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Summary

� Sphagnum peatmosses are fundamental members of peatland ecosystems, where they con-

tribute to the uptake and long-term storage of atmospheric carbon. Warming threatens

Sphagnum mosses and is known to alter the composition of their associated microbiome.

Here, we use a microbiome transfer approach to test if microbiome thermal origin influences

host plant thermotolerance.
� We leveraged an experimental whole-ecosystem warming study to collect field-grown

Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-

free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were

assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscrip-

tomics and 16S rDNA profiling.
� Microbiomes originating from warming field conditions imparted enhanced thermotoler-

ance and growth recovery at elevated temperatures. Metagenome and metatranscriptome

analyses revealed that warming altered microbial community structure in a manner that

induced the plant heat shock response, especially the HSP70 family and jasmonic acid produc-

tion. The heat shock response was induced even without warming treatment in the labora-

tory, suggesting that the warm-microbiome isolated from the field provided the host plant

with thermal preconditioning.
� Our results demonstrate that microbes, which respond rapidly to temperature alterations,

can play key roles in host plant growth response to rapidly changing environments.

Introduction

Sphagnum peat mosses are fundamental ecosystem engineers
(Clymo & Hayward, 1982; van Breemen et al., 1995), contribut-
ing to the construction of bog and peatland systems that occupy
just 3% of the global land surface yet store c. 30% of all soil car-
bon (Gorham, 1991; Yu et al., 2010). In boreal regions, Sphag-
num production can increase with modest warming (Robroek
et al., 2007b; Hupperts et al., 2021), but these positive effects are
not entirely generalizable (Gunnarsson et al., 2004) and are
expected to be offset by water stress from surface drying (Robroek
et al., 2007a) and more extreme warming events in the future
(Bragazza, 2008; Bragazza et al., 2016; Norby et al., 2019). The
competitive success and productivity of this keystone genus is
largely dependent on symbiotic interactions with microbial

associates (Lindo et al., 2013; Weston et al., 2014; Kostka et al.,
2016), through which c. 35% of atmospheric nitrogen fixed by
diazotrophic bacteria in the microbiome is transferred to the
Sphagnum host (Berg et al., 2013). Currently, however, we lack a
basic understanding of how warming influences Sphagnum–
microbiome interactions and how these interactions influence
host acclimation and adaptation to elevated temperature.

Sphagnum symbiosis is characterized by an intimate association
with dinitrogen (N2)-fixing cyanobacteria on the host cell surface
and within water-filled hyaline cells (Granhall & Hofsten, 1976;
Basilier et al., 1978; Basilier, 1979, 1980). Hyaline cells help
nonvascular mosses retain water and also provide a buffered envi-
ronment for the microbiome that is less harsh than the external
pore water, which is characterized by fluctuating temperature
spikes and low pH (Clymo & Hayward, 1982). Phylogenetic
evidence suggests that bacterial methanotrophs are also impor-
tant N2-fixing members of the Sphagnum microbiome in boreal*These authors contributed equally to this work.
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peat bogs (Kip et al., 2010; Liebner & Svenning, 2013; Larmoia
et al., 2014; Vile et al., 2014). These methanotrophs not only fix
N2 but also supply 5–20% of the CO2 necessary for host photo-
synthesis as a byproduct of methane oxidation (Raghoebarsing
et al., 2005). In addition to the prominent N2-fixing bacteria,
Sphagnum spp. host a diverse array of heterotrophic bacteria,
archaea (Kostka et al., 2016), fungi (Kostka et al., 2016), protists
(Lamentowicz & Mitchell, 2005; Jassey et al., 2015) and viral
symbionts (Stough et al., 2018) within a complex food web
structure. Results from a whole ecosystem peatland warming
experiment indicate that elevated temperatures are associated
with changes in the Sphagnum microbial biomass (Basi�nska
et al., 2020), microbial community (Carrell et al., 2019; Reczuga
et al., 2020), reduced N2 fixation (Carrell et al., 2019) and
reduced Sphagnum biomass production (Norby et al., 2019). It
remains unknown whether the warming-altered microbiome
influences host acclimation, growth and production, and if so,
in what manner.

Disentangling the effects of Sphagnum symbiotic interactions
in the context of climate change is complicated by our inability
to predict whether and how mutually beneficial interactions will
persist under variable environments. In N2-fixing legumes
(Heath et al., 2010) and coral systems (Cunning et al., 2015;
Bay et al., 2016; Howells et al., 2016; Baker et al., 2018), for
example, altered environmental conditions can increase the cost
of the interaction relative to the benefits (i.e. the cost : benefit
ratio), resulting in breakdown of mutualism and can even lead
to antagonistic interactions. One strategy for maintaining a
favorable cost : benefit ratio is partner switching, that is the sub-
stitution of one symbiont for another. In corals, for example,
the negative effect of elevated temperatures on host perfor-
mance can be tempered by replacing symbiont partners with
more thermotolerant species (Bay et al., 2016; Howells et al.,
2016). Another strategy is the habitat-adapted symbiosis
paradigm that does not emphasize partner choice, but instead
proposes that endophytes adapt to stress in a habitat-specific
manner and can confer the same functional stress tolerance to
their plant hosts (Rodriguez et al., 2008). Because it is not
known whether endophytes are locally adapted or differentiated
by environmental sorting, the term ‘adaptation’ is applied
loosely (Giauque et al., 2019). Nonetheless, habitat-associated
benefits from endophytes originating from extreme tempera-
tures and salinities can benefit host plants subjected to the same
environmental extremes (Redman et al., 2011). By contrast, the
habitat origin of fungal endophytes along a rainfall gradient
had little effect on the drought responses of Panicum virgatum
(Giauque & Hawkes, 2013). A more explicit test of habitat-
associated effects relative to evolutionary history and physiologi-
cal traits was carried out by Giauque et al. (2019). They found
little support for the idea that fungal endophyte phylogenetic
relatedness predicts host benefits, but did find some evidence
that microbes that had experienced similarly stressful environ-
ments could benefit their hosts. However, the host benefit was
not as strong as in previous studies (Rodriguez et al., 2008), in
which fungal endophytes were isolated from more extreme
environments. Further complicating the habitat-adaptation

paradigm is our lack of understanding of the underlying mech-
anism in conferring host benefits.

Given the importance of bacteria for Sphagnum performance
and ecosystem biogeochemistry (Raghoebarsing et al., 2005;
Kip et al., 2010; Lindo et al., 2013; Kostka et al., 2016), we
sought to determine the influence of habitat origin on host accli-
mation to thermal stress. To investigate this experimentally, we
mechanically separated the microbiome from field-grown Sphag-
num plants collected under an ambient and a warm condition,
transferred the constituent microbes to axenic plants, and then
exposed the new host plants to short-term heat stress. To assess
host and bacterial dynamics, we performed growth analysis, Chla
fluorescence imaging, metagenomics, metatranscriptomics and
16S rDNA profiling. The transfer of environmentally condi-
tioned microbiomes to axenic plants, which is analogous to
microbiome transplant studies in medical research, allowed us to
test the following hypotheses: the isolation and transfer of a
microbiome adapted to a warming origin can transmit thermo-
tolerance to the plant host, the warming environment selects for
microbial symbionts that can maintain nitrogen transfer with the
plant at elevated temperatures, and the warming-adapted micro-
biome elicits a host gene response enriched in nitrogen
metabolism and abiotic stress response.

Materials and Methods

Study site and field sampling

The Spruce and Peatland Responses Under Changing Environ-
ments (SPRUCE) experiment, located in the S1 bog of the Mar-
cell Experimental Forest (47°30.47600N, 93°27.16200W; 418 m
above mean sea level), MN, USA, uses a regression-based design
at the whole-ecosystem scale to produce nominal warming of
ambient +0, +2.25, +4.5, +6.75 and +9°C in a Picea mariana–
Sphagnum spp. raised bog ecosystem with open-top chamber sys-
tems (Hanson et al., 2016). Heating of the soil was initiated in
June 2014 and aboveground air heating began in June 2015. A
full discussion of the experimental details and ecosystem descrip-
tion is available (Hanson et al., 2016). To obtain field-
conditioned microbiomes, 100 g of living green stems of fully
hydrated, hollow dwelling Sphagnum angustifolium (Russow)
C.E.O. Jensen was collected from ambient +0°C (ambient) and
ambient +9°C (elevated) plots in August 2016 and August 2017.
The collected stem portion typically included capitula and 2–
3 cm of living stem. The Sphagnum material of each microbiome
was placed in an individual sterile bag and shipped to Oak Ridge
National Laboratory on blue ice.

Microbiome transfer to axenic Sphagnum and warming
treatment

To isolate the microbiomes from each field-conditioned micro-
biome, a sample of 100 g of tissue was diced with a sterile razor
blade and pulverized in PBS with a mortar and pestle. The
resulting suspension was filtered through Mira Cloth, cen-
trifuged to pellet the microbes, and then resuspended in 500 ml
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BG11 -N medium (pH 5.5). Glycerol stocks of 100 ml of
inoculum were frozen and stored at �80°C. Axenic tissue-
culture Sphagnum was propagated via clonal shoot propagation
of Sphagnum generated from ethanol sterilized Sphagnum spores
collected from the S1 bog. A single capitulum of axenic S. an-
gustifolium was added to each well of a 12-well plate and inocu-
lated with 2 ml of ambient-microbiome, warm-microbiome or
sterile media. The repeated 2017 experiment used the same
experimental design, except that the number of replicate plants
was increased from n = 6 to n = 12. The Sphagnum angusti-
folium genotype was the same as that sequenced by the DOE
JGI (https://phytozome-next.jgi.doe.gov/info/Sfallax_v1_1).
The sealed plates were placed into growth chambers with a 350
lmol m–2 s–1 of photosynthetically active radiation (PAR),
12 h : 12 h, light : dark cycle, programmed to either ambient or
elevated field plot temperatures. August 2016 field plot temper-
atures from 6 h blocks were averaged from each day, resulting
in a cycle of four temperatures. August 2017 temperatures did
not differ from those in August 2016, so the same temperature
profile was used for incubations for both years (Supporting
Information Table S1). The plates were randomly distributed
throughout the reach-in growth chamber and positions were
randomly shuffled weekly to account for possible edge effects
or light variation across the chamber. Sufficient RNA could not
be isolated from all treatments in 2016 so the incubation dura-
tion of the 2016 experiment was reduced from 4 to 3 wk in the
2017 experiment.

To determine if the growth response of inoculated Sphag-
num resulted from residual plant molecules or the microbiome
obtained during the isolation of thermal-origin microbiomes,
we repeated the experiment with a heat-killed microbial con-
trol from glycerol stocks of the thermal-origin microbiomes.
Glycerol stocks were thawed, microbes were pelleted via cen-
trifugation, rinsed and resuspended in BG11 -N, and an
aliquot of glycerol stock was heat-killed. Each microbiome,
heat-killed control or no microbial control were applied to
axenic S. angustifolium and placed in growth chambers for
temperature treatments (Table S1).

Measurement of growth and photosynthesis

To measure growth, images from the top of each plate were col-
lected weekly, and surface area was measured using the IMAGEJ
software (Schneider et al., 2012). The change in surface area was
determined as a proxy for growth (Heck et al., 2021). To estimate
maximal photosystem II (PSII) quantum yield, Chl fluorescence
parameters were measured weekly with a FluorCam FC800 (PSI,
Bruno, Czech Republic) after 20 min of dark adaptation. Maxi-
mum quantum yield (QY_max) was determined using the FLU-
ORCAM 7 software.

Normality of the data was checked using the Shapiro–Wilk
test before checking homoskedasticity of variances using Levene’s
test in the R package CAR (Fox & Weisberg, 2018). Growth rate
(mm d�1) and total growth over the duration of the experiment
were rank-transformed before two-way ANOVA to assess the
influence of experimental temperature and donor microbiome.

Fluorescence (Fv/Fm) was measured in moss as a proxy for photo-
synthetic activity throughout the experiment. However, to high-
light the greatest differences in donor microbiome and
experimental temperature combinations, only fluorescence data
from the last week were used. Fluorescence data were also rank-
transformed before using a two-way ANOVA. ⍺ = 0.05 was used
to denote statistical significance in both two-way ANOVA and
Tukey’s honest significant difference (HSD) post hoc analyses.
Growth and fluorescence statistics were analyzed using R v.3.5.1
(R Core Team, 2021).

16S rDNA and ITS sequencing of community profiles

To characterize bacterial/archaeal and fungal components of the
microbiomes of inocula and final microbiomes of the laboratory
experiments, each sample (n = 3 for inocula and n = 5 for labora-
tory experiments) was pulverized in liquid N2, and DNA was
extracted from 50 mg of material using the DNeasy PowerPlant
Pro Kit (Qiagen). Extracted DNA was taken to the Genomics
Core at the University of Tennessee, Knoxville, TN, USA, for
library preparation and sequencing on an Illumina MiSeq (San
Diego, CA, USA). Libraries were prepped for the 16S rRNA gene
by means of a two-step PCR approach with a mixture of custom
515F and 806R primers (Cregger et al., 2018) to characterize
archaeal/bacterial communities, and for the ITS2 gene region
with a custom mixture of primers to characterize the fungal com-
munity. Samples were pooled in equal concentrations and
sequenced on the MiSeq with negative control samples.

Microbial sequences were processed with the QIIME 2
v.2018.11 platform (Bolyen et al., 2019). Paired sequences were
demultiplexed with the plugin demux and quality-filtered (de-
noised, dereplicated, chimera-filtered and pair-end merged) and
processed into sequence variants (SVs) with the DADA2 plugin
(Callahan et al., 2016). Taxonomy was assigned using a pre-
trained Naive Bayes classifier based on the Greengenes v.13_8
database (99% operational taxonomic units (OTUs)) that are
trimmed to the 515F/806R primer pair for 16S rDNA and based
on the UNITE databse (99% OTUs) for ITS2. Sequences
assigned as chloroplast or mitochondria were removed. Microbial
diversity was calculated based on a subsample of 19 000
sequences to fit the size of the smallest library. SV-based alpha
diversity (Shannon diversity) and beta diversity (Bray–Curtis)
were calculated using the PHYLOSEQ 1.30.0 (McMurdie &
Holmes, 2013) package in R (R Core Team, 2021). Beta diver-
sity was visualized using nonmetric multidimensional scaling
ordination (NMDS) based on Bray–Curtis similarity distances. A
permutational multivariate analysis of variance (PERMANOVA)
with 999 permutations was used to calculate the significance of
clustering of samples by microbial and chamber treatment. The
correlation between microbial diversity and Sphagnum growth
was assessed using Pearson correlation.

Metatranscriptomics profiling

Only 2017 experimental samples were profiled for metatran-
scriptomics as sufficient RNA could not be isolated from
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2016 experimental samples. Cryogenically stored samples from
the end of the experiment were ground in liquid nitrogen,
and total RNA was extracted using a method combining
CTAB lysis buffer and the Spectrum Total Plant RNA extrac-
tion kit (Sigma) as described previously (Timm et al., 2016).
RNA quality and quantity were determined using a
NanoDrop Spectrophotometer (Thermo Scientific, Waltham,
MA, USA). Total RNA (3 µg) of three biological replicates
was sent to Macrogen (Seoul, South Korea), where libraries
were prepared with TruSEq Stranded RNA with Ribo-Zero-
Plant and sequenced on an Illumina HiSeq 2500 in Rapid
Run mode (paired-end, 29 150 nt).

Metatranscriptome reads were partitioned into S. angustifolium
and microbial transcripts by mapping reads to the S. angusti-
folium v.1.0 genome using BBMAP v.38.22. Microbial transcripts
were processed using the SAMSA v.2.2.0 pipeline (Westreich et al.,
2016), except that differentially expressed SEED functional gene
ontologies (Overbeek et al., 2014) were identified using LIMMA-
VOOM v.3.11 (Ritchie et al., 2015) with multiple testing correc-
tion using false discovery rate (FDR). Taxonomic classification of
microbial transcripts was performed by mapping reads to the
metagenome assembly using BAMM v.1.7.3 and transferring the
taxonomic classification of metagenomic gene models and
metagenome-assembled genome (MAG) assignments to mapped
transcripts.

To identify differentially expressed (DE) S. angustifolium
genes, S. angustifolium read-pairs were mapped to the S. angusti-
folium v1.0 reference genome using RSUBREAD v.2.3.0 (Liao et al.,
2019) and analyzed using LIMMA-VOOM v.3.11. Enrichment of
MAPMAN4 ontology bins (Schwacke et al., 2019) in the set of DE
genes was determined using the MAPMAN desktop application
v.3.6.0RC1 (Thimm et al., 2014). The statistical significance of
MAPMAN ontology bins was determined using a Kruskal–Wallis
test with multiple testing correction using FDR in R v.3.6.1. The
log2(fold change) (LFC) of MAPMAN4 ontology bins was deter-
mined by averaging LFC across DE genes within each bin. For
all analyses we used a FDR-corrected P-value < 0.05 to determine
statistically significant results.

Metagenomics of the starting inoculum and phylogenetic
analysis of cyanobacterial MAGs

A composite ambient-microbiome and a composite warming-
microbiome sample were sequenced as an Illumina TruSeq PCR-
Free library on an Illumina 2500 in Rapid Run mode (paired-
end, 29 150 nt). Full details are provided in Methods S1.

Results

Plant host performance in response to experimental
temperature is dependent on the thermal origin of the
microbiome

In both years, a donor microbiome that matched the experi-
mental thermal conditions conferred the greatest increase in
host growth (Fig. 1b). Host benefits from the microbiome were

especially apparent under experimental warming conditions: in
2016 and 2017, moss receiving a warm-microbiome exhibited
an increase in growth of 89 and 87%, respectively, relative to
plants receiving the mock control (Fig. 1b; Tables S2–S4). By
contrast, under experimental warming conditions moss inocu-
lated with a temperature-mismatched microbiome (i.e. receiv-
ing ambient-microbiome and warming treatment) did not
perform statistically significantly better than moss without a
microbiome (Table S4), indicating that a microbiome
preadapted to warming conditions specifically is conferring a
growth advantage in the warming chamber. Host benefits from
temperature-mismatched microbiomes were least prominent
under ambient experimental treatment, in which growth
increases ranged from 3% to 17% following inclusion of a
warm-microbiome (Ftemperature : microbiome = 32.01; P < 0.05 for
2017; Table S3). Throughout the experiment, moss photosyn-
thetic activity and response to temperature and microbiome
origin were evaluated by monitoring Chla fluorescence (Fv/Fm).
The results mirrored the growth analysis: Fv/Fm values were
11–45% higher when microbiome thermal origin matched
experimental temperature (Tables S5, S6; Figs S1, S2).

To test the viability of the contribution of the conditioned
microbiome and molecules collected during inoculum isolation,
we repeated the conditioned microbiome experiment with glyc-
erol stocks of +0°C and +9°C microbiomes collected from the
SPRUCE field site. Moss phenotypes of heat-killed controls were
consistent with no microbe controls (P > 0.99) while growth rates
were highest in temperature-matched microbiome treatments
and lower in discordant microbiome treatments (Fig. S3). Hence,
the thermal tolerance conferred by the microbial inoculums is
from direct contact with living organisms, and not an indirect
consequence or nutrients, signaling compounds or other
molecules acquired during isolation.

Habitat origin and thermal treatment conditions structure
the starting microbiome and resultant microbial community

Amplicon sequencing produced an average of 83 847� 53 040
reads after quality filtering (Table S7). In the 2016 inoculum, we
retained 82% of the ambient-microbiome SVs and 85% of the
warm-microbiome SVs compared to the unprocessed field-
microbiome. In 2017, the ambient-microbiome and warm-
microbiome represented 76 and 89% respectively of the SVs
identified in the field-microbiomes. Across the treatments, we
recovered an average of 482 SVs with an average of 350 bacterial/
archaeal SVs and an average of 107 fungal SVs. In 2017, the ini-
tial community structure of the S. angustifolium field-collected
inoculum differed between thermal origins (Adonis,
R2 = 0.92133, P = 0.009) and 2016 (Adonis, R2 = 0.53, P = 0.1)
(Fig. S4). The bacterial phylum Proteobacteria dominated all
reads (21–68%) with cyanobacterira increasing in abundance in
2017 (15%) compared to 2016 (3%) (Fig. 1c). At the class level,
the ambient-microbiome consisted largely of Alphaproteobacte-
ria (32%) and Clostridia (16%) in 2016, whereas Alphapro-
teobacteria (30%) and Acidobacteria (11%) were most
abundant in 2017 (Table S8). Within the warm-microbiome,
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germ-free recipient moss (Sphangum angustifolium), and the resulting communities were then placed in an ambient or warm growth chamber.
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Gammaproteobacteria were highly abundant in 2016 (43%),
but only constituted 15% of the community abundance in
2017, with the difference compensated for by an additional
increase in Alphaproteobacteria abundance (30%). Despite
between-year differences in community composition at the class
level within thermal regimes, the growth benefits provided to
the plant were strikingly consistent (Fig. 1b).

Sphagnum-associated microbial communities responded to
4 wk of thermal treatment conditions regardless of year, thermal
origin or growth temperature. NMDS ordinations of the micro-
biome Bray–Curtis distance matrix revealed that the community
composition of the warm-microbiomes responded similarly
across thermal treatments, whereas ambient-microbiome struc-
ture varied to a greater extent both across and within thermal
treatments (Fig. S5). To determine whether changing community
structure influenced microbial diversity, we estimated the Shan-
non diversity index for each treatment condition at the conclu-
sion of the study in both years (Fig. 2a,b). Microbial Shannon
diversity was highest when microbiome thermal origin matched
chamber treatment temperatures; conversely, discordant combi-
nations resulted in substantially lower microbial Shannon diver-
sity (Fig. 2a,b). The ambient-microbiome had the highest
diversity under matched (i.e. ambient) treatment conditions in
both years (ANOVA, P < 0.01). Similarly, the warm-origin
microbiome had the highest diversity under the warming treat-
ment in both years (ANOVA, P < 0.01). Detailed class-level
community composition assignments are provided in Table S9.
Given that greater phylogenetic diversity is likely to be accompa-
nied by greater metabolic and functional diversity, we expected
that microbial diversity would be associated with enhancements
in plant acclimation to stressful warming conditions, reflected by
improved growth. As expected, bacterial and archaea Shannon
diversity (as inferred from 16S rDNA) at the end of the

experiment was correlated with Sphagnum growth (Pearson corre-
lation, r = 0.744, P = 0.003; Fig. 2b). By contrast, ITS-derived
fungal Shannon diversity estimates did not correlate with moss
growth (Pearson correlation, r =�0.204, P = 0.403; Fig. S6).
The fungal communities did not vary greatly across treatments
with the identification of just one phylum level (Table S10), three
class levels (Table S11), and RNA sequencing (RNA-seq) reads
that only constituted 0.6% of the total (Tables S12), so we largely
focus on the bacterial component of the microbiome in the fol-
lowing sections.

Metagenome and metatranscriptome analyses reveal
changes in symbiotic microbe abundance and composition
in response to thermal origin and temperature treatment

Host thermal acclimation and productivity varied with micro-
biome origin. To further explore how community dynamics
influence host thermal acclimation, we used metagenomics and
metatranscriptomics to identify both plant and microbial gene
sets responsive to thermal and microbiome conditions (Fig. 3).
For metagenome assemblies, DNA sequencing reads mapping to
the S. angustifolium genome (https://phytozome-next.jgi.doe.
gov/info/Sfallax_v1_1) were removed, and the remaining reads
were coassembled into 4 762 069 contigs with an N50 of
1261 bp. Binning of metagenome contigs yielded 45 MAGs with
a quality score ≥ 70 with ≤ 5% contamination (Table S12). The
high-quality MAG standard of > 90% complete and < 5% con-
tamination (Bowers et al., 2017) was met for 28 of our genomes,
whereas 13 and nine MAGs are > 95% and > 97% complete,
respectively. Taxonomic assignments and BLAST hits from anno-
tated proteins were resolved to the lowest taxonomic level using
CHECKM (Parks et al., 2015) and DIAMOND (Buchfink et al.,
2014) (Table S12). For metatranscriptomes, we generated
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429.6 GB of RNA-seq data across three replicates for each treat-
ment. On average, 40.93� 7.39 million reads passed quality fil-
tering per sample across all thermal treatments and microbiome
conditions (Table S13). In samples derived from plants receiving
a microbiome transfer, c. 65% of reads aligned to the Sphagnum
genome, except in the discordant case when plants received
ambient-microbiome followed by warming treatment. Under
that condition, the plants were severely stressed, and only 12.4%
of the reads aligned to the Sphagnum genome (Fig. S7).

To expand on the amplicon-based community composition
results (Fig. 1c; Table S8) and determine which microbial mem-
bers are transcriptionally active, we categorized transcriptional pro-
files based on taxonomic composition. Under matched ambient
origin and experimental temperature, microbial transcripts were
mostly from Cyanobacteria symbionts (72.5� 6.9%), followed
by Proteobacteria (11.2� 2.2%) (Fig. 3a). Under matched warm-
microbiome and warm-temperature treatment, Cyanobacteria
transcript reads were largely absent, and the metatranscriptome
was mainly derived from Proteobacteria (47.5� 2.7%), Chloro-
phyta (16.39� 10.4%) and Planctomycetes (4.9� 0.57%).
Results from mismatched origin and experimental conditions
more closely reflected their microbiome origin communities
(Table S8). This finding was also reflected in a multidimensional
scaling analysis using level 3 SEED functional annotation, in
which cluster variation was explained more based on microbial
origin rather than experimental temperature (Fig. S8).

Experimental warming increases transcript abundance from
alternative cyanobacteria members, signaling possible
symbiont exchange

Differences in the composition and abundance of Sphagnum-
associated cyanobacteria in response to warming are important
because these organisms are some of the key symbionts with

Sphagnum mosses (Granhall & Hofsten, 1976), and the exchange
of symbionts with more thermotolerant forms have been impli-
cated in host thermotolerance in other systems (Rodriguez et al.,
2008). To explore this further, we taxonomically refined three of
our high-quality cyanobacteria MAGs with a phylogenetic tree
reconstruction using an additional 109 cyanobacterial genomes
(Fig. 4). We found that all three cyanobacterial MAGs belong to
the heterocystous B1 clade of Cyanobacteria, which also contains
known plant associates (Shih et al., 2013). To determine which
of the cyanobacteria are most responsive to thermal conditions,
we aligned the microbial RNA-seq reads from the end of the
experiment onto the MAGs. Of all non-Sphagnum RNA-seq
reads, 31.6� 8.7% mapped onto cyanobacteria MAGs for
matched ambient-microbiome and ambient temperature condi-
tions. This percentage decreased to 26.1� 1.1% when plants
receiving ambient-microbiomes were subjected to discordant
warming treatment. Further, microbiomes originating from
warming field conditions contained negligible levels of cyanobac-
terial RNA-seq reads (0.1–0.08%). Cyanobacterial reads pre-
dominantly aligned to MAG bin 14 (98� 0.7%), but to a
considerably lesser extent (49� 0.6%) when placed under warm-
ing experimental conditions. The decrease in bin 14 RNA-seq
reads was accompanied by an increase in reads from Cyanobacte-
ria bin 354 (28� 0.6%) and bin 192 (15� 0.9%) (Fig. 3b).
Due to sampling constraints, we did not normalize the results of
RNA-seq analysis to community abundance changes.

Host plant transcriptional response to warming

Given that the warming environment alters community composi-
tion in a way that benefits host plant acclimation to warming, we
hypothesized that the warming environment selects for more
thermotolerant symbionts that are able to maintain nitrogen
exchange with the plant at elevated temperatures. If this is the
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case, we would expect that plant and microbial transcriptional
patterns relating to N transport and metabolism would be similar
between matched origin and temperature conditions (i.e. warm-
microbiome + warming treatment or ambient-microbiome +
ambient treatment). Functional ontology enrichment analysis
across all conditions revealed that in plants receiving an ambient-
microbiome and ambient treatment, gene expression was
enriched for pathways involved in N metabolism, including
ammonium transporters, ammonium assimilation and glutamine
synthetase, as well as growth-related ontologies including photo-
synthesis, cytoskeletal elongation and hormonal regulation
(Fig. 5a). This was also apparent on an LFC basis when compar-
ing plants with an ambient-microbiome between temperature
conditions (Dataset S1). In this case, ambient treatment plants
corroborated enrichment analysis with induced ammonium
transport (LFC 4.0, P = 2.09 10–2) and glutamine synthetase
(LFC 2.4, P = 1.19 10–2). In addition, 153 of 178 genes within
the photosynthesis ontology were induced, with PSII light-
harvesting complex II most strongly affected (LFC 2.1,
P = 2.489 10–6). In addition, we noted differences in fatty acid
synthesis, especially in desaturation and elongation (LFC 2.74,
P = 2.979 10–6), phenolic secondary metabolite production

(LFC 2.86, P = 1.779 10–5), cell wall expansion (LFC 6.5,
P = 2.79 10–6), phytohormone signaling with noncysteine-rich
peptides (LFC 4.63, P = 8.19 10–4), jasmonic acid synthesis
(LFC 2.36, P = 49 10–2) and response to external stimuli (LFC
2.53, P = 3.29 10–2). As expected, heat shock proteins (HSPs)
were responsive to warming, especially the HSP70 family, of
which 15 members were induced (LFC 1.2, P = 6.59 10–3).

Plant ontology enrichment analysis did not support the
hypothesis that the warm-microbiome would provision the
plant with N at warming treatment conditions (Fig. 5a). Like-
wise, there was no support for this hypothesis on an LFC
basis when comparing RNA-seq profiles from plants with
warm-microbiomes across temperature treatments (Dataset
S1). Despite the apparent lack of microbially provided fixed
N, the warm-microbiome still provided growth benefits to
warming-treated plants (Fig. 1b), and this was also apparent
in RNA-seq enrichment analysis of growth-related ontologies.
Specifically, plants exposed to warming that received warm-
microbiomes exhibited enrichment for photosynthesis – PSII
light harvesting complex II (LFC 1.4, P = 1.99 10–3), cell
wall expansion (LFC 2.5, P = 1.39 10–5) and phenolic sec-
ondary metabolite production (LFC 2.9, P = 2.09 10–8).
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Microbial RNA-seq DE analysis of functional ontologies sup-
ported the notion that the warming-altered cyanobacteria com-
munity is not fixing N, and is therefore not provisioning the
plant with N. DE enrichment analysis revealed that microbial N
metabolism differed dramatically between both treatments and
origins (Fig. 5b; Table S14). Indeed, exposure to warming
decreased N-fixation ontology gene expression by 53.4-fold
(Fig. 5b; Table S13). Moreover, there was no enrichment evi-
dence for N-fixation among the warm-microbiomes, regardless of
temperature treatment. This was also apparent with LFC when
comparing microbes from a warm-microbiome to those from an
ambient-microbiome under ambient treatment conditions where
genes enriched for N-fixation substantially decreased (LFC �8.0,
P = 1.69 10–9) (Dataset S2). The same conditions also showed
an increase in sulfur-related metabolism via taurine utilization
(LFC 1.5, P = 2.09 10–4) and the utilization of glutathione as a
sulfur source (LFC 2.7, P = 1.89 10–7). Although we could
not obtain direct evidence for N-fixation in this study due to
sample size restrictions, these observations corroborate previous
15N2-based fixation rates reported at the same field site where
our warm- and ambient-inocula were obtained (Carrell et al.,
2019).

How the warm-microbiome influences host plant photosyn-
thesis and growth temperature acclimation remains to be eluci-
dated, but we can glean clues from communities composed of
discordant warm-microbes at ambient experimental tempera-
tures. In that case, enrichment for the HSP70 family is
induced without heat (Fig. 5a). This trend was also observed

on an LFC basis where 33 out of 35 detected HSPs were
induced (Dataset S1).

Discussion

The establishment of constructed communities derived from
microbiome transfers, coupled with comparative metatranscrip-
tomics, revealed several novel aspects of microbial contributions
to plant temperature response. First, plants receiving a micro-
biome from a high-temperature environment exhibited enhanced
photosynthetic and growth acclimation responses to similarly
warm environments. Second, the warm-microbiome was less
diverse than the ambient-microbiome, but contained transcripts
from a more diverse set of cyanobacteria, suggesting symbiont
swapping or replacement. Finally, the warm-microbiome trans-
ferred a thermotolerant phenotype to the plant through host
transcriptional reprogramming involving heat shock response
and hormonal regulation genes.

Our results demonstrate that the originating thermal habitat of
the microbiome has a dramatic effect on Sphagnum host acclima-
tion to elevated temperatures. These results were consistent across
two years of field-collected donor inocula and two independent
laboratory experiments. Although the fact that plants benefit
from microbial relationships is well known, the transfer of micro-
bially acquired habitat-specific abiotic stress tolerance to recipient
plants was reported much more recently, and to date has largely
been limited to endophytic fungi (e.g. Giauque & Hawkes, 2013;
Giauque et al., 2019). In an early example of this, Redman et al.
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(2002) collected a native North American grass, Dichanthelium
lanuginosum, endemic to geothermal sites with soil temperatures
reaching up to 50°C. After isolation of a Curvularia sp. fungus
and reinoculation onto endophyte-free plants, thermotolerance
was conferred to the recipient plant host. This approach of isolat-
ing endophytic fungi from plants endemic to extreme habitats in
an attempt to confer habitat-associated benefits has been tested a
number of times with both successful (Rodriguez et al., 2008;
Redman et al., 2011) and mixed results (Giauque & Hawkes,
2013; Giauque et al., 2019). In all cases, the microbial compo-
nent focused on fungi and was constrained to single-member
strain-based studies.

The microbiome transfer approach used in this study allowed
us to test habitat-associated benefits from a broader set of organ-
isms that is more representative of the dynamic coevolving com-
munity. However, this strategy made it difficult to relate specific
taxa to recipient host benefits. For example, the warm-inocula
differed substantially between years, even at the phylum level, yet
both showed trends in providing host thermal benefits. This is
consistent with the idea that microbial community taxonomic
composition is not necessarily a clear indication of community
function. Indeed, functional similarity independent of taxonomic
group has been reported in other systems, including human gut
(Moya & Ferrer, 2016) and microalgae (Burke et al., 2011)
microbiomes. Hence, the challenge is to look beyond taxonomic
association and determine what components of the microbiome
are responsible for conferring thermotolerance on the host plant.

One possible mechanism for enhanced host temperature toler-
ance is the replacement of primary symbionts with more thermo-
tolerant symbionts. Sphagnum mosses have long been known to
host N2-fixing Cyanobacteria as symbionts (Granhall & Hofsten,
1976; Basilier et al., 1978; Basilier, 1979, 1980). More recently,
they have been shown to associate with a suite of bacteria, includ-
ing those that oxidize methane into CO2, as well as a number of
viral, archaea and protists (reviewed by Kostka et al., 2016). The
influence of warming on these symbionts, especially the
Cyanobacteria, would directly affect host nutrient status and pro-
ductivity. Our metagenome analysis assembled three cyanobacte-
rial MAGs. DNA and RNA-seq reads mapping to the binned
MAG genomes indicated that Sphagnum plants were primarily
colonized by a single cyanobacterial member from the genus Nos-
toc. With increasing temperature, this Nostoc MAG decreased in
abundance, while two additional cyanobacterial MAGs increased
in abundance, indicating a possible exchange for more thermotol-
erant members of the clade. Precedent for symbiont shuffling has
been provided in coral systems. Corals host algal symbiont com-
munities that are genetically diverse and susceptible to symbiont
loss due to environmental stress and ensuing coral bleaching
events. However, the stress events leading to the bleaching, as
well as the bleaching itself, provide an opportunity for replace-
ment of symbionts with organisms that are more suitable to the
new environmental condition, such as those with higher stress
tolerance (reviewed by Apprill, 2020). The coral system also
demonstrates the potential role of the surrounding bacterial com-
munity in coral thermotolerance. This was elegantly demon-
strated by Ziegler et al. (2017), who showed that long-term

temperature elevation modified the composition of the bacterial
community, and that particular bacterial taxa could predict coral
thermotolerance. However, the coral system is not amenable to
germ-free host strains or microbiome transfers, making it difficult
to quantify the contribution of the microbiome to host thermo-
tolerance.

From the results of this study, it is difficult to discern whether
host thermal benefits from the donor microbiome are driven by
community change from primary Nostoc cyanobacterial sym-
bionts, or instead by the surrounding microbial community. Our
hypothesis that the key cyanobacterial symbiont was augmented
by additional thermotolerant cyanobacteria to maintain N2 fixa-
tion at elevated temperatures was not entirely supported.
Although we observed an increase in cyanobacteria diversity and
ontology enrichment for photosynthesis, thereby providing sup-
port for exchange with thermotolerant symbionts, the metatran-
scriptome analysis yielded no evidence for N2-fixation under
warming. Caution must be observed as evidence for N2-fixation
in the current study is based on gene transcriptional analysis and
not direct measures for 15N2 incorporation. However, this find-
ing is consistent with a previous field study (Carrell et al., 2019)
at the same SPRUCE site, where 16S rDNA amplicon profiling,
nifH quantitative reverse transcriptase PCR and 15N2 incubation
assays revealed a decrease in nifH-containing N-fixing bacteria
and a reduction in 15N2 incorporation in response to warming.

In addition to N metabolism, recent studies have identified a
role for sulfur exchange within feathermoss – and Sphagnum –
cyanobacterial symbioses (Warshan et al., 2017; Stuart et al.,
2020; Carrell et al., 2021). For example, Stuart et al. (2020)
found that targeted mutatgenesis of the cyanobacterial alkane
sulfonate monooxygenase resulted in an inability to colonize
feathermoss. In addition, Carrell et al. (2021) used metabolic
cross-feeding and spatial metabolite profiling to discover that
Sphagnum provided sulfur-rich choline-O-sulfate, taurine and
sulfoacetate, which were subsequently depleted by the Nostoc
symbiont. Within the current study, the warm-microbiome
showed enrichment for bacterially related sulfur metabolism
regardless of treatment temperature. Whether bacterial sulfur
metabolism is specific to the cyanbacterial component of the
microbiome and the role sulfur metabolism plays in Sphagnum–
microbiome functioning remains to be elucidated.

Despite the lack of evidence for microbial N2-fixation in con-
tributing to plant thermotolerance, the metatranscriptome analy-
sis did reveal a role for heat shock and hormonal reprogramming
as potential host pathways underlying the microbial transfer of
thermotolerance. Multiple studies have shown that insertional
mutants or antisense transgenics for HSP70 fail to acquire ther-
motolerance, while the overexpression of HSP70 seems to
enhance thermotolerance (Larkindale et al., 2007). Within the
model plant Arabidopsis thaliana, the HSP70s represent a multi-
gene family whose proteins are found within all subcellular com-
partments of the cell where they can refold stress-denatured
proteins and prevent aggregation of denatured proteins (Sung
et al., 2001). Within the current study, plants grown at ambient
temperatures were enriched for Hsp70 gene family transcripts
when they received a warm-microbiome, but not when they
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received an ambient-microbiome. Shekhawat et al. (2021) also
observed an increase in HSP70 gene expression in Arabidopsis
and wheat plants when colonized by the Enterobacter sp. root
endophyte, yet this was only observed under heat stress and not
ambient temperature conditions. Furthermore, our metatran-
scriptome analysis did not show microbial-mediated repression
of the Hsp90 family or induction of the Hsp101 family, both of
which have been implicated in the heat shock response. While
microbially mediated repression of Arabidopsis Hsp90, leading to
elevated thermotolerance, was previously demonstrated in the
desert-dwelling fungus Paraphaeosphaeria quadriseptata (Mclellan
et al., 2007), results from the current study only show a role for
HSP70s.

In addition to HSP70 reprogramming, microbial thermotoler-
ance may have been transferred via hormonal pthways. The
warm-microbiome elicited host plant expression of genes con-
tributing to jasmonic acid synthesis (via allene oxide cyclase
(AOC)). Jasmonic acid is a key phytohormone contributing to
both abiotic and biotic stress responses, and has been implicated
in flowering plant thermotolerance (Clarke et al., 2009). AOC
synthesizes 12-oxo-phytodienoic acid (OPDA), which is a signal-
ing compound and intermediate in the jasmonic acid biosynthe-
sis pathway. In the liverwort Marchantia polymorpha,
overexpression of AOC increases OPDA, suggesting that its func-
tion is similar to that of its homologs in flowering plants
(Yamamoto et al., 2015). However, AOC overexpression in M.
polymorpha decreases growth. Likewise, the warm-microbiome
induced expression of enzymes involved in the production of
phenolic compounds, including phenylalanine ammonia lyase
(PAL), which has been implicated in both temperature response
and disease resistance (Huang et al., 2010). In contrast to the heat
shock response, the jasmonic acid and phenolic ontology enrich-
ments disappeared after the plants were exposed to warming. Fur-
thermore, the ambient-microbiome elicted some aspects of
jasmonic acid synthesis as well indicating that more research is
needed to determine if cross-talk with the heat shock response
occurs. Thus, it remains to be determined whether these com-
pounds are contributing to a beneficial thermal preconditioning
or instead reflect a defensive response.

One unexpected observation was that the warm-microbiome
elicited the induction of the heat shock response in plants that
were never exposed to elevated temperatures. Thermotolerance
can be acquired by previous exposure to a sublethal temperature
stress (Kotak et al., 2007). Similarly, plants associated with ben-
eficial rhizosphere microbes can more rapidly mount a defense
response to biotic and abiotic stressors (Conrath et al., 2006).
Although there is a considerable body of literature on the biotic
aspects of microbially induced plant priming, increasing evi-
dence suggests that plants can also be primed against abiotic
stressors. For example, Ali et al. (2009) found that a Pseu-
domonas sp. strain isolated from pigeon pea endemic to an arid
region conferred enhanced survival and growth on sorghum
seedlings exposed to elevated temperatures. This early example
has been corroborated with multiple plant hosts and microbial
strains, yet the underlying genetic mechanisms remain to be
identified (Yamamoto et al., 2015). In most cases studied thus

far, microbially induced resistance to abiotic stress has been
studied in individual strains or small community consortia. By
contrast, in this study we examined how microbial dynamics
within more complex communities interact to influence host
physiology and growth.

Conclusions

Our findings provide a starting point for future studies that sys-
tematically decouple inherent host acclimation responses to chal-
lenging environmental conditions from those of the associated
microbiome. A key benefit of the microbiome transfer and con-
structed community approaches described here is that they allow
the coevolved host–microbiome consortia collected from extreme
environmental conditions to be separated and tested across a
range of thermal experimental conditions. Our observation that
the microbiome can transmit thermotolerant phenotypes has a
number of implications. It sets the stage for moving beyond the
current notion that plants are restricted to ‘adapt or migrate’
strategies for survival to rapidly changing environmental condi-
tions (Lau & Lennon, 2012). The current study provides an
alternative perspective on these outcomes by showing that ther-
motolerant phenotypes can be rapidly transmitted to plant hosts.
We anticipate multiple challenges as the findings of our studies
are transferred beyond the laboratory into ecological systems.
First, additional research is needed to determine the extent to
which inter- and intraspecific genetic variation influences the
plant’s ability to receive microbial benefits, and if so, to identify
the causal alleles. Bringing this goal closer to reality, a genome
sequencing campaign representing some 78 species within the
c. 300-member genus Sphagnum, as well as the development of
high-density genetic maps from sequencing of a 200-member
pedigree cross, are currently underway (Weston et al., 2018).
Second, the identification of responsible microbial taxa is chal-
lenged by large community diversity, complex community inter-
actions and strain isolation limitations. These experimental tests
could take multiple forms, including the dilution and sequencing
of donor microbiomes or strain isolation and testing in our
demonstrated plate-based experimental system or repeat transfers
of field conditioned microbiomes paired with isotope tracing and
metatranscriptomics. Within the context of this study, such an
approach could determine whether microbial benefits are mainly
a function of swapping primary cyanobacteria symbionts for
more thermotolerant members, or whether additional microbial
members are driving the host phenotype. In closing, the current
study revealed that warming altered microbial community struc-
ture in a manner that induced the plant heat shock response,
especially the HSP70 family and jasmonic acid production.
Hsp70 induction occurred even without a warming treatment,
suggesting that the warm-microbiome itself can induce plant
thermal acclimation.
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