Skip to main content
. 2022 Jul 7;12(14):1744. doi: 10.3390/ani12141744

Table 6.

Summary of the accuracy and Kappa values for different ML predictions of walking, standing, grazing, lying and running at 3, 5 and 11 s time windows on the CBS test dataset. Bold indicates the highest accuracy and Kappa values combination.

Time Window Sensor ELM AdaBoost Stacking Number of Classified Behaviors
Accuracy
(%)
Kappa Value Accuracy
(%)
Kappa Value Accuracy
(%)
Kappa Value
3 s Accelerometer 84.8 0.796 80.2 0.735 81.2 0.749 5
Gyroscope 82.8 0.770 78.9 0.716 77.6 0.700 5
Accelerometer and Gyroscope 85.2 0.801 85.3 0.803 87.8 0.836 5
5 s Accelerometer 83.2 0.774 78.9 0.717 83.8 0.782 4
Gyroscope 82.7 0.767 78.6 0.711 81.4 0.750 4
Accelerometer and Gyroscope 87.4 0.830 86.2 0.814 86.2 0.815 4
11 s Accelerometer 72.7 0.631 76.9 0.689 74.4 0.656 4
Gyroscope 66.3 0.542 63.9 0.510 64.8 0.524 4
Accelerometer and Gyroscope 78.0 0.702 67.8 0.565 71.5 0.616 4