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Abstract

Objectives: We propose a framework of health outcomes modeling with dynamic decision-

making and real-world data (RWD) to evaluate the potential utility of novel risk prediction models 

in clinical practice. Lung transplant (LTx) referral decisions in cystic fibrosis offer a complex case 

study.

Methods: We used longitudinal RWD for a cohort of adults (n = 4,247) from the Cystic Fibrosis 

Foundation patient registry to compare outcomes of an LTx referral policy based on machine 

learning (ML) mortality risk predictions to referral based on (1) forced expiratory volume in one 

second (FEV1) alone, and (2) heterogenous usual care (UC). We then developed a patient-level 

simulation model to project number of patients referred for LTx and 5-year survival, accounting 

for transplant availability, organ allocation policy, and heterogenous treatment effects.
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Results: Only 12% (95% CI: 11%, 13%) of patients were referred for LTx over 5 years under 

UC, compared to 19% (18%, 20%) under FEV1 and 20% (19%, 22%) under ML. Of 309 patients 

who died before LTx referral under UC, 31% (27%, 36%) would have been referred under FEV1 

and 40% (35%, 45%) would have been referred under ML. Given a fixed supply of organs, 

differences in referral time did not lead to significant differences in transplants, pre- or post- 

transplant deaths, or overall survival in 5 years.

Conclusions: Health outcomes modelling with RWD may help to identify novel ML risk 

prediction models with high potential real-world clinical utility, and rule out further investment in 

models that are unlikely to offer meaningful real-world benefits.

Precis:

Use of a high performing ML-based risk prediction model for clinical decision-making in cystic 

fibrosis is not expected to improve downstream patient outcomes.

1. Introduction

Despite the rapid development of new risk prediction models (RPMs) using machine 

learning (ML) methodologies, few RPMs have been implemented for use in clinical 

practice.1–4 A recent systematic review found only 51 applications of artificial intelligence 

(AI) in real-world clinical practice in over 15,000 ML or AI publications identified.5 One 

reason for the gap between development and implementation is a lack of evidence on 

the real-world clinical utility offered by new RPMs: the expected change in downstream 

patient outcomes when used for decision-making in clinical practice.6–11 While commonly 

reported improvements in predictive accuracy are necessary for consideration of novel 

RPMs, accuracy alone is insufficient for assessing real-world clinical utility because it does 

not capture the complex clinical context in which the model would be used. Additional 

consideration is needed for real-world factors that impact RPM utility in clinical practice, 

including (1) the true, heterogenous current process for making decisions, and (2) the 

downstream patient outcomes associated with clinical decisions.

Novel RPMs are typically compared to a reference model - an existing risk prediction 

model, biomarker or clinical guidelines.12,13 However, real-world clinical decision-making 

is heterogenous and often deviates from the reference model, with different clinicians 

weighing different factors in decisions, including various pieces of evidence, historical 

experience, and preferences.4,11,14,15 Clinicians may also have additional pieces of 

information, such as expensive tests available for a subset of patients and subjective clinical 

impressions. In such cases, it remains unclear whether an RPM that outperforms a reference 

model would also outperform usual care (UC).

Furthermore, studies rarely relate changes in the discrimination and calibration properties 

of an RPM to changes in downstream patient outcomes.16,17 Some approaches have been 

proposed, such as considering the balance of false positives and false negatives at a given 

threshold.18,19 However, in many cases, treatment effects are heterogenous, with not all true 

positives experiencing the same benefits of treatment and not all false negatives and false 

positives experiencing the same harms of misclassification. In such cases, discrimination 
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will fail to capture the expected patient impacts, for example, that a model which better 

identifies cases with large treatment benefits offers higher clinical utility than a model that 

better identifies cases with smaller treatment benefits.

Our objective was to compare the expected real-world patient health outcomes (survival) 

of using a new RPM for decision-making in clinical practice to those expected under (1) 

usual care, and (2) a reference model. We propose a health outcomes modeling framework 

that relies on real-world data (RWD) to estimate changes in real-world clinical decisions 

and linked downstream outcomes when an RPM is used in clinical practice. We leverage 

RWD to mimic the clinical context in which a novel RPM model would be used, providing a 

clearer picture of consequences in clinical practice.

We selected lung transplant (LTx) referral decisions in cystic fibrosis (CF) as a case study 

for three primary reasons. First, the standard predictor of short-term mortality in CF, 

forced expiratory volume in one second (FEV1), has low positive predictive value,20–25 

and we previously developed an ML-based RPM with better discrimination and calibration 

(Rodriguez et al, submitted). Second, UC for referral decision-making is heterogenous, so 

performance improvements relative to FEV1 may not be indicative of performance relative 

to UC.3,4,26 Third, the relationship between clinical decisions and patient outcomes is 

complex given limited transplant availability27 and heterogenous benefits,28–30 so additional 

consideration of downstream outcomes is needed.

2. Methods

Framework

We propose a general framework to evaluate the expected utility of novel RPMs in real-

world clinical practice, with respect to patient outcomes. This framework has 3 tenets:

1. Use of RWD to mimic patterns of real-world clinical practice. Real-world 

care and decision-making patterns may deviate substantially from expectations 

(i.e., guidelines), which can impact expected outcomes of RPM model use. 

Leveraging real-world data allows the RPM evaluation environment to mirror to 

the real-world context in which the RPM would be used, including patterns of 

utilization and decision-making practices under UC.

2. Dynamic decision-making to reflect intended use in clinical practice. Rather 

than assessing risk model use at a single timepoint, such as baseline, the risk 

model is applied at each encounter over time, using the most recently collected 

values.

3. Health outcomes modeling to evaluate the downstream patient outcomes 
resulting from a clinical decision. We expand outcomes considered in RPM 

evaluation to include the clinical decisions resulting from RPM use and 

subsequent treatment outcomes, accounting for heterogeneity in treatment 

effects.

While our case study considers an ML-based RPM, the framework is equally applicable to 

RPMs developed using more traditional methods, such as logistic regression or biomarkers 
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used for decision-making. Similarly, the framework could be used to compare alternative 

thresholds for decision-making.

Case Study

2.0 Data—We used RWD from the CF Foundation Patient Registry (CFFPR), which 

collects longitudinal, observational data for all US patients seen at CFF-accredited care 

centers who consent to participate.31 Data on patient diagnoses, demographics, encounters, 

care episodes, and annual visits are entered electronically by CF care center staff using 

information from electronic medical records and patient forms.31 The CFFPR covers 

approximately 80% the US CF population, and includes 95% of clinic visits and 90% of 

hospitalizations for participating patients.31 Our cohort included CFFPR adults (≥18 years 

old) who had not undergone LTx by January 1, 2012, and had at least one encounter in 

both 2011 and 2012 (n = 10,615). Our cohort was followed until December 31, 2016. We 

previously split cohort data into training (60%) and validation (40%) sets to develop and 

evaluate the ML model. The 40% validation set (n = 4,247) was used in this patient-level 

simulation.

CFFPR data was linked to United Network for Organ Sharing (UNOS) data, which contains 

additional waitlist, transplant, and post-transplant information for patients listed for LTx. 

UNOS data also contains information on donated organs. The data linkage was performed 

at University of Washington in collaboration with University of Toronto.32,33 This study was 

approved by the University of Washington Institutional Review Board (Study #2270), by 

St Michael’s Hospital, Toronto, Canada (Research Ethics Board #14–148) and the Seattle 

Children’s Research Institute (Study #PIROSTUDY15294).

2.1 Patient-level Simulation Model Structure—We developed a patient-level 

simulation model with 5 mutually exclusive health states: pre-referral, evaluation, waitlist, 

transplanted, and dead (Figure 1). Patients began in the state corresponding to their status on 

January 1, 2012: pre-referral, evaluation, or waitlist. Patients transitioned from pre-referral 

to evaluation at their time referral, which varied between ML, FEV1, and UC policies. 

Evaluation, modeled as a tunnel state, represents the time between referral and waitlisting 

when evaluation for LTx occurs. Surviving patients transitioned to the waitlist, where 

they remained until they were matched with an organ for LTx or died before transplant. 

Transplanted patients remained in the transplanted state until post-transplant death or 

model end. Transitions between states were determined by individual-specific transition 

probabilities, described below, that rely on RWD. We used a cycle time of 1 day and a time 

horizon of 5 years. Modeling was conducted in R.34

2.2 Interventions: Referral Policies—We considered 3 potential policies for referring 

patients for LTx: (1) ML-model based, (2) reference model (FEV1) -based, and (3) usual 

care. The ML policy used individual risk predictions from a previously developed ML model 

for 2-year mortality. The ML model used Super learner, an ensemble ML approach that 

optimally combined multiple underlying models (lasso, elastic net, ridge, XGboost, random 

forest, and support vector machine).35,36 ML had higher discrimination at baseline (AUC: 
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0.914 (95% CI: 0.898, 0.929)) and over time and better calibration than FEV1 (baseline 

AUC: 0.876 (0.858, 0.895)). Additional detail is provided in the Appendix.

The ML-based referral policy was intended to reflect the ML model’s likely use in clinical 

practice. We assumed referral would occur at the first clinic visit where a patient’s predicted 

ML risk exceeded the threshold corresponding to 95% model specificity at baseline, which 

matches the specificity of the common FEV1 <30% criteria.21 However, any alternative 

decision rule could be considered, including different thresholds or more complex rules, 

such as multiple visits when criteria are met. For the FEV1-based policy, referral occurred at 

the first clinic visit with a stable FEV1 < 30% predicted based on the Global Lung Initiative 

equations for % predicted.37 For UC, the referral time was determined using RWD. We 

describe referral in detail in section 2.5.1 below.

2.3 Simulation Population—Our data contains correlated, longitudinal information 

on patients’ visit patterns, lung function, other health factors, predicted ML risk, and 

pre-LTx survival. Simulating a dataset that preserves the complex underlying relationships 

between these variables would be extremely challenging. Rather than imposing strong and 

potentially incorrect distributional assumptions to simulate correlated longitudinal data, we 

use the approach of plasmode simulation, where resampled populations (“plasmodes”) are 

drawn with replacement from observed data.38,39 In this approach, unmodified RWD for 

the resampled population are combined with modeling to simulate unknown elements. In 

our application, we drew 1 resampled population with replacement from observed cohort 

data on each of 1,000 simulation model runs. Resampled patients retained their true, 

observed covariate history up to the time of transplant, including visit history, ML risk 

scores, pulmonary function, and pre-transplant survival. Outcomes of transplant timing and 

post-transplant survival were then simulated, using models described below. We also used 

modeling to synthetically extend patients’ pre-transplant covariate history in cases where 

their actual time of transplant occurred earlier than it would have under an alternative 

policy (i.e. when pre-transplant covariate history is censored by transplant).40 We summarize 

resampled versus modeled elements in Appendix table S1.2.

In general, plasmode simulation is a flexible approach that is useful for preserving the 

underlying relationships between the potentially hundreds of variables in RWD.38 However, 

it is also more computationally intensive than a completely simulated population.

2.4 Outcomes—We compared referral policies on each of the following outcomes: 

5-year overall survival (the sum of time spent in all non-death states), number of 5-year pre-

transplant deaths, and number of post-transplant deaths. Overall 5-year survival is intended 

to capture the population-level impact of using an alternative policy. Because deaths are 

relatively rare and the impact to overall survival may be small, we separately evaluate 5-year 

deaths.
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2.5 State Transitions

2.5.1 Referral (Pre-referral → evaluation)

Model-based policies: Patients’ dynamically updated ML risk predictions and absolute 

contraindications to transplant (mycobacterium abscessus and burkholderia cenocepacia) 

were obtained at each of their pre-transplant clinic visits from 2012 through 2016.41 

ML-based referral occurred at the first clinic visit where predicted risk exceeded a fixed 

threshold corresponding to 95% model specificity and no absolute contraindications to LTx 

were present. Figure 2 provides an example of ML and FEV1 referral under each model for 

one patient.

To reflect guidelines, FEV1-based referral occurred at the first clinic visit where stable FEV1 

was below 30% and no absolute contraindications were present. FEV1 was considered stable 

when no pulmonary exacerbation was documented at the same visit.

For patients who actually received LTx, observed pre-transplant visit history, ML risk 

predictions, and FEV1 were censored at their observed time of transplant, Li. Under an 

alternative policy, referral may not have occurred by time Li, when pre-transplant history 

was censored. In such cases, we synthetically extended ML risk and FEV1 trajectories 

beyond Li.
40 We first generated synthetic visit times beyond Li (i.e. referral opportunities), 

assuming clinic visits would continue at the same frequency observed in the prior 12 

months. We then estimated ML risk and FEV1 at each synthetic visit using separate linear 

mixed effects models. Additional detail is given in the appendix. We separately accounted 

for pre-transplant deaths (i.e. that an individual may not survive until the synthetic visit) and 

truncated synthetic visits at the time of pre-transplant death (see section 2.5.4 below).

Usual Care: Exact referral dates observed under UC are not recorded, but categorical 

transplant status (“not pertinent”, “accepted, on the waitlist”, “evaluated, final decision 

pending”, “evaluated, rejected”, and “had transplantation”) is recorded annually in the 

CFFPR. We used the first year with a status other than “not pertinent” as the UC referral 

year for each patient, then defined a subset of visits where referral could have occurred: 

clinic visits in the referral year and before the listing date. On each simulation run, we 

randomly selected one of these visits as the patient’s UC referral date. To test the validity of 

this assumption, we compared the resulting simulated UC listing time against the observed 

listing time.

2.5.2 Listing (Evaluation → Waitlist): After referral for transplant, patients undergo a 

rigorous evaluation at a lung transplant center to assess whether they are suitable candidates 

for transplant, including evaluation of their health, medical adherence, emotional well-being, 

social support, and finances.27 Because evaluation times are not captured in our data, we 

simulated evaluation times to approximate available estimates26,42 by sampling from a 

truncated normal distribution (mean 4.5 months, standard deviation 4 months, minimum 3 

weeks). Patients’ evaluation time was held constant between policies for each simulation 

run, but varied between simulation runs.
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2.5.3 Organ Allocation (Waitlist → Transplanted): We simulated population-level 

organ allocation to reflect current US policy, whereby new organs are allocated to the 

highest priority, compatible patient on the waitlist. The allocation process is a deterministic 

function of three components: patients on the waiting list (described above), organs available 

for transplantation, and the policy for matching organs to patients.40

Organ Flow: We relied on historical organ data from UNOS to define a flow of organs 

available for transplantation. On each simulation run, we sampled from the average number 

of organs available annually and their characteristics (ABO, height) using organs matched 

to patients in our cohort from 2012 – 2016. Organ dates of availability were sampled from 

a uniform distribution, where all dates were equally likely. We also conducted an expanded 

organ supply scenario analysis with twice as many organs available annually (Appendix 2).

Organ Matching: Lung allocation policy in the US prioritizes patients based on lung 

allocation score (LAS), a measure of expected mortality with and without transplant.43 The 

LAS aims to identify patients with both an urgent need and an expected survival benefit 

of transplant. LAS is calculated daily to prioritize patients on the waiting list. Observed 

LAS measures for waitlisted patients were available in UNOS data for each active day 

on the waiting list. However, alternative policies sometimes resulted in earlier waitlisting 

and/or the waitlisting of patients not listed under UC, such that LAS values were not 

available for all patients at all necessary time points. We therefore imputed LAS at all 

timepoints for all patients listed under any policy using a linear mixed effects model. We 

relied on LAS components that are measured in the CFFPR, and thus available for all 

patients regardless of listing status (age, FVC, BMI, diabetes). Large changes in LAS are 

frequently observed in the days or weeks preceding death or LTx, as patients experience ICU 

admission or the need for mechanical ventilation. To capture such changes in LAS without 

access to these variables, we included a fixed and random effect indicator for whether the 

patient experienced death or transplant in the next 30 days. Additional detail is given in the 

appendix.

Organ-donor compatibility was determined by blood type (ABO) and body size (height). 

When unavailable, we imputed patient ABO using the empirical distribution of ABO in 

each simulation run. While donors and recipients should have similar height (a proxy for 

lung capacity) no fixed thresholds exist for acceptable donor-recipient height differences.44 

We used the 2.5th and 97.5th percentiles of the historically observed distribution of donor-

recipient height difference on each simulation run as bounds for height compatibility.

We assumed no organ decline, no re-listing, and all bilateral transplants. We did not account 

for geographical regions of organ allocation.

2.5.4 Pre-transplant and post-transplant survival: Patients in the pre-referral, 

evaluation, and waitlist states were at risk of pre-transplant death. For patients who were 

never transplanted, complete pre-LTx survival was observed. In our simulation, patients 

observed to die before LTx retained their observed pre-transplant time of death, (Ti | LTx = 
0), unless LTx occurred first. Similarly, patients who survived for the full five-year period 
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retained their observed pre-transplant survival, (Ti | LTx = 0) > 5 years, unless LTx occurred 

first.

Among patients with observed LTx, pre-transplant survival was censored at the observed 

time of transplant, Li. In such cases, (Ti | LTx = 0) was unknown, but greater than Li. 

We relied on a potential outcomes model with time-varying transplant exposure to estimate 

survival in the absence of transplant. Under this model, we assumed that each patient has 

two potential outcomes at any time: (1) survival without transplant at time t, and (2) survival 

with transplant at time t. Only one outcome can be realized for each patient, but information 

from patients with the same likelihood of treatment at time t can inform the counterfactual 

outcome. Because transplant is allocated using LAS, we assumed transplant assignment was 

random among waitlist patients with the same LAS.28 That is, we assumed two patients with 

the same LAS had the same propensity for treatment.

Modeling survival conditional on transplant status using observed data: We estimated 

the impact of time-dependent transplant on survival using an exponential survival model, 

with time-varying covariates for LAS and LTx status. Higher LAS is intended to indicate a 

greater benefit of treatment. We adjusted for gender, age at waitlisting, BMI at waitlisting. 

The model was estimated on waitlisted patients in each simulation run, with time measured 

as time to death since waitlist entry. We provide additional detail in the appendix.

Estimating expected pre- and post-transplant survival for simulation: For patients with 

observed transplant whose pre-transplant survival was censored at Li, we obtained expected 

time of death in the absence of transplant, conditional on survival and history up to Li, (Ti | 
LTx = 0, Ti > Li, Xt). At t=Li, we use the inverse sampling method to obtain Ti | LTx = 0:

Ti t = λ−1 − log Ui *exp − β*Xi t

where U∼Uni(0,1), β is a vector of coefficients and Xi (t) is a vector of covariate values for 

individual i at time t, with the transplant indicator set to 0.

When considering post-transplant survival, a patient’s simulated time of transplant under 

each policy, Li,p*, may vary across policies and/or simulation runs. For example, a patient 

could be transplanted at t=100 days under ML and t=150 days under FEV1. If their clinical 

status declined substantially from 100 to 150 days (e.g. they were admitted to the ICU with 

respiratory failure requiring mechanical ventilation), their expected post-transplant survival 

may be lower when transplant occurs at 150 vs. 100 days. To obtain post-transplant survival 

at each potential transplant time, Li,p*, we again use the inverse sampling method, this time 

considering transplant at each t=Li,p* and setting the transplant indicator at t to 1.

3. Results

Unless otherwise noted, results are presented as estimate (95% confidence interval).

Rodriguez et al. Page 8

Value Health. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Validation

Among patients listed for LTx, the simulated UC listing date was a median of 9 days earlier 

than the observed UC listing date (IQR = 102 days earlier, 157 days later). In observed data, 

466 patients died without transplant, compared to 458 (400, 520) in the simulated UC. 309 

transplants and 65 post-transplant deaths were observed within the 5-year period, compared 

to 287 (244, 327) transplants and 41 (24, 59) post-transplant deaths in our simulated UC.

Clinical Decisions

Most patients remained too healthy for referral in the 5-year period, regardless of policy. 

Only 12.4% (11.4%, 13.4%) of patients were referred for LTx under UC (Table 1). By 

comparison, a uniform application of FEV1 resulted in significantly more patients referred, 

19.2% (18.0%, 20.4%) Referral rates were somewhat higher for ML, 20.4% (19.1%, 21.6%). 

On average, ML resulted in earlier referral than UC, when patients were relatively healthier. 

Characteristics were not significantly different (statistically or clinically), including average 

FEV1 at the time of referral for ML, 31.5% predicted (30.9, 32.2) and UC, 30.9% predicted 

(29.8, 32) (Table 1). Among patients referred under both ML and UC, ML referral occurred 

129 (82, 176) days earlier, on average.

Many patients missed for referral under UC would have been referred by a policy with 

systematic decision-making using either FEV1 or ML (Figure 3). Of patients who died 

without being referred for LTx under UC, ML would have referred 40.0% (35.3%, 44.5%) 

and FEV1 would have referred 31.2% (26.9%, 35.6%).

Patient Outcomes

Transplantation—Despite higher referral rates, there was no difference in overall 

transplantation rates among policies due to real-world constraints in organ supply (Table 

1). State membership over time (Figure 4) shows that given a fixed supply of organs 

available for transplant, relatively higher referral rates under both ML and FEV1 led to 

increased patients on the waiting list, but no change in patients transplanted. At a population 

level, 0.39 (0.30, 0.44) years (of 5), on average, were spent on the waiting list under ML, 

compared to 0.41 (0.36, 0.45) under FEV1 and 0.23 (0.20, 0.27) under UC.

Patient characteristics at the time of LTx were similar among policies. While confidence 

intervals overlapped, patients transplanted under ML were slightly older and had slightly 

higher LAS at the time of transplant, compared to UC. As a measure, higher LAS is 

intended to indicate a higher expected short-term benefit of LTx.

While characteristics at the time of transplant were similar overall, the specific patients who 

received transplant and experienced pre-transplant death differed among policies (Figure 3). 

Under UC, 309 (277, 341) pre-transplant deaths occurred among patients who were never 

referred for LTx. Approximately 20.1% of these pre-transplant deaths were averted under 

ML because patients were referred and transplanted. However, this was offset by fewer 

transplants and more pre-transplant deaths among those who received transplant under UC 

(Figure 3).
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Survival

At a population level, these changes resulted in no significant differences in overall 5-year 

survival, pre-transplant deaths, or post-transplant deaths (Table 3). Overall, 5-year survival 

was approximately 4.7 years under all polices.

Expanded Organ Availability Scenario

In a scenario with twice as many organs available, 441 (404, 479) transplants occurred under 

ML, compared to 412 (376, 442) under FEV1 and 367 (338, 394) under UC (Table S2.1). 

Accordingly, fewer pre-transplant deaths occurred under ML (281 (266, 315)) than UC (359 

(345, 381)) (Table S2.2). Overall 5-year survival was slightly higher for ML (4.77 (4.75, 

4.79)) than UC (4.74 (4.73, 4.76)), but confidence intervals overlapped.

Discussion

We demonstrated an application of patient-level simulation modeling to estimate the real-

world impact of using a novel, ML-based RPM for decision-making in clinical practice. We 

found that improvements in discrimination and calibration for ML did not yield differences 

in expected downstream patient outcomes when used for clinical decision-making. While 

ML did lead to changes in the number of patients referred and referral timing, real-world 

constraints on organ availability limited the extent to which referral decisions could 

influence transplant. However, in a scenario of expanded organ availability, higher referral 

rates under ML led to more transplants and fewer pre-transplant deaths.

We found a significant difference between the clinical decisions expected under FEV1 alone, 

the reference model, and those observed in clinical practice. While 799 patients (19.2%) 

would have been referred within the 5-year period under FEV1, only 519 (12.4%) were 

actually referred in UC. Despite documented differences between clinical decision-making 

and FEV1,
3,4 comparisons to FEV1 are standard for new models in CF.21,24,25

Our work suggests that additional comparisons to UC are needed to assess model 

performance. While any new RPM must predict better than an existing RPM to add value, 

improvements relative to a reference model may be a poor proxy for real-world clinical 

utility when clinical decision-making is heterogenous. RWD can be used to develop a 

real-world UC comparator.

Currently, the primary approach for assessing a model’s real-world clinical utility is an 

impact evaluation study - a cluster-randomized trial, where patient outcomes are compared 

for groups of clinicians with access to a novel model versus those following UC.8,10,45,46 

Such studies are typically undertaken as a final step before implementation.14 In contrast, 

our approach uses RWD to assess the potential clinical impact in the relatively early model 

evaluation stage. This approach can rule out further investment in models that have limited 

usefulness in real-world settings. While simulation-based evaluation does not capture the 

complex ways that clinicians interact with models to make decisions,14,15 it can be used as 

a first step for demonstrating clinical utility before conducting RCTs. Further, the approach 

could be extended to include costs and utility measures for cost-effectiveness analysis.
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The use of health outcomes modelling to evaluate a new diagnostic test is not new.47 

However, health outcomes modelling to evaluate new RPMs specifically remains minimal.16 

In contrast, statistical approaches for assessing clinical have gained relatively more 

popularity,18,19,48 but do not generally capture the clinical context in which models would be 

used.

Our simulation involves several important assumptions. We considered only absolute 

contraindications to LTx, which may have resulted in over-referral of patients under 

FEV1 and ML policies. Many contraindications are relative and vary by center, with 

larger and more experienced centers willing to accept more complex cases.27,49,50 We 

assumed a marginal distribution of evaluation time with no rejection for listing, which may 

not accurately reflect patient-specific factors that influence evaluation times or rejection. 

However, median simulated listing time was within 10 days of observed times, suggesting 

this assumption was acceptable on average. Finally, we are unable to distinguish between 

clinician decision-making and patient preferences using RWD. Lower rates of referral under 

the UC may represent patient preferences for non-referral, rather than clinician decisions not 

to refer patients. These complexities can be measured through impact evaluation.

More generally, RWD, including that used in our study, presents issues with missingness and 

infrequent data collection for some patients. We used imputation approaches to address 

missingness at multiple levels, including in longitudinal biomarkers and LAS values. 

However, to the extent individuals with missingness are unlike those with complete data, the 

results of our analysis may be biased. Imputation strategies for longitudinal measures and 

time to event outcomes in RWD is an important topic of future research. Additionally, while 

heterogeneity in our study was established through use of RWD, the impact of heterogeneity 

on downstream outcomes is an important area for future research.

5. Conclusion

We used a health outcomes modeling framework with RWD to assess the potential real-

world clinical utility of a novel, ML-based RPM for LTx referral decisions in CF. We found 

differences in clinical decisions under the RPM versus UC, but no change in downstream 

patient outcomes due to constraints in organs available for transplantation. The ML and 

FEV1 policies effectively increased early referral compared to UC, supporting systematic 

approaches to referral decisions to increase access to the expertise and treatment available at 

lung transplant centers. Efforts to expand organ availability may be necessary to reap clinical 

benefits from earlier referral of CF patients. While constraints in transplant availability are 

unique to the organ allocation setting, complex real-world factors that impact current clinical 

decisions and outcomes are common across clinical applications. Health outcomes modeling 

with RWD can be used to account for these complex real-world factors. When conducted as 

part of RPM model evaluation, this approach can identify novel, ML-based RPMs that are 

likely to benefit patients in real-world clinical practice, and rule out further investment in 

RPMs with limited benefits.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Microsimulation Model
Microsimulation model with 5 mutually exclusive health states: pre-referral, evaluation, 

waitlist, transplanted, and dead. Patients waitlisted before model start begin in the waitlist 

state, all other patients begin in pre-referral. A patient moves from pre-referral to evaluation 

at the time of referral (orange arrow), which varies between policies.
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Figure 2: Patient trajectory and referral example.
Risk of 2-year mortality from the ML model and FEV1 % predicted for an example patient 

at each clinic visit. For the ML model, a patient is referred at the first visit where risk 

exceeds the threshold, denoted by a change in line color. For FEV1, referral occurs at the 

first visit where FEV1 is lower than 30%, denoted by a change in line color.
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Figure 3: Patient Referral and Outcome, by UC Referral Status.
Average number of referrals, transplantations, and pre-LTx deaths, and post-LTx deaths in 5 

years, by referral status under UC.
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Figure 4: State membership over time, by policy
The average number of patients in each state except pre-referral for the 5-year time horizon. 

Population average years spent in each state (95% CI) is shown.
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Table 1:

Patient Characteristics at Time of Referral and Transplant, by Policy.

ML FEV1 UC

Characteristics at Time of Referral 

Patients Referred (n) 851 (797, 904) 799 (746, 851) 518 (477, 560)

Age 32.9 (32.1, 33.6) 33 (32.3, 33.8) 33.4 (32.5, 34.4)

FEV1 % Predicted 31.5 (30.9, 32.2) 26 (25.8, 26.3) 30.9 (29.8, 32)

Risk of 2-year mortality 34.8% (34.0%, 35.7%) 27.8% (26.5%, 29.1%) 30.6% (29.1%, 32.2%)

Characteristics at Time of LTx 

Patients Transplanted (n) 294 (241, 345) 292 (241, 340) 287 (241, 325)

Age 35.9 (34.3, 37.5) 35.6 (33.9, 37.2) 34.1 (32.8, 35.6)

FEV1 % Predicted 29.2 (26, 32.6) 28.4 (25.2, 31.7) 29.6 (27.4, 32.3)

LAS 51.6 (47.3, 57.4) 50.5 (46.4, 56.3) 47.9 (44.7, 51.9)

Mean (95% CI) at the time of referral and transplant by policy. Abbreviations: ML: machine learning; FEV1: forced expiratory volume in 1 second; 

UC: usual care.
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Table 3:

Expected Outcomes by Policy

Policy Model AUC at Baseline* Pre-transplant Deaths Post-Transplant Deaths Overall 5-Year Survival

ML 0.914 (0.898, 0.929) 383 (332, 436) 47 (29, 69) 4.75 (4.72, 4.77)

FEV1 0.876 (0.858, 0.895) 389 (339, 442) 46 (29, 69) 4.74 (4.71, 4.77)

UC - 411 (367, 459) 41 (24, 59) 4.73 (4.70, 4.76)

Model area under the receiver operating curve (AUC) at baseline was previously measured in model assessment (Rodriguez et al, submitted). 
Abbreviations: ML: machine learning; FEV1: forced expiratory volume in 1 second; UC: usual care.
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