dysfunction)66,153 to proceed unrestricted (Fig. 3). By 
contrast, general autophagy is required for optimal ATP 
secretion (and consequent immunostimulation) in the 
course of immunogenic cell death, largely reflecting  
the ability of proficient autophagic responses to preserve 
intracellular ATP levels (rather than a direct effect of 
autophagy on mitochondria)154.

Although these are not the only mechanisms through 
which eukaryotic cells fine-​tune inflammatory reac­
tions elicited by mitochondria (for example, cGAS and 
inflammasomes seem to inhibit each other, at least in 
some settings)155,156, apoptosis and autophagy exemplify 
molecular systems that have enabled the preservation 
of otherwise potentially detrimental inflammatory cues 
throughout the co-​evolution of mitochondria and their 
host cells.

mtDAMP signalling in disease
Dysregulated mtDAMP signalling can be pathogenic 
and actively contribute to the aetiology of human dis­
ease in two opposing ways (Supplementary Table 1): 
inflammatory reactions driven by mtDAMPs may 
become disproportionate, thus fostering disorders with 
an (obvious or less obvious) inflammatory component; 
or such inflammatory reactions may be highly ineffi­
cient, ultimately enabling the emergence or persistence 
of infectious or neoplastic conditions.

Overactive mtDAMP signalling. Human disorders 
with an overtly inflammatory component that is mech­
anistically promoted by dysfunctional mitochondria 
include systemic lupus erythematosus (SLE), Crohn’s 
disease and multiple pulmonary and renal conditions1,4. 
Patients with SLE have increased circulating amounts 

Box 3 | Physiological functions of MOMP

Mitochondrial outer membrane permeabilization (MOMP) has purely physiological 
functions in addition to its role in the death of eukaryotic cells experiencing perturba-
tions of homeostasis that exceed their adaptative capacity20. On the one hand, suble-
thal MOMP affecting a minority of mitochondria, often at very specific subcellular sites, 
has been shown to enable the spatially localized, temporally restricted non-​apoptotic 
activation of executioner caspases such as caspase 3 (CASP3), which is involved in the 
differentiation and functional maturation of multiple cell types, including neurons, 
platelets, erythrocytes and monocytes50. Along similar lines, the CASP3-​dependent 
cleavage of specific substrates downstream of sublethal MOMP has been shown to con-
trol physiological B cell proliferation50. On the other hand, widespread MOMP resulting 
in robust and persistent CASP3 activation is responsible for various instances of pro-
grammed cell death, a purely physiological programme that ensures the timely removal 
of cells as part of early embryonic or postembryonic development and the preservation of 
adult tissue homeostasis36. The fact that several billion cells undergo programmed cell 
death every day in an adult human as part of homeostatic processes highlights the cru-
cial role of CASP3 activation in inhibiting detrimental inflammatory responses that 
would otherwise be induced by the relocalization of mitochondrial damage-​associated 
molecular patterns as elicited by MOMP23.

BH3 mimetics
Pharmacological agents that 
mimic the ability of natural 
BH3-​only proteins to directly 
or indirectly promote 
mitochondrial outer membrane 
permeabilization.
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of oxidized mtDNA as a consequence of platelet 
degranulation157 and impaired mitophagic responses 
to mitochondrial dysfunction in neutrophils (as well as 
autoantibodies to oxidized mtDNA), which culminate 
in pathogenic type I interferon responses158. Moreover, 
SLE is accompanied by defects in erythroid matu­
ration that prevent the autophagic removal of mito­
chondria, which is a feature of normal mammalian 
erythropoiesis159. Therefore, mitochondria-​containing 
erythrocytes are no longer recycled in an immunologi­
cally silent manner by the reticuloendothelial system, 
but instead promote potent cGAS activation and conse­
quent type I interferon release159. In line with these find­
ings, pharmacological inhibition of VDAC-​dependent 
mtDNA release ameliorates lupus-​like inflammation 
and symptoms in mice55. Finally, oxidized mtDNA is 

abundant within neutrophil extracellular traps, which also 
contribute to the aetiology of SLE via type I interferon 
production160.

Mutations in the autophagy-​related 16-​like 1 
(ATG16L1) gene, which encodes a key component of  
the autophagy machinery22, are associated with an 
increased risk of Crohn’s disease161, correlating with the 
role of ATG16L1 in restricting accumulation of dys­
functional mitochondria and consequent inflammation  
in Paneth cells162. Paneth cells are functionally impaired in  
the ileal tissue of patients with Crohn’s disease163,  
a phenotype that can be recapitulated in mice by impair­
ing mitochondrial homeostasis by deletion of the gene  
encoding the mitochondrial chaperone heat shock  
protein 1 (Hspd1)163 or of the gene encoding the mitophagy  
mediator prohibitin 1 (Phb1)164.
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Fig. 2 | Roles of apoptosis and autophagy in the inhibition of inflammatory 
responses elicited by mitochondria. Intrinsic apoptosis proceeds with  
the formation of BCL-2-​associated X, apoptosis regulator (BAX) and BCL-2 
antagonist/killer 1 (BAK1) pores at the outer mitochondrial membrane, 
resulting in the cytosolic accumulation of cytochrome c and consequent 
activation of apoptotic caspases. Caspase 9 (CASP9)-​driven CASP3 activation 
inhibits inflammatory responses elicited by dysfunctional mitochondria by 
catalysing the cleavage of cyclic GMP–AMP synthase (cGAS), mitochondrial 
antiviral signalling protein (MAVS) and interferon regulatory factor 3 (IRF3). 
A similar inhibitory effect results from the disposal of dysfunctional 
mitochondria via PTEN-​induced putative kinase 1 (PINK1)- and parkin 
(PRKN)-​dependent mitophagy. This is promoted (at least initially) by the 
capacity of TANK-​binding kinase 1 (TBK1) — which is activated by 
phosphorylation (P) following cGAS-​driven stimulator of interferon 
response cGAMP interactor 1 (STING1) signalling and retinoic acid- 
inducible gene I (RIG-​I)-​driven MAVS signalling downstream of the 
cytosolic accumulation of mitochondrial DNA (mtDNA) or mitochondrial  

RNA (mtRNA) — to phosphorylate optineurin (OPTN) and hence improve 
the ability of OPTN to recruit sequestosome 1 (SQSTM1; best known as p62) 
to ubiquitylated proteins at the outer mitochondrial membrane such as 
mitofusin 2 (MFN2). Engagement of p62 culminates in the recruitment of 
forming autophagosomes via lipidated microtubule-​associated protein 1 
light chain 3 beta (MAP1LC3B; best known as LC3-​II in its lipidated form). Of 
note, PRKN also mediates the ubiquitylation (Ub)-​dependent inactivation 
of BAK1. Moreover, PRKN-​dependent mitophagy seems to prevent 
mitochondrial damage-​associated molecular patterns (mtDAMPs) from 
being incorporated in the mitochondria-​derived vesicles (MDVs) that are 
normally released as part of mitochondrial quality control in a 
PINK1-​dependent manner. The underlying mechanisms, however, remain 
to be fully elucidated. General autophagy can likewise suppress 
inflammatory responses driven by mitochondrial dysfunction, at least in part 
reflecting its ability to degrade NLR family pyrin domain-​containing 3 
(NLRP3) inflammasomes. ATG, autophagy-​related protein; IFNβ1, 
interferon-​β1; ROS, reactive oxygen species; TNF, tumour necrosis factor.

Neutrophil extracellular 
traps
Networks of extracellular  
fibres enriched in DNA and 
proteins that are released  
by neutrophils in response  
to activating stimuli (such as 
pathogens).
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Lung biopsy samples from patients with intersti­
tial lung disease or silicosis have increased STING1  
levels, phosphorylation of its signal transducers TBK1 
and IRF3, and/or higher than normal amounts of 
CXC-​chemokine ligand 10 (CXCL10), which is elicited 
by type I interferon signalling165. Consistently, the spu­
tum of patients with silicosis contains increased amounts 
of CXCL10 and dsDNA, which in mice exposed to 
silica originates from mitochondrial dysfunction165. 
Along similar lines, chronic obstructive pulmonary 
disease in humans has been associated with pulmo­
nary mitochondrial dysfunction coupled to local ROS 
overgeneration166 and increased circulating levels of 
mtDNA and inflammatory cytokines167.

Evidence of STING1 hyperactivation has also been 
detected in the renal tubules of patients with acute kid­
ney injury168. Moreover, CGAS and STING1 upregula­
tion correlates with increased levels of inflammatory 
cytokines and fibrosis in patients with chronic kidney 
disease, who generally have low levels of TFAM expres­
sion (required for mtDNA replication and mainte­
nance) in the kidney169. Optineurin, a component of 
mitophagy signalling, is often downregulated in biopsy 

samples from individuals with diabetic kidney disease170. 
Consistent with a prominent role for mitochondrial 
dysfunction in kidney disease, abrogation of mitophagy 
by Pink1 and Prkn co-​deletion aggravates ischaemic 
acute kidney injury in mice171. Moreover, deletion of 
Tfam in mouse kidney tubule cells favours aberrant 
mtDNA packaging, cytosolic mtDNA accumulation and  
ultimately pathogenic cGAS-​dependent inflammation169.

In addition, it is now clear that various conditions 
originating from non-​inflammatory insults, including  
neurodegenerative diseases as well as hepatic and cardio­
vascular diseases, ultimately involve inflammatory 
processes that in some settings can result from mito­
chondrial dysfunction2,3. For example, missense muta­
tions in PRKN and PINK1 are associated with familial 
Parkinson disease172, correlating with increased circulat­
ing levels of mtDNA and inflammatory cytokines147,173. 
Consistent with this, old Prkn–/– mice develop Parkinson 
disease-​like symptoms together with structural and 
functional abnormalities of mitochondria in the brain174. 
Along similar lines, Alzheimer disease is accompa­
nied by inflammatory responses driven by microglial 
cells that engulf mtDNA released by dying neurons175. 
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of mitochondria are permeabilized, limited signalling via cyclic GMP–AMP synthase (cGAS) and the NLR family pyrin 
domain-​containing 3 (NLRP3) inflammasome promotes mitophagy associated with the recruitment of parkin (PRKN)  
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Moreover, post-​mortem brain samples from patients 
with Alzheimer disease show the accumulation of dam­
aged mitochondria and signs of mitophagy inhibition, 
and experimental activation of mitophagy limits disease 
progression in a mouse model of Alzheimer disease176. 
Of note, defective mitophagy in Alzheimer disease may 
originate from alterations in the lipid profile of micro­
glial cells (notably cholesterol accumulation)177, perhaps 
explaining, at least in part, the strong link between apo­
lipoprotein E mutations and the incidence of Alzheimer 
disease in humans178.

Additional disorders in which mitochondrial dys­
function upstream of inflammation may have an 
aetiological role include cardiac maladaptation upon 
myocardial infarction179, septic shock180, rheumatoid 
arthritis47,130, sickle cell disease137, trauma96, intracere­
bral haemorrhage135, non-​alcoholic fatty liver disease 
and non-​alcoholic steatohepatitis93, liver failure181 and 
obesity182. Discussing each of these conditions in detail is 
beyond the scope of this Review, but these observations 
suggest that various additional disorders with an inflam­
matory component may be linked to mitochondrial 
dysfunction.

Inefficient mtDAMP signalling. The deregulation of 
inflammatory reactions elicited by mitochondrial dys­
function has broad, context-​dependent effects on the 
pathogenesis of viral infections and cancer. Inhibition of 
MOMP or inflammatory responses driven by MOMP52 
— reflecting, for example, the expression of viral pro­
teins that inhibit MOMP, mtDNA, cGAS, STING1 or 
TBK1 (refs.41,183–185) or the hyperactivation of autophagy 
in cancer cells22 — favours viral persistence and tumour 
progression by impairing immunosurveillance.

For example, co-​deletion of BAX and BAK1 from 
human cervical cancer HeLa cells not only promotes 
the growth of the intracellular pathogen Chlamydia 
trachomatis but also suppresses the ability of infected 
cells to secrete pro-​inflammatory cytokines that would 
engage antibacterial immune responses upon sublethal 
MOMP52. HSV-1 encodes a conserved nuclease that 
actively depletes mtDNA during infection184, highlight­
ing a direct mechanism by which this human pathogen 
avoids immune responses elicited by mtDAMPs. A simi­
lar function is mediated by non-​structural protein 1  
(NS1) of influenza virus41. Specifically, NS1 seques­
ters mtDNA molecules that access the cytosol in a 
MAVS-​dependent manner during infection (driven 
by the influenza virus protein M2), thus preventing 
them from activating cGAS41. Accordingly, both Cgas–/– 
mice and Sting1–/– mice (but not Mavs–/– mice) exhibit 
increased viral titres upon influenza virus infection com­
pared with their wild-​type littermates, correlating with 
reduced pulmonary levels of type I interferon41.

Along similar lines, the HSV-1 virulence factor 
ICP27 inhibits STING1 and TBK1 (ref.183), the latter of 
which is required for the control of infection by mice, 
largely reflecting its ability to elicit NF-​κB (rather than 
IRF3) responses186. Moreover, hepatitis B virus X pro­
tein promotes the ubiquitylation-​dependent degra­
dation of cGAS in infected cells185, and defects in the 
cGAS–STING1 pathway have been linked to increased 

sensitivity to hepatitis B virus infection in both human 
and mouse hepatocytes187. In these cases, however, the 
relative contribution of mtDAMP signalling to inflam­
matory reactions that would promote pathogen control 
has not been directly quantified.

Likewise, multiple cancer cell types harness auto­
phagy46 and MOMP-​driven CASP3 activation138,139 
to avoid antitumour immune responses elicited by 
radiotherapy via mtDNA-​dependent cGAS signalling. 
Conversely, autophagic defects that result in compro­
mised ATP secretion in the context of immunogenic 
cell death not only support the resistance of cancer 
cells to various chemotherapeutic agents that engage 
antitumour immunity, such as anthracyclines and 
oxaliplatin15,154, correlating with inefficient recruit­
ment and activation of myeloid cells to the tumour 
microenvironment134, but also promote malignant 
transformation in numerous immunocompetent mouse  
models of early oncogenesis188, a process that is under 
strict control by immunosurveillance189.

That said, the pathogenesis of some viral and  
bacterial infections involves late-​stage uncontrolled 
inflammation, which at least in some cases originates 
from mitochondrial dysfunction37,190–192. Similarly, 
chronic low-​grade inflammation generally contributes 
to oncogenesis and tumour progression7, and at least 
in some scenarios this is initiated by mitochondrial 
dysfunction193–196. Finally, SMAC release upon minority 
MOMP driven by Helicobacter pylori seems to have a 
role in both the short-​term and the long-​term detrimen­
tal effects of the infection as it drives pathogenic inflam­
mation as well as DNA damage in the absence of overt 
RCD, ultimately promoting malignant transformation197.

Therapeutic prospects
Mitochondria have long been considered master regu­
lators of (at least some forms of) RCD45,56, but accumu­
lating evidence from various experimental settings now 
shows that the disruption of mitochondrial functions 
and structural integrity that accompanies RCD is also 
closely associated with an inflammatory response to 
preserve organismal homeostasis20. In keeping with this, 
the deregulation of inflammatory responses elicited by 
mitochondrial components or products has been shown  
to contribute to numerous human disorders, ranging 
from diseases that are driven by excessive inflammation to  
diseases that are enabled by inefficient inflammatory 
reactions95.

Importantly, most (if not all) of these conditions are 
managed clinically with therapeutic interventions that  
target the effector phase of inflammation, such as 
cytokine-​neutralizing agents198, or target PRRs and 
their signal transducers, such as STING1 agonists199. By 
contrast, little attention has been given to the possibility 
of modulating inflammation through mitochondria- 
targeted agents, which may reflect the novelty of 
research in this area as well as a relatively small num­
ber of pharmacological interventions to target mito­
chondrial functions, particularly MOMP and MPT,  
in patients.

As it stands, only one drug that directly targets the 
molecular machinery of MOMP is licensed for use in 
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humans, the selective BCL-2 inhibitor venetoclax (which 
is currently used for the treatment of some haemato­
logical malignancies and is under clinical evaluation 
for other neoplasms, including some solid tumours)24. 
The development of less selective inhibitors of BCL-
2-​like proteins200, such as navitoclax and ABT-737, 
has been troublesome (with the latter being discon­
tinued) as they both mediate on-​target, dose-​limiting 
thrombocytopenia201. Although venetoclax and navito­
clax would both be expected to promote inflammatory 
reactions that may support anticancer immunity by 
blocking the MOMP-​inhibiting functions of BCL-2 
(ref.202), they have been developed and are currently 
used or being tested as cytotoxic drugs against tumours 
that are ‘addicted’ to BCL-2-​like proteins for survival9. 
Similar considerations apply to the use of pharmaco­
logical BAX activators to initiate MOMP, which are 
also in preclinical development to overcome apoptosis 
resistance in cancer203,204.

BAX inhibitors are being developed as cytopro­
tective agents for cardiovascular disorders, including 
chemotherapy-​driven cardiotoxicity205,206. Although 
these agents would be expected to limit MOMP and 
consequently reduce inflammatory reactions driven by 
mitochondria, recent findings raise the intriguing pos­
sibility that (at least in BAK1-​competent cancer cells) 
pharmacological BAX inhibitors may accelerate mtDNA 
release driven by MOMP (in the absence of major effects 
on the kinetics of caspase activation), potentially offer­
ing a window for inducing cGAS signalling before 
caspase-​dependent cGAS cleavage and inactivation48,207. 
This hypothesis remains to be experimentally tested.

Cyclosporine A, a PPIF-​targeting agent with prom­
inent MPT-​inhibitory activity, is also approved for use 
in humans56. Intriguingly, cyclosporine A is commonly 
used as an immunosuppressive drug for the manage­
ment of autoimmune disorders and the prophylaxis of 
transplant rejection, largely on the basis of its ability to 
bind the PPIF-​like cytosolic protein PPIA, ultimately 
resulting in lymphocyte inhibition through blocking 
calcineurin208. At least potentially, however, part of the 
immunosuppressive effects of cyclosporine A could 
result from MPT inhibition and the consequent sup­
pression of inflammatory reactions driven by permea­
bilized mitochondria, a possibility that has not yet been 
formally addressed.

In conclusion, although mitochondria are clearly 
master regulators of inflammation, additional research is 
needed to address outstanding questions and surmount 
existing obstacles (Box 4), with the ultimate objective of 
targeting mitochondrial functions as a means to control 
inflammatory reactions in patients. As an additional 
layer of complexity, specific pharmacological modula­
tors of autophagy for clinical use remain elusive209, and 
the development of emricasan, a pan-​caspase inhibitor 
introduced into clinical testing for the management of 
cirrhosis, seems to have stalled210. Despite these and 
other caveats, we surmise that an improved under­
standing of the molecular mechanisms linking mito­
chondrial dysfunction to intracellular and extracellular 
DAMP signalling will ultimately unlock the develop­
ment of mitochondria-​targeting drugs for the control 
of inflammation.

Published online 25 July 2022

Box 4 | Outstanding questions

Several questions and obstacles remain to be addressed for the development of clini-
cally viable mitochondria-​targeting agents for the treatment of disorders involving dys-
regulated inflammation. Here we provide a few examples of key areas where additional 
work is urgently needed.

First, although abundant correlative evidence linking inflammatory reactions driven 
by mitochondrial dysfunction to the pathogenesis of multiple human disorders is 
available (Supplementary Table 1), well-​established mechanistic links are often missing 
and urgently need to be established.

Second, additional work is needed not only to dissect the hitherto poorly character-
ized functional interconnectivity between mitochondrial outer membrane permeabili-
zation and mitochondrial permeability transition but also to understand the major  
role of (and crosstalk between) autophagy and apoptotic caspases in regulating 
mitochondrial damage-​associated molecular pattern (mtDAMP)-​driven inflammation.

Third, although relevant pathways, including mitochondrial DNA (mtDNA)-driven 
activation of cyclic GMP–AMP synthase (cGAS) and the inflammasome, as well as  
signal transduction by mitochondrial antiviral signalling protein (MAVS) at the outer 
mitochondrial membrane, have been intensively investigated, key molecular details  
(for example, the precise modality through which mtDNA interacts with inflammasomes 
or the interactions that maintain MAVS in the outer mitochondrial membrane) often 
remain to be clarified.

Finally, many of the experimental strategies that have been commonly used to mecha-
nistically dissect the implication of mtDAMPs in inflammatory reactions impose numer-
ous alterations on cells that may confound the interpretation of results (for example, 
mtDNA depletion also impairs oxidative phosphorylation, thereby altering cellular  
bioenergetics and oxidative balance), which calls for the development of more-​refined 
experimental tools, such as a strategy for the selective degradation of cytosolic mtDNA.
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