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Simple Summary: We propose a Divide-and-Attention network that can learn representative patho-
logical image features with respect to different tissue structures and adaptively focus on the most
important ones. In addition, we introduce deep canonical correlation analysis constraints in the fea-
ture fusion process of different branches, so as to maximize the correlation of different branches and
ensure that the fused branches emphasize specific tissue structures. Extensive experiments on three
different pathological image datasets show that the proposed method achieved competitive results.

Abstract: Since pathological images have some distinct characteristics that are different from natural
images, the direct application of a general convolutional neural network cannot achieve good classifi-
cation performance, especially for fine-grained classification problems (such as pathological image
grading). Inspired by the clinical experience that decomposing a pathological image into different
components is beneficial for diagnosis, in this paper, we propose a Divide-and-Attention Network
(DANet) for Hematoxylin-and-Eosin (HE)-stained pathological image classification. The DANet
utilizes a deep-learning method to decompose a pathological image into nuclei and non-nuclei parts.
With such decomposed pathological images, the DANet first performs feature learning independently
in each branch, and then focuses on the most important feature representation through the branch
selection attention module. In this way, the DANet can learn representative features with respect
to different tissue structures and adaptively focus on the most important ones, thereby improving
classification performance. In addition, we introduce deep canonical correlation analysis (DCCA)
constraints in the feature fusion process of different branches. The DCCA constraints play the role
of branch fusion attention, so as to maximize the correlation of different branches and ensure that
the fused branches emphasize specific tissue structures. The experimental results of three datasets
demonstrate the superiority of the DANet, with an average classification accuracy of 92.5% on breast
cancer classification, 95.33% on colorectal cancer grading, and 91.6% on breast cancer grading tasks.

Keywords: pathological image classification; attention mechanism; convolutional neural network;
knowledge embedding

1. Introduction

Accurate cancer classification and grading can help doctors make overall treatment
plans and predict prognosis. Pathologists examine the Hematoxylin-and-Eosin (HE)-
stained pathological sections to complete the pathological diagnosis, which is usually the
gold standard. Hematoxylin is an alkaline dye that can stain basophilic tissue structures
(such as the chromatin in the nucleus) as purple–blue; in contrast to hematoxylin, eosin
is an acidic dye that can stain eosinophilic tissue structures (such as the components in
the cytoplasm and extracellular matrix) as red. Therefore, the pathologist can visually
distinguish the nuclei part from the non-nuclei part.
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Although deep-learning methods have greatly improved the performance of patholog-
ical image classification [1], they seldom exploit the inherent characteristics of pathological
images, such as the irregularity of tumor cells and tissues, and the inter- and intra-nuclear
color variations. Therefore, the direct application of general deep-learning methods cannot
achieve satisfactory classification results; especially the fine-grained classification problems
(such as pathological image grading) cannot be handled well.

The algorithm performance can be further improved with the help of medical knowl-
edge [2], but how to embed medical knowledge into the end-to-end learning of the algo-
rithm still faces huge challenges. Some current work has been explored along this line, and
one of the best practices is to leverage the medical anatomy knowledge [3–5]. However,
the medical anatomy knowledge cannot be well reflected in pathological images. This is
because pathological images reflect microscale phenotypes (tissue and cell levels), which
are too microscopic with too few specific rules to follow. Especially cancer occurrence and
development make it even more irregular.

In this paper, to leverage the medical staining knowledge belonging to HE-stained
pathological image, we propose a Divide-and-Attention Network (DANet) for pathological
image classification. The DANet utilizes a deep-learning method to decompose a patholog-
ical image into nuclei and non-nuclei parts. With such decomposed pathological images,
the DANet first performs feature learning independently in each branch, and then focuses
on the most important feature representation through the branch selection attention. In this
way, the DANet can learn more representative features with respect to different tissue struc-
tures and adaptively focus on the most important ones, thereby improving classification
performance. This is similar to the traditional divide-and-conquer algorithm design idea. A
complex problem is first decomposed into sub-problems with the help of prior knowledge,
and then the answers to the sub-questions are fused to yield the final result. For the DANet
method, the sub-question answers correspond to the feature representation independently
learned by each branch of the DANet, and the fusion of sub-question answers corresponds
to the attention mechanism of the DANet.

In addition, we introduce deep canonical correlation analysis (DCCA) in the feature
fusion process of different branches. The basic idea behind DCCA is to maximize the
correlation of different multidimensional variables and extract common components. In the
DANet, the DCCA constraints can play the role of branch fusion attention in the feature fu-
sion of different branches. For example, after the fusion of the main branch (original image)
and the down branch (containing only the nuclei) under DCCA constraints (nuclei atten-
tion), the obtained middle branch can pay more attention to the “nuclei-related features”.

We conducted experiments on breast cancer classification, colorectal cancer grad-
ing, and breast cancer grading, and achieved an average classification accuracy of 92.5%,
95.33%, and 91.6%, respectively. The experimental results show that the DANet achieved
competitive performance and could play a fundamental role in HE-stained pathological
image analysis.

2. Related Works
2.1. Pathological Image Classification

Pathological image classification methods can be summarized into three categories
from the following perspectives: Patch-wise (hundreds × hundreds of pixels) meth-
ods, image-wise (thousands × thousands of pixels) methods, and WSI-wise (tens of
thousands × tens of thousands of pixels) methods. Patch-wise pathological image classifi-
cation methods are the basis of the image-wise and WSI-wise methods. In this work, we
only focus on the patch-wise methods. Spanhol et al. [6] published BreaKHis, a pathological
image classification dataset of benign and malignant breast cancer. On the basis of this
dataset, Spanhol et al. [6] used the AlexNet network and a variety of fusion strategies to
perform patch classification, and the classification accuracy was increased by 6% compared
with traditional machine-learning algorithms. Also based on the BreaKHis dataset, Bayra-
moglu et al. [7] used a deep-learning method that did not depend on image magnification,
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and the accuracy of patch classification was about 83%. Araujo et al. [8] further studied
the four-classification of breast cancer pathological images (normal tissue, benign tissue, in
situ carcinoma, and invasive carcinoma). They first used a convolutional neural network
(CNN) to extract the features of the patch, and then used the support vector machines
(SVM) algorithm to classify. The average patch-wise classification accuracy was 77.8%.
Jiang et al. [9] proposed a novel CNN with a SE-ResNet module, which is an improvement
on the combination of the residual module and the squeeze-and-excitation block. Their
method achieved an accuracy between 90.66% and 93.81% for the four-class pathological
image classification.

Pathological image grading is a fine-grained classification task. The difference be-
tween pathological images of different grades is very subtle, and general deep-learning
methods cannot handle such tasks well. Therefore, for different pathological image grading
tasks, researchers have designed different network structures and methodological frame-
works [10–12]. Wan et al. [10] used a cascade method to distinguish low-, intermediate-,
and high-level breast cancers. They first separately obtained semantic-level features ex-
tracted by a CNN, pixel-level texture features, and object-level structural features, and then
combined all these image features for breast cancer grading. Yan et al. [11] proposed a
breast cancer grading network (NANet) that can focus on nuclei-related features through
end-to-end learning. The current colorectal cancer grading method ignores the importance
of the tissue microenvironment, which can be evaluated by cell-level information and
gland morphology. To overcome these shortcomings, Zhou et al. [13] proposed a Cell
Graph Convolutional Neural Network (CGC-Net). The CGC-Net converts a pathological
image into a graph, in which each node is represented by a cell nucleus in the original
pathological image, and the edges between nodes (cell interaction) are represented by
node similarity. The results show that compared with the traditional patch-based method,
modeling the image as a graph can effectively process pathological images with larger
pixels, and can model complex tissue microenvironments. In addition, there is also a
semi-manual grading method, which first decomposes the pathological image grading
task into some easily identifiable indicators according to medical knowledge, and then
separately calculates these indicators to obtain the final result. For example, when grading
breast cancer, we can first obtain the three indicators of Nottingham Grading System (NGS):
(1) nucleus pleomorphism [14], (2) tubular formation [15], and (3) mitotic count [16], and
then integrate these three indicators to decide the final grading diagnosis. A preliminary
pathological image classification method that we proposed (Decomposition-and-Fusion
Network, DFNet) was published as a conference paper [17]. On the basis of the DFNet, we
put forward new contributions in branch selection attention and branch fusion attention to
learn more representative pathological features.

2.2. DCCA in Multi-Modal Fusion

Canonical correlation analysis (CCA) [18] is a widely used method in statistics to
measure the linear relationship between two multidimensional variables. Let (X1, X2)
denote random vectors. The CCA finds pairs of linear projections of the two variables that
are maximally correlated:

(w∗1 , w∗2) = argmax
W1,W2

corr
(
wᵀ

1 X1, wᵀ
2 X2

)
· x (1)

Hardoon et al. [19] introduced CCA to machine learning, and Andrew et al. [20]
further proposed a deep neural network extension of CCA, termed DCCA, which computes
representations of the two modes by passing them through multiple fully connected layers.
Adding DCCA constraints to multi-modal fusion can maximize the correlation of different
modes and extract common components [21–24]. For example, Liu et al. [21] introduced
DCCA to a multi-modal emotion recognition task and Sun et al. [22] proposed learning
multi-modal (text, audio, and video) embeddings using DCCA for the improvement of
sentiment detection.
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2.3. Attention Mechanism

Inspired by human attention, the attention mechanism has been developed in deep-
learning methods [25]. Human vision quickly scans the global image to obtain the region
of interest, and then focuses on this area, thereby suppressing other irrelevant information.
There are many excellent deep-learning methods based on attention mechanisms, such
as the SENet [26], Weight Excitation [27], CBAM [28] and Dual Attention Network [29].
The self-attention mechanism is a variant of the attention mechanism, which is good at
capturing the internal correlation between input data. The Vision Transformer (ViT) [30] is
an excellent method for applying self-attention mechanisms to the computer vision field.
The research performed model pre-training based on a large amount of data that are then
transferred to multiple image classification benchmark datasets. The results show that the
ViT model can obtain results comparable to the current state-of-the-art CNN methods, while
the computing resources required for its training are greatly reduced. Based on the ViT,
the breakthrough progress of the Swin Transformer [31], Pyramid Vision Transformer [32],
and Neighborhood Attention Transformer [33] on multiple tasks makes it possible to
use a ViT-like model as an alternative to a CNN. In the field of multi-instance learning,
the attention-based pooling operation [34] significantly improves the performance of the
algorithm. Inspired by this work, we adopted an attention mechanism in the multi-branch
fusion stage.

2.4. Nuclei Segmentation

Nuclei segmentation is used in the pathological image decomposition part of the
proposed method, so we also briefly introduce the related deep-learning-based nuclei
segmentation methods. The robustness of the traditional nuclei segmentation methods [35]
is poor due to the inter- and intra-nuclear color variations in crowded and chromatin-sparse
nuclei. Methods based on deep learning, especially methods based on CNN, can obtain
excellent results from the challenging images of nuclei segmentation because they can
adaptively learn from big data end-to-end. Chen et al. [36] presented a deep contour-aware
network that integrates multi-level contextual features to segment glands and nuclei. They
define the segmentation problem as a multi-instance classification problem by explicitly
harnessing the complementary appearance information and contour information. Kumar
et al. [37] introduced a large HE-stained pathological image dataset with more than 21,000
annotated nuclear boundaries; they also proposed a CNN-based segmentation method
that lays special emphasis on identifying the nuclear boundaries. With the help of the
information encoded within the vertical and horizontal distances of nuclear pixels to
their centers of mass, Graham et al. [38] presented a Hover-Net for simultaneous nuclei
segmentation and classification. A more comprehensive review of nuclei segmentation
methods can be found in the review literature [35].

3. Methods

In this section, we first describe the pathological image decomposition part (that is,
the nuclei segmentation network) in Section 3.1, then describe the pathological image
classification part (that is, the architecture of the DANet) in Section 3.2. In Section 3.3,
we introduce one of the key modules in DANet: the branch selection attention module.
Finally, we introduce the proposed loss function, especially the introduced deep canonical
correlation analysis loss, in Section 3.4.

3.1. Pathological Image Decomposition Part

The main purpose of HE staining is to distinguish the nuclei and non-nuclei parts
(cytoplasm, extracellular matrix). With simple color decomposition, it is impossible to
achieve medically meaningful pathological image decomposition due to the large inter-
and intra-nuclear color variations. If we can achieve the nuclei segmentation task, then the
goal of decomposing HE-stained images can also be achieved.
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We used DeepLabV3+ [39] to perform nuclei segmentation. DeepLabV3+ proposes
an encoder–decoder network structure, in which the encoder is able to encode multi-scale
contextual information by using the Atrous Spatial Pyramid Pooling (ASPP) module, and
the decoder can capture sharper object boundaries by gradually recovering the spatial infor-
mation. This advantage of DeepLabV3+ is particularly helpful in solving the hurdles of the
nuclei segmentation task, such as the nuclei size difference and nuclei boundary overlap.

Given a pathological image Imain, the output of DeepLabV3+ is the nuclei segmentation
mask M. The network structure of DeepLabV3+ is shown in Figure 1. In the encoder stage,
DeepLabV3+ first uses Xception as the network backbone to perform feature extraction on
Imain, and then feeds it into the ASPP module. The ASPP effectively captures multi-scale
features through five parallel branches: one 1 × 1 convolution, three 3 × 3 convolutions
with atrous rates = (6, 12, 18), and a global average pooling. The resulting feature maps from
all the five branches are then concatenated and passed through another 1× 1 convolution to
generate the encoder output. In the decoder stage, the encoder output is firstly upsampled
by 4 times, and then concatenated with the low-level features extracted from the network
backbone Xception. The purpose of the 1 × 1 convolution on low-level features is to reduce
the number of channels. After the concatenation, we apply a 3 × 3 convolution to refine
the features followed by another upsampling by a factor of 4. Finally, the decoder outputs
the prediction result.

Biology 2022, 11, x  5 of 18 
 

3.1. Pathological Image Decomposition Part 
The main purpose of HE staining is to distinguish the nuclei and non-nuclei parts 

(cytoplasm, extracellular matrix). With simple color decomposition, it is impossible to 
achieve medically meaningful pathological image decomposition due to the large inter- 
and intra-nuclear color variations. If we can achieve the nuclei segmentation task, then 
the goal of decomposing HE-stained images can also be achieved. 

We used DeepLabV3+ [39] to perform nuclei segmentation. DeepLabV3+ proposes 
an encoder–decoder network structure, in which the encoder is able to encode multi-scale 
contextual information by using the Atrous Spatial Pyramid Pooling (ASPP) module, and 
the decoder can capture sharper object boundaries by gradually recovering the spatial 
information. This advantage of DeepLabV3+ is particularly helpful in solving the hurdles 
of the nuclei segmentation task, such as the nuclei size difference and nuclei boundary 
overlap. 

Given a pathological image 𝐼, the output of DeepLabV3+ is the nuclei segmenta-
tion mask M. The network structure of DeepLabV3+ is shown in Figure 1. In the encoder 
stage, DeepLabV3+ first uses Xception as the network backbone to perform feature extrac-
tion on 𝐼 , and then feeds it into the ASPP module. The ASPP effectively captures 
multi-scale features through five parallel branches: one 1 × 1 convolution, three 3 × 3 con-
volutions with atrous rates = (6, 12, 18), and a global average pooling. The resulting feature 
maps from all the five branches are then concatenated and passed through another 1 × 1 
convolution to generate the encoder output. In the decoder stage, the encoder output is 
firstly upsampled by 4 times, and then concatenated with the low-level features extracted 
from the network backbone Xception. The purpose of the 1 × 1 convolution on low-level 
features is to reduce the number of channels. After the concatenation, we apply a 3 × 3 
convolution to refine the features followed by another upsampling by a factor of 4. Finally, 
the decoder outputs the prediction result. 

 
Figure 1. The architecture of DeepLabV3+ applied to nuclei segmentation. 

3.2. Pathological Image Classification Part 
The proposed DANet has three inputs (𝐼, 𝐼ௗ௪, 𝐼௧ ). The input to the main 

branch is the original pathological image 𝐼 , and the inputs to the two auxiliary 
branches are two images: one image 𝐼ௗ௪ containing only the nuclei, and the other image 𝐼௧ containing the non-nuclei, respectively. The relationships between the three inputs 
are: 𝐼ௗ௪ =  𝑀 ∗ 𝐼,  (2)

Figure 1. The architecture of DeepLabV3+ applied to nuclei segmentation.

3.2. Pathological Image Classification Part

The proposed DANet has three inputs (Imain, Idown, Itop). The input to the main branch
is the original pathological image Imain, and the inputs to the two auxiliary branches are
two images: one image Idown containing only the nuclei, and the other image Itop containing
the non-nuclei, respectively. The relationships between the three inputs are:

Idown = M ∗ Imain, (2)

Itop = Imain − Idown. (3)

The three branches (top, main, down) of the DANet first perform feature extraction
independently. Then, the output feature maps of these three branches are fed to the branch
fusion blocks, deriving two middle branches. At the end of the five branches, we apply
global average pooling (GAP) to obtain five one-dimensional feature vectors. These five
feature vectors are fed into the branch selection attention module to adaptively select the
most important feature representation derived from the five branches. In this way, the
DANet can learn more representative features with respect to different tissue structures
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and adaptively focus on the most important ones. The resulting features from the branch
selection module are then passed through the fully connected neural network to yield the
final classification result. The overall network structure of the DANet is shown in Figure 2.
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attention (DCCA loss). After the independent feature extraction of a single branch and feature fusion
of different branches, we use GAP to compress the feature maps obtained from the five branches
into five feature vectors. Finally, the five feature vectors are passed through the branch selection
attention module and the fully connected network to obtain the final classification result. The loss
function for the DANet is defined as the combination of the cross-entropy loss and DCCA loss
(indicated in yellow).

We use Xception [40] as the CNN backbone for independent feature representation
learning. Due to its lightweight design, the total parameter of Xception is about 23 M,
which gives rise to the total parameter of the DANet model of about 95 M. Although the
number of parameters of the DANet has increased, there is still a 32% reduction compared
to VGG16 (139 M).

In the branch fusion block, the output feature maps (Xtop and Xdown) extracted from
each auxiliary branch are concatenated with the output feature map (Xmain) extracted from
the main branch, respectively. Next, the 1 × 1 and 3 × 3 convolution operations follow.
The purpose of the 1 × 1 convolution operation is to fuse information between channels
and also to compress feature maps [41]. The purpose of the 3 × 3 convolution operation is
to perform feature learning again after fusion. The formulas are denoted as follows:

Xk = fXcep(Ik), k ∈ {top, main, down}, (4)

Xmid1 = fmid1
(
Xmain, Xtop

)
, (5)

Xmid2 = fmid2(Xmain, Xdown), (6)

where X represents the feature maps and I represents the input images. fXcep(.) represents
the extraction of last feature maps from Xception backbone. fmid(.) represents the fusion
block. In this work, the dimension of Xk is (10, 10, 512). After the fusion block, we use GAP
to compress the feature maps obtained from the five branches into five feature vectors:

Vk = fGAP(Xk), k ∈ {top, mid1, main, mid2, down}. (7)



Biology 2022, 11, 982 7 of 17

Finally, the five feature vectors Vk are passed through the branch selection attention mod-
ule fatt(.) and the fully connected network fFCN(.) to obtain the final classification result.

Y = fFCN
(

fatt
(
Vtop, Vmid1, Vmain, Vmid2, Vdown

))
, (8)

where Y represents the image label. The attention module and loss function are described
in detail below.

3.3. Branch Selection Attention Module

The DANet first performs feature learning independently in each branch. Specifically,
in addition to the general feature representation learned by the main branch, the DANet also
learns more feature representations: the top branch learns “non-nuclei-related features”, the
down branch learns “nuclei-related features”, and the two middle branches further learn to
emphasize the features related to the nuclei or non-nuclei on the basis of the general features.
Since different classification tasks have different requirements for the learned feature
representation, we hope that the network can adaptively focus on the required feature
representation through learning. Inspired by the attention-based pooling operation in multi-
instance learning [34], we propose the branch selection attention module in the DANet.
In this way, the DANet is able to learn features with respect to different structures and
adaptively focus on the most important ones, thereby improving classification performance.

The five branches of the DANet output five one-dimensional feature vectors: Vk,
where Vk ∈ RL and k ∈ {top, mid1, main, mid2, down}. The output of the branch
selection attention module can be calculated as follows:

z = ∑ (akVk), (9)

ak =
exp

{
wᵀtanh

(
QVᵀ

k
)}

∑k
j exp

{
wᵀtanh

(
QVᵀ

j

)} , (10)

where ak represents the attention weight, and w ∈ R5×1 and Q ∈ R5×L are learnable
parameters. In this paper, we take L = 512. See Figure 3 for the detailed network structure
of the branch selection attention module.
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3.4. Loss Function

The loss function for the DANet is defined as the combination of the cross entropy
(CE) loss and DCCA loss:

LCE = − 1
m

m

∑
i=1

k

∑
k=1

qm
k log(pm

k ), (11)

LDANet = λ1LCE + λ2LDCCA, (12)
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where qm
k and pm

k indicate the ground truth and prediction probability of the mth image
for kth class, and λ1 and λ2 are hyperparameters. Here, we introduce deep canonical
correlation analysis (DCCA) [20] for the feature fusion of different branches. The basic
idea behind DCCA is to maximize the correlation of different multidimensional variables
and extract common components. In the DANet, the DCCA constraints act as the branch
fusion attention in the feature fusion of different branches. For example, the middle branch
obtained after the fusion of the main branch (containing the original image) and the down
branch (containing only the nuclei) under DCCA constraints can pay more attention to the
“nuclei-related features”, which are important in certain HE-stained pathological image
classification tasks (such as breast cancer grading).

We take the feature fusion of the main and down branches as an example to illustrate
DCCA, and the feature fusion of the main and top branches is exactly the same. Let I1 be
the input for the main branch and I2 be the input for the down branch. After the following
nonlinear transformation, we can obtain the output of the two branches: H1 and H2, which
are formulated as:

Hk = fFC
(

fGAP
(

fXcep(Ik)
))

, k ∈ {1, 2}. (13)

Let Wk denote all the parameters for the non-linear transformations. The goal of DCCA
is to jointly learn the parameters Wk to maximize the correlation of H1 and H2:

W∗k = arg max
Wk

corr(H1, H2). (14)

To find W∗k , we follow the way used by Andrew et al. [20] to express the solution to this
objective. Let Hk ∈ RN×d be matrices whose columns are the feature representation vector.
Here, N is the batch size, and d is the dimension of the extracted feature representation
vector. Let Hk = Hᵀ

k −
1
N Hᵀ

k 1 be the centered output matrix, and define ∑ 12 = 1
N−1 H1 Hᵀ

2

and ∑ 11 = 1
N−1 H1 Hᵀ

1 + r1I. Here, r1 is a regularization parameter (similar to ∑ 22). In
this paper, we take m = d, then the total correlation can be denoted as:

T = ∑
−1/2

11 ∑12∑
−1/2

22 , (15)

corr(Hmain, Hdown) = (tr(TᵀT))
1
2 , (16)

therefore, the DCCA loss is to minimize LDCCA:

LDCCA = −corr(Hmain, Hdown)− corr
(

Hmain, Htop
)
. (17)

4. Results and Discussion
4.1. Evaluation Metrics and Training Details

The existing works mainly use accuracy and AUC metrics to evaluate the performance
of HE-stained pathological image classification methods, and we also followed this tradition.
The accuracy, sensitivity, specificity, and F-score (the harmonic mean of precision and
sensitivity) metrics can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (18)

Sensitivity =
TP

TP + FN
, (19)

Specificity =
TN

TN + FP
, (20)

F− score =
2TP

2TP + FP + FN
, (21)
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where TP, TN, FP, and FN represent the True Positive, True Negative, False Positive, and
False Negative, respectively.

We randomly selected 80% of the dataset to train and validate the model, and the
remaining 20% was used for testing. The model parameters in LDANet are given by
λ1 = λ2 = 0.5. We adopted the Adam algorithm with β1 = 0.9 and the learning rate lr = 0.001
to train the DANet. The regularization constant r1 = r2 = 0.001. For DeepLabV3+, when the
training steps were 100,000, the best experimental results were achieved. The values of the
atrous rates we used were 6, 12, and 18, and the output stride we adopted was 16.

4.2. Datasets and Preprocessing
4.2.1. Breast Cancer Classification Dataset

The publicly available dataset of breast cancer (BC) pathological image classification
proposed by Yan et al. [42] contains 3771 high-resolution (2048 × 1536 pixels) images.
Among them, the number of pathological images of normal, benign, in situ carcinoma
and invasive carcinoma is 299, 1106, 1066, and 1300, respectively. All the pathological
images are divided into non-overlapping 512 × 512 patches. Due to the data imbalance,
we separately enhanced the normal category. After preprocessing, the final BC dataset
included 45,660 patches, which consisted of 10,000 normal, 10,672 benign, 11,630 in situ,
and 13,358 invasive patches. An example of the dataset is shown in Figure 4. Another
widely used dataset was released by the grand challenge on Breast Cancer Histology images
(BACH) [43]. The dataset contains four categories, each with 100 pathological images. Most
of the published papers are based on this dataset. Therefore, we also made comparisons
with the proposed state-of-the-art methods based on this dataset.
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4.2.2. Colorectal Cancer Grading Dataset

For the task of colorectal cancer grading, Awan et al. [44] proposed a dataset consisting
of 139 high resolution (4548 × 7548 pixels) pathological images, comprising 71 normal,
33 low-grade, and 35 high-grade images. Similar to the preprocessing steps of the breast
cancer classification dataset above, all the images of 4548 × 7548 pixels were divided into
patches of 512 × 512 pixels, and the patch-level label was derived from the image-level
label. To make the divided image size exactly an integer multiple of 512, we first resized the
original images to 4608 × 7680. Thereby, an original pathological image could be divided
into 135 non-overlapping patches (512 × 512 pixels). After cutting, the colorectal cancer
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dataset included 15,303 patches, which consisted of: 6716 normal, 4348 low-grade and
4239 high-grade cancer patches.

4.2.3. Breast Cancer Grading Dataset

Currently, there are mainly two public datasets on breast cancer pathological image
grading, of which the largest amount of data is proposed by Yan et al. [11]. A total of
3644 high-resolution (1000 × 1000 pixels) breast IDC images are included. Among them,
the number of pathological images of Grade1, Grade2 and Grade3 are: 961, 1121, 1562.
Unlike the other two datasets we used, the image resolution of this dataset was not too
high, so we did not perform non-overlapping cutting. Instead, regular data enhancements,
such as zoom, flip, constant, brightness, contrast, crop, etc., were carried out. After data
augmentation, the BC grading dataset included 32,820 pathological images, which consisted
of: 9610 Grade1, 11,210 Grade2 and 12,000 Grade3 images. The experiment was conducted
on this dataset. Another widely used dataset was proposed by Kosmas et al. [45]. The
dataset includes 300 pathological images, which consist of: 107 Grade1 images, 102 Grade2
images, and 91 Grade3 images, all with a resolution of 1280 × 960. Most of the published
papers are based on this dataset. Therefore, we also made comparisons with the proposed
state-of-the-art methods based on this dataset.

4.2.4. Nuclei Segmentation Dataset

The nuclei segmentation dataset released by Kumar et al. [37] includes 21,623 an-
notated nuclei boundaries. Due to this dataset being taken from multiple centers and
including a diversity of nuclei appearances from multiple organs, segmentation models
trained on it are likely to generalize well and can be better transferred to other HE-stained
images. An example of the pathological image and nuclei annotation contained in the
dataset is shown in Figure 4.

4.3. Breast Cancer Classification Results

We first conducted experiments on the breast cancer classification task to verify the
effectiveness of DANet. For the four-class BC classification, based on the dataset published
by Yan et al. [42], the proposed framework achieved an average accuracy of 92.5%. The
proposed framework refers to: the patch-wise method (the DANet with Xception backbone)
+ the image-wise method (majority voting). Due to the high resolution of images contained
in the original dataset, the current best practice is to divide the image into patches of the
same size. The patch classification results are obtained by the patch-wise method first, and
then the classification results of all the patches are fused in order to obtain the image-wise
classification results. To focus on evaluating the patch-wise classification performance
of the DANet, the image-wise method was fixed as the simplest majority voting (MV).
Even with such a simple image-wise method, the proposed framework still achieved a
higher classification accuracy (see Table 1) than the state-of-the-art method proposed by
Yan et al. [42]. In addition, we also made comparisons with the classic CNN: ResNet50
and Xception. Similar to the above, the MV method was also used in the image-wise stage.
The overall patch-wise classification performance of the DANet was demonstrated by the
confusion matrix and ROC curve, as shown in Figures 5a and 6a.

Table 1. Comparison with the previous methods on the BC classification dataset.

Methods (BC-Classification) Accuracy (%) AUC

Vang et al. [46] 87.5 -
Golatkar et al. [47] 85.0 -

Yan et al. [42] 91.3 0.89
ResNet50 [48] + MV 84.9 0.85
Xception [40] + MV 85.7 0.86
Ours (DANet + MV) 92.5 0.93
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4.4. Colorectal Cancer Grading Results

Cancer grading is a fine-grained classification task, which faces more difficulties and
challenges than cancer classification. However, the DANet is still effective at cancer grading.
We conducted experiments on the tasks of breast cancer grading and colorectal cancer
grading to verify the effectiveness of the DANet. In this subsection, we first introduce the
experimental results of colorectal cancer grading, and the experimental results of breast
cancer grading are introduced in the next subsection.

For the three-class CRC grading, the state-of-the-art method was proposed by
Shaban et al. [49], which can capture image context information. It achieves an average
accuracy of 95.70%. Since the image resolution is too high (4608 × 7680), utilizing the
contextual information of an image is crucial for the algorithm. However, only using
the simplest majority voting (MV) as the image-wise method, the proposed method still
achieved almost the same accuracy (95.33%) as Shaban et al. [49]. This further illustrates
the superiority of the DANet. In addition, we also made comparisons with the classic
CNN: ResNet50 and Xception. The results of comparative experiments with other methods
are shown in Table 2. The overall patch-wise classification performance of the DANet is
demonstrated by the confusion matrix and ROC curve, as shown in Figures 5b and 6b.

Table 2. Comparison with the previous methods on the CRC grading dataset.

Methods (CRC-Grading) Accuracy (%) AUC

Awan et al. [44] 90.66 -
Hou et al. [50] 92.12 -

Shaban et al. [49] 95.70 -
ResNet50 [48] + MV 92.08 0.90
Xception [40] + MV 92.09 0.91
Ours (DANet + MV) 95.33 0.94
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4.5. Breast Cancer Grading Results

For the three-class BC grading, the state-of-the-art method Nuclei-Aware Network
(NANet) was proposed by Yan et al. [11], which can learn more nuclei-related features. It
achieves an average accuracy of 92.20%. The DANet achieved almost the same classification
effect as the NANet (see Table 3). We speculate that this is mainly due to the branch fusion
attention of the DANet; the DCCA loss we used can maximize the correlation between the
main branch (input is the original image) and the auxiliary branch (input is the nuclear
image), and extract the common component of the two branches. This process plays
the same role as the NANet in emphasizing the “nuclei-related features”. However, the
limitation of the NANet is that it can only be effective at tasks that need to emphasize
“nuclei-related features” (such as breast cancer grading) and cannot be applied to other
pathological image classification tasks. However, the DANet is applicable to all tasks.
This is mainly due to the branch selection attention mechanism, which performs adaptive
selection of the feature representation learning on all decomposed branches according
to different tasks. The overall patch-wise classification performance of the DANet is
demonstrated by the confusion matrix and ROC curve, as shown in Figures 5c and 6c.

Table 3. Comparison with the previous methods on the BC grading dataset.

Methods (BC-Grading) Accuracy (%) AUC

Wan et al. [10] 69.0 -
Yan et al. [11] 92.2 0.92
ResNet50 [48] 81.3 0.83
Xception [40] 81.8 0.85
Ours (DANet) 91.6 0.91

4.6. Nuclei Segmentation Results

To select the suitable method for nuclei segmentation, we compared three methods:
Watershed, UNet [51], and DeepLabV3+ [39]. Watershed (Fiji version [52]) is the rep-
resentative traditional image segmentation method, and UNet and DeeplabV3+ are the
representative deep-learning-based image segmentation methods. The segmentation re-
sults (see Figure 7) of Watershed are too rough, and UNet has a serious under-segmentation
problem. DeeplabV3+ is suitable for the nuclei segmentation task and obtains satisfactory
segmentation results.
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Figure 7. Nuclei segmentation results using different methods on two datasets. The Watershed
method leads to merged nuclei (over-segmentation) and the UNet method leads to fragmented nuclei
(under-segmentation).

We only performed a visual qualitative analysis of the segmentation results because we
did not have nuclear boundary annotations for the pathological image classification dataset.
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In addition, traditional indicators such as mIOU could not measure the segmentation
results we needed. For example, we think that a slightly larger segmentation that includes
the edge background of the nuclei may be better. The dataset proposed by Kumar et al. [37]
was used to train a segmentation network, and the trained segmentation network was used
to perform nuclei segmentation on our dataset.

4.7. Ablation Study

We further conducted ablation studies on different components of the proposed
DANet. The experiments discussed in this section were focused on the breast cancer
(BC) grading dataset. Each experiment was performed five times and a mean ± standard
deviation is reported. We used the following metrics to evaluate the performance: accuracy,
sensitivity, specificity, F-score, and the area under the receiver operating characteristic
curve (AUC).

First of all, we fixed the other components of the proposed method, and verified the
effectiveness of the fusion block and DCCA loss. The experimental results are shown in
Table 4. After using the nuclei segmentation method to decompose a pathological image
into two parts: the nuclei image and non-nuclei image, we first used Xception to verify
the classification accuracy using only a single decomposed image. Compared with using
the original pathological image for BC grading, the classification accuracy of using only a
non-nuclei image was greatly reduced, and the classification accuracy of using only a nuclei
image was slightly reduced. This illustrates that the pathological image is complex, and
the nuclei or non-nuclei images alone are not sufficient to represent pathological image.

Table 4. Ablation study on the fusion block (FB) and DCCA loss.

Items Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Score
(%) AUC

Pathology only (Xception) 81.8 ± 0.2 81.1 ± 0.2 82.7 ± 0.3 81.2 ± 0.3 0.85 ± 0.08
Nuclei only (Xception) 79.2 ± 0.3 79.4 ± 0.2 79.1 ± 0.3 79.2 ± 0.3 0.83 ± 0.07

Non-nuclei only (Xception) 70.1 ± 0.4 68.3 ± 0.3 70.5 ± 0.4 69.6 ± 0.4 0.72 ± 0.12
DANet w/o FB and DCCA 83.1 ± 0.2 82.5 ± 0.3 85.2 ± 0.2 82.0 ± 0.5 0.86 ± 0.06

DANet w/o DCCA 89.3 ± 0.1 88.3 ± 0.2 89.8 ± 0.1 88.8 ± 0.3 0.90 ± 0.03
DANet 91.6 ± 0.3 91.5 ± 0.2 92.1 ± 0.1 91.4 ± 0.3 0.91 ± 0.02

Compared with using only the original pathological image for BC grading, the classifi-
cation accuracy of the DANet without the fusion block and DCCA loss was only slightly
improved (+1.3%). After using the fusion block, the performance of the network was greatly
improved (+7.5%). This shows that with the help of the fusion block, the DANet learned
the feature representation that could not be discovered just by single branch learning.

One step further, after using DCCA loss on the basis of the fusion block, the overall
performance of the network was further improved (+2.3%). For the task of BC grading,
pathologists classify according to the three indicators of the Nottingham Grading System,
which are all about nuclei-related features. In the DANet, the DCCA constraints act as
branch fusion attention in the feature fusion of different branches. The middle branch
obtained after the fusion of the main and down branches (containing only the nuclei) under
DCCA constraints can focus on to the “nuclei-related features”. We speculate that this is the
main reason for the improved classification performance after using the DCCA constraint.

Secondly, we fixed the other components of the proposed method (DANet without
branch selection attention module), and verified the effectiveness of the branch selection
attention module. The experimental results are shown in Table 5. Through the previous
decomposition and fusion module, five branches obtained five feature vectors. We need
to integrate these five feature vectors to obtain an overall feature representation of a
pathological image. Commonly used integration methods include vector concatenate, max
pooling, and mean pooling. The branch selection attention module achieved better results
than these methods. We believe the importance of decomposed branches for different
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classification tasks varies. The branch selection attention module gives different attention
weights to different branches through end-to-end learning. In contrast, the concatenate
method is equivalent to always giving the same weight to the five branches, and the weights
of the max and mean methods are not trainable, so the effect is not as good as the attention
mechanism, which adaptively learns weights.

Table 5. Ablation study on branch selection attention module.

Items Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Score
(%) AUC

Mean 80.8 ± 0.9 81.5 ± 0.5 81.1 ± 0.5 81.0 ± 0.4 0.81 ± 0.06
Max 83.6 ± 0.6 82.2 ± 0.4 84.0 ± 0.6 82.5 ± 0.4 0.82 ± 0.08

Concat 84.5 ± 0.3 82.9 ± 0.4 85.3 ± 0.3 83.1 ± 0.5 0.84 ± 0.06
Attention 91.6 ± 0.3 91.5 ± 0.2 92.1 ± 0.1 91.4 ± 0.3 0.91 ± 0.02

Finally, we compared the impact of different CNN backbones on the DANet. The
experimental results are shown in Table 6. We first compared Xception with the most
commonly used ResNet50 and Inception-V3, DANet with Xception as CNN backnone
achieved better performance. Although classification performance was the focus of our
study, we also considered the model size and computational cost. Therefore, we also
compared Xception with the lightweight network architecture MobileNet-V2 [53], and
there was only a small difference in their classification performance. This may be attributed
to both Xception and MobileNet being based on depth-wise convolution. In actual use,
MobileNet-V2 is also a good choice for CNN Backbone.

Table 6. Ablation study on CNN backbones.

Items Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Score
(%) AUC

ResNet50 89.5 ± 0.6 90.9 ± 0.5 91.1 ± 0.6 89.9 ± 0.5 0.90 ± 0.05
Inception-V3 89.8 ± 0.4 90.5 ± 0.6 88.5 ± 0.3 89.7 ± 0.5 0.89 ± 0.02

MobileNet-V2 91.2 ± 0.2 90.4 ± 0.2 92.3 ± 0.1 91.0 ± 0.3 0.92 ± 0.03
Xception 91.6 ± 0.3 91.5 ± 0.2 92.1 ± 0.1 91.4 ± 0.3 0.91 ± 0.02

5. Conclusions

In this paper, we proposed a Divide-and-Attention network for HE-stained pathologi-
cal image classification. We integrated image semantic segmentation into the framework of
image classification. The results of the segmentation were used to decompose the target
region of the original image. With such decomposed images, the DANet first performs
feature learning independently in each branch, and then focuses on the most important
feature representation through branch selection attention. In this way, the DANet is able to
learn more representative features with respect to different structures and adaptively focus
on the most important ones. In addition, for better feature learning, we introduced deep
canonical correlation analysis (DCCA) loss to maximize the correlation of different branches
and extract common components, which act as the branch fusion attention. Extensive ex-
periments on different pathological image datasets showed that the proposed framework
achieved competitive results. The DANet achieved an average classification accuracy of
92.5% in breast cancer classification, 95.33% in colorectal cancer grading, and 91.6% in
breast cancer grading tasks, respectively. The paradigm behind Divide-and-Attention is
general, which can be extended to other image analysis problems.
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