Skip to main content
. 2022 Jul 7;12(14):1744. doi: 10.3390/ani12141744

Table 5.

Summary of accuracy and kappa values for different ML predictions of walking, standing, grazing, lying and running at 3, 5 and 11 s time windows on the test dataset. Bold indicates the highest accuracy and Kappa values combination.

Time Window Sensor ELM AdaBoost Stacking Number of Classified Behaviors
Accuracy
(%)
Kappa Value Accuracy
(%)
Kappa Value Accuracy
(%)
Kappa Value
3 s Accelerometer 91.5 0.871 94.7 0.921 94.6 0.918 5
Gyroscope 90.1 0.850 92.4 0.885 93.1 0.895 5
Accelerometer and Gyroscope 92.7 0.890 97.1 0.956 97.2 0.959 5
5 s Accelerometer 93.3 0.899 97.5 0.963 97.6 0.964 4
Gyroscope 93.0 0.894 95.0 0.923 94.9 0.922 4
Accelerometer and Gyroscope 94.7 0.920 98.9 0.983 98.9 0.983 4
11 s Accelerometer 98.26 0.983 99.3 0.989 99.3 0.988 4
Gyroscope 97.0 0.951 96.6 0.945 96.2 0.939 4
Accelerometer and Gyroscope 98.5 0.976 99.7 0.995 99.7 0.995 4