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Summary

� Although the above and belowground sizes and shapes of plants strongly influence plant

competition, community structure, and plant–environment interactions, plant sizes and

shapes remain poorly characterized across climate regimes. We investigated relationships

among shoot and root system size and climate.
� We assembled and analyzed, to our knowledge, the largest global database describing the

maximum rooting depth, lateral spread, and shoot size of terrestrial plants – more than dou-

bling the Root Systems of Individual Plants database to 5647 observations.
� Water availability and growth form greatly influence shoot size, and rooting depth is pri-

marily influenced by temperature seasonality. Shoot size is the strongest predictor of lateral

spread, with root system diameter being two times wider than shoot width on average for

woody plants.
� Shoot size covaries strongly with rooting system size; however, the geometries of plants dif-

fer considerably across climates, with woody plants in more arid climates having shorter

shoots, but deeper, narrower root systems. Additionally, estimates of the depth and lateral

spread of plant root systems are likely underestimated at the global scale.

Introduction

The vertical and horizontal extents of plants partly define plant
architecture above and belowground (Lynch, 1995; Schenk &
Jackson, 2002a; Hunt, 2016; Pawlik & Kasprzak, 2017). Plant
architecture, the three-dimensional organization of the plant
body (Reinhardt & Kuhlemeier, 2002), is plastic; plants compen-
sate for resource limitations by altering allocation among above
and belowground organs to optimize growth, survival, and repro-
duction (Poorter et al., 2012; Dı́az et al., 2016). To understand
plant responses to changes in resource availability and climate
(Dybzinski et al., 2011; Farrior et al., 2015), several global stud-
ies have examined plant biomass partitioning across climates
(Cheng & Niklas, 2006; Mokany et al., 2006; Reich et al.,
2014). However, the vertical and horizontal extents of plants
have traditionally been ignored, despite the fact that plants with
similar biomass allometries may have different dimensions. In
this study we seek to understand how the maxima of plant extents
respond to climate through changes among shoot height and
width and rooting depth and spread.

Understanding the relationships between the size of plants
above and belowground will improve our knowledge of plant form
and function. For example, the global spectrum of plant form

and function (plant economic spectrum; PES), proposed by Dı́az
et al. (2016), posits that the size of plants and their organs repre-
sents the first major dimension of the PES. Consequently, most
PES studies have focused on leaf, seed, and stem traits; however,
these studies have typically used only shoot height to represent
overall plant size (Verbeeck et al., 2019). Additionally, root
traits, such as maximum depth and spread, considered to be an
important missing link, have mostly been excluded from such
analyses due to a scarcity of data (Joswig et al., 2022). When root
traits have been included in studies of the global spectrum of
plant form and function, the focus has usually been on fine root
traits, not root system size traits, such as maximum depth and
spread (Carmona et al., 2021).

Variation in belowground plant traits remains poorly quanti-
fied compared with shoot traits (Jackson et al., 1996; Vogt et al.,
1996; Norby & Jackson, 2000; Reich, 2014; Iversen & McCor-
mack, 2021). The size and shape of root systems rely, first, on
resource demand of the plant (for water and nutrients), depend-
ing on overall plant size and growth strategy (Jackson et al.,
2000; Enquist & Niklas, 2002; Niklas & Enquist, 2002; Poorter
et al., 2012); second, on resource availability belowground
(Poorter & Nagel, 2000; Schenk, 2008a); third, on soil con-
straints, such as horizons, bedrock, hardpans, and groundwater
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tables (Brantley et al., 2017; Fan et al., 2017; Hasenmueller
et al., 2017); and fourth, on the presence, size, and identity of
competing root systems (Caldwell et al., 1985; Casper & Jack-
son, 1997; Schenk et al., 1999; Casper et al., 2003; Dannowski
& Block, 2005; Schenk, 2006; van Noordwijk et al., 2015). The
complexity of the belowground environment coupled with
methodological challenges make quantifying plant–root–environ-
ment interactions difficult, especially in the field.

Furthermore, compiled data on root system size are scarce
(Guerrero-Ramı́rez et al., 2021). Although scarce, estimates of
maximum rooting depth remain one of the most sought-after
plant traits, with 10% of the thousands of TRY plant-trait
database inquiries requesting maximum rooting depth data
(Kattge et al., 2020). One reason for the demand of rooting
depth data is that the depth and lateral placement of roots influ-
ences plant–soil interactions, thereby affecting element cycling,
plant water uptake, and soil organic matter content (Jobbágy &
Jackson, 2000; Poirier et al., 2018; Freschet et al., 2021b). Addi-
tionally, rooting depth is a key plant trait used by most
terrestrial-biosphere models to estimate plant water uptake
(Warren et al., 2015; Stocker et al., 2021).

Maximum rooting depth has been evaluated through quan-
titative syntheses such as those of Schenk & Jackson (2002a)
and Fan et al. (2017), which acknowledge many important
earlier studies (e.g. Weaver, 1919; Phillips, 1963; Canadell
et al., 1996). Deeper rooting has been found more often for
plants limited by water availability (Freschet et al., 2021a).
Relative to plant size, rooting depths increase with aridity and
seasonality, and the deepest roots are often found where there
is evaporative demand during dry seasons for water available
deeper in the soil (Schenk & Jackson, 2005). Additionally,
Fan et al. (2017) found that variations in the soil water profile
caused by infiltration, drainage, and water table depth helped
explain considerable variation in rooting depth. These maxi-
mum rooting depth syntheses have led to the following
biome-level characterizations: relatively shallow-rooted ecosys-
tems tend to be found in boreal and permafrost regions, wet-
lands, and land covered by annual plants, whereas relatively
deeper roots are found in more arid, semi-arid, and seasonally
dry climates (Schenk & Jackson, 2005; Fan et al., 2017). In
summary, the distribution of water belowground and the sea-
sonal variation in the amount, location of – and demand for
– water strongly affect the depth of plant roots.

Even rarer than rooting depth data are datasets of maximum
lateral spread (Klimešová et al., 2018; Guerrero-Ramı́rez et al.,
2021). Lateral rooting extent is the maximum horizontal distance
between roots and the base of the plant. The lateral extent of
roots affects nutrient foraging (Cahill & McNickle, 2011; Giehl
& von Wirén, 2014), shoot anchorage (Ennos, 1993; Schwarz
et al., 2010), and competition (Casper & Jackson, 1997; Schenk
et al., 1999; Casper et al., 2003; Schenk, 2006). Lateral rooting
extent can also be an extremely plastic trait (Klimešová et al.,
2018). Plants have been found to explore large volumes of soil;
for example, grasses and trees in the Namib Desert have lateral
root extents as great as 12 m and 50 m, respectively (Kutschera,
1997).

To rectify the scarcity of root-system size data, we assembled,
to our knowledge, the largest global database describing the maxi-
mum rooting depth, lateral spread, and shoot size of terrestrial
plants. The Root Systems of Individual Plants (RSIP) database
was developed in 2002 to quantify the maximum depth DR and
lateral spread LR of plant root systems (Schenk & Jackson,
2002a; Fig. 1; Supporting Information Fig. S1a). Here, we more
than doubled the database to 5647 total observations across a
broad range of terrestrial climates and geographies (Figs 2, S1c).

We use the expanded RSIP database to examine large-scale
patterns related to plant size and shape both above and below-
ground. Specifically, we seek to (1) characterize the root and
shoot sizes of different plant functional types (PFTs), (2) under-
stand how plant size, climate, and environment influence the ver-
tical and horizontal extents of plants globally, (3) evaluate how
plant dimensions shift above and belowground along climatic
gradients, and (4) compare individual-plant-scale rooting depths
to ecosystem-scale rooting depths across biomes and climates.

Materials and Methods

Dataset

The RSIP dataset integrates observations of the vertical and hori-
zontal extents of individual plants with data for other plant traits.
The RSIP data come from published observations of maximum
plant root system dimensions, 361 publications (Appendix A1),
covering 2989 species from 263 plant families (Fig. 3). The first

Fig. 1 The main plant growth extents as defined in the Root Systems of
Individual Plants (RSIP). The plant size measures, or the absolute extents,
illustrate the maximum aboveground (in green – shoot width and shoot
height) and belowground (in brown – rooting depth, lateral spread, and
root system spread) extents in meters. The inset gray box shows the four
plant shape ratios used to understand the dimensions or aspect ratio of the
shoot (Y : Xshoot) and the root system (Y : Xroot), and the above/
belowground vertical (S : Ry) and horizontal (S : Rx) allometry. The tree
outline was adapted from figure 115 ofWurzelatlas mitteleuropäischer

Waldbäume und Sträuche (Kutschera & Lichtenegger, 2002).
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version of the RSIP (Fig. S1a; Schenk & Jackson, 2002a)
included 1305 observations for water-limited ecosystems, and
second version (Fig. S1b; Schenk & Jackson, 2005) included
2449 observations across a broader range of climates. Our
expanded RSIP, with 5647 total observations (Fig. S1c), includes
a range of root and shoot sizes spanning more than four orders of
magnitude (Fig. 4) across most of the Earth’s climates and envi-
ronments (Fig. 2).

The RSIP entries are classified by physiology and functional
traits (see Tables S1, S2 for a full list of RSIP variables), including
six growth forms: forbs (30% of observations), grasses (18%),
semi-shrubs (shrub species and suffrutescent forbs that rarely
reach 1 m in height; 10%), shrubs (12%), stem succulents (2%),
and trees (28%). We also record coarse-scale information on the
plant’s environment and location, such as biome, elevation, and
spatial coordinates (see Tables S1, S2). There are, however, fine-
scale environmental parameters, such as soil traits, that cannot be
accurately estimated based on the spatial coordinates for the RSIP
entries.

The spatial coordinates allowed us to estimate related climate
information, such as mean annual precipitation (MAP), when it
was unavailable in the source literature. The estimated climate
parameters came from WorldClim2, specifically 1 km spatial res-
olution climate surfaces for global land areas, providing historical
(1970–2000) monthly and annual estimates of temperature and
precipitation (Fick & Hijmans, 2017). Estimates for mean
annual potential evapotranspiration (MAE) came from the
Global Aridity Index and Potential Evapotranspiration Climate
Database v.2 (Trabucco & Zomer, 2019). Nineteen additional
bioclimatic variables were calculated following Fick & Hijmans

(2017), providing long-term metrics for precipitation and tem-
perature seasonality (Table S1, BIO1-19).

Bioclimatic variables allowed us to test how seasonality and cli-
mate affect the size of plants. Additionally, we calculated the sea-
sonality of precipitation metric S a ¼ min ½P sur,P def � described
in Schenk & Jackson (2005). To calculate Sa, we used long-term
monthly average precipitation (Fick & Hijmans, 2017) and
potential evapotranspiration (Trabucco & Zomer, 2019) to cal-
culate the sum of the seasonal surplus Psur or deficit Pdef of water.
See Table S1 for the equations and definitions for Sa, Pdef, and
Psur, along with a description of each of the climate metrics,
growth extents, plant traits, and environmental metrics.

Describing plant size

The RSIP contains measurements describing the maximum
above and belowground dimensions of individual plants at the
time of measurement. Maximum rooting depth DR (n = 5633)
is defined as the deepest soil depth reached by the roots of an
individual plant (Fig. 1; Table 1). Two additional belowground
dimensions in the database include lateral spread LR (n = 2874),
the maximum one-sided horizontal distance from the stem of an
individual plant reached by its roots (i.e. the radius), and root sys-
tem width WR (n = 1756), the maximum root system diameter,
which is not always the same as 2 × LR because most root sys-
tems are asymmetrical (Fig. 1). The main aboveground dimen-
sions in the database are shoot height HS (n = 2373) and shoot
width WS (n = 2074; Fig. 1), the maximum shoot diameter.
Shoot volume VS was estimated using an ellipsoid shape
(V S ðm3Þ ¼ π�H S �W 2

S=6). We excluded from the analyses

Root system observations

1 5 10 25 50 100 300 800+

(b)(a)

Fig. 2 The (a) geographic and (b) climatic distributions of Root Systems of Individual Plants (RSIP) database records. (a) Global hexbin map showing the
geographic distribution of RSIP observations, split into 50 hexagonal bins. (b) Whittaker plot of RSIP observations separated into woody (triangles) and
herbaceous (circles) plants. The plot shows the distribution of biomes based on mean annual precipitation and temperature (as defined in the figure key),
and how the RSIP observations fall within the climate space. The marginal histograms show the relative distribution of woody (white bars) and herbaceous
(gray bars) plants across the axes.
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of shoot width WS and lateral spread LR those observations from
species known to have clonal, rhizomatous, or stoloniferous
growth habits (n = 101), such as Populus tremuloides and Poa
pratensis, so as not to give a misleading view of their functional
morphology by only measuring the widths of individual ramets.
The maximum dimensions of an individual plant at the time of
excavation had to be directly measured to be included in the
RSIP; observations were excluded from the RSIP if the sampling
depth was less than the perceived max rooting depth, if allometric
equations or other formulas were used to predict plant dimen-
sions, or if the measurements were an aggregate of multiple
observations and were not the dimensions of an individual plant.

Fig. 3 Phylogenetic tree of the 2989 species represented in the Root Systems of Individual Plants (RSIP). The highlighted plant families represent the 20
largest families in the RSIP based on the number of species represented (263 plant families overall). The 20 families represent 71% of all observations in the
RSIP. The colors from light purple to dark purple represent the number of observations from each plant family. The labels show the plant family name,
followed by the number of observations and the number of species (i.e. family no. of observations/no. of species).

Phylogenetic analysis

To understand the importance of phylogeny on the main variables
(DR, LR, HS, and WS), we calculated the phylogenetic signal using
Pagel’s lambda (Pagel, 1997, 1999) and performed phylogeneti-
cally independent contrasts (PICs) between above and below-
ground plant extents and across the main climate metrics (MAE,
MAP, aridity index Ai, and Sa). The phylogeny of RSIP observa-
tions was constructed using the V.PHYLOMAKER R package (Jin &
Qian, 2019) with the GBOTB.extented mega-tree (Zanne et al.,
2014; Smith & Brown, 2018). The plant names were standardized
using the The Plant List (2013; v.1.1; www.theplantlist.org/) to
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match the nomenclature present in the mega-tree. Calculating
Pagel’s lambda allowed us to estimate the phylogenetic signal of
the plant trait in question, by estimating the magnitude by which
shared phylogenetic history drives the trait distribution at the tips

of the phylogeny (Freckleton et al., 2002). A lambda value of zero
indicates no phylogenetic influence on plant traits, whereas a
lambda value of one represents high phylogenetic signal. To calcu-
late Pagel’s lambda and the log likelihood statistic we used the PHY-

TOOLS::phylosig R function (Revell, 2012) to run 100 simulations
for each of the plant extents separated into three groups: (1) all
observations, (2) woody plants (trees, shrubs, and semi-shrubs),
and (3) herbaceous plants (forbs and grasses). We performed
regressions of phylogenetically independent contrasts (Felsenstein,
1985) for each of the resolved phylogenies using the APE and STATS

R packages (Paradis & Schliep, 2019; R Core Team, 2020). Phy-
logenetic relatedness was calculated and used as a predictor variable
in the random forest analysis (see next section) via an analysis of
the phylogenetic pairwise distance between species using the APE

package (Paradis & Schliep, 2019), as suggested in Bergmann
et al. (2017).

Evaluating variable importance for shoot and root extents

To determine factors influencing maximum root (DR and LR)
and shoot extents (HS and WS), we estimated the importance of
covariates using a random forest approach (Breiman, 2001). The
list of covariates included aboveground plant traits and climate
metrics (see Table S1 for a full list of RSIP parameters). The ran-
dom forest models for belowground extents were run with (Fig.
6c,d see later) and without (Fig. 6a,b see later) aboveground size
(HS, WS, and VS) as predictors; however, belowground extents
(DR and LR) were not used as predictors for HS andWS.

For the random forest approach, we utilized the RANGER pack-
age (Wright & Ziegler, 2017), which is an implementation of the
original random forest (Breiman, 2001) suited for high-
dimensional data (Boehmke & Greenwell, 2020). We split the
RSIP dataset using stratified sampling into a model training

(a) (b)

Fig. 4 Raincloud plots for (a) maximum rooting depth DR and (b) maximum lateral spread LR across growth forms: forb, grass, succulent, semi-shrub,
shrub, and tree. The lowercase letters represent significantly different treatments for DR and LR across growth forms via Tukey’s honest significance
difference tests. The horizontal lines in the boxplots represent the median values. The asterisk indicates the only situation where rooting depth relative to
shoot volume differed between growth forms (i.e. the relative depth of forbs was significantly greater than for trees). The number at the end of each
whisker indicates the total number of observations for each growth form. The maximum values for growth forms exceeding the plot scales are shown at
the bottom.

Table 1 A list of commonly used abbreviations (see Supporting
Information Table S1 for a list of all RSIP parameters).

Abbreviation Explanation

Plant size
DR Maximum rooting depth of plant (m)
LR Maximum lateral root spread, one-sided (radius) linear

distance from stem reached by roots (m)
WR Rooting spread or diameter (m)
HS Height of plant shoot (m)
WS Width of plant shoot (m)
VS Canopy volume, calculated using an ellipsoidal shape:

VS ðm3Þ ¼ π� HS �W2
S=6

DBH Stem diameter (diameter at breast height) of trees (cm)
Plant shape
Y : Xshoot Aboveground dimensional aspect ratio

(Y : Xshoot = HS/WS)
Y : Xroot Belowground dimensional aspect ratio

(Y : Xroot = DR/WR)
S : Ry Vertical shoot : root ratio (S : Ry = HS/DR)
S : Rx Horizontal shoot : root ratio (S : Rx = WS/WR)
Climate
MAP Mean annual precipitation (m)
MAE Mean annual potential evapotranspiration (m)
Ai Aridity index (Ai = MAP/MAE)
Sa Seasonality index or annual water storage index:

Sa = min[Psur, Pdef]
Datasets
RSIP Root Systems of Individual Plants
RPGE Root Profiles for Global Ecosystems

(Schenk & Jackson, 2003)
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subset containing 70% of the entries and a model testing subset
using the RSAMPLE package (Silge et al., 2021). Because random
forests cannot handle missing values, we used the MISSRANGER

package (Mayer, 2019) to impute missing values through a non-
parametric approach for mixed-type data using chains of random
forests (Stekhoven & Buhlmann, 2012). The training data were
used to adjust the random forest model using a hyperparameter
grid to search for the optimal parameter values, resulting in the
greatest reduction in root-mean-square error (Probst et al.,
2019). The hyperparameter tuning resulted in an average 4%
improvement compared with the baseline model. The random
forest model was then rerun using the selected hyperparameters
to calculate the permutation-based variable importance for each
predictor. We chose the permutation-based method because it is
not biased towards variables with high cardinality (Strobl et al.,
2008), such as for many climate variables. Although the
permutation-based approach is more computationally intensive
(because of the constant shuffling of features across the decision

trees), it is generally a more accurate method than the standard
mean-decrease-in-impurity importance (Strobl et al., 2007).

Additionally, we sought to determine how plant size differed
across categorical variables such as plant characteristics and
growth form (Table 2). Significant differences between the plant
extents of categorical parameters were tested using ANOVA and
post hoc Tukey honest significant difference tests (de Mendiburu,
2021).

Shifts in plant shape across climate

Whereas our initial analysis focused on factors influencing single
measures of plant vertical or horizontal size, we further sought to
understand how the shapes or dimensions of plants shift along
climatic/resource gradients. To do this, we calculated four new
plant shape ratios: two that we call ‘dimensional aspect’ ratios
(Y : Xshoot and Y : Xroot) and two ‘shoot : root’ ratios (S : Ry and
S : Rx). We plotted the four indicator ratios (Eqns 1–4) against a

Table 2 Mean belowground (rooting depth (DR), lateral spread (LR), shoot height (HS) and shoot width (WS)) extents across plant traits.

Belowground extents (m) Aboveground extents (m)

DR LR HS WS

Mean SD and group Mean SD and group Mean SD and group Mean SD and group

Growth form
Forb 1.02 1.04c 0.51 0.51e 0.36 0.34c 0.34 0.37c
Grass 1.14 0.93c 0.55 0.94de 0.55 0.53bc 0.35 0.85c
Semi-shrub 1.42 1.2c 1.07 1.37cd 0.33 0.24c 0.53 0.55c
Shrub 2.36 2.85b 3.33 3.46b 1.47 1.5b 1.48 1.68b
Succulent 0.56 0.68c 2.22 1.93bc 0.61 0.64bc 0.78 0.55bc
Tree 3.64 7.69a 7.04 7a 8.07 9.12a 3.25 4.42a
Lifespan
Annual 0.76 0.6b* 0.4 0.59b 0.54 0.59b 0.32 0.46b
Perennial 2.12 4.64a* 2.05 3.93a 2.06 5.14a 0.92 2.07a
Tissue
Herbaceous 1.06 1b* 0.52 0.66b 0.42 0.41b 0.34 0.55b
Woody 2.88 6a* 3.8 5.28a 3.94 7.03a 1.68 2.94a
Seed category
Dicot 2.24 5.04a 1.93 3.89b 1.47 4.04b 0.89 1.72b
Gymnosperm 1.92 3.74a 5.57 4.76a 8.63 9.49a 2.56 5.35a
Monocot 1.08 0.93b 0.63 1.35c 0.52 0.51c 0.35 0.79c
Leaf longevity
Deciduous 2.96 5.5a 5.67 6.27a 4.48 5.71a 2.6 3.06a
Evergreen 3.1 6.95a 3.06 4.59b 4.74 8.64a 1.41 3.28b
Leaf form
Broadleaf 3.59 7.43a 4.71 6.01b 4.12 7.12b 2.08 2.86a
Needle-leaf 1.87 3.67b 5.02 5.21b 7.74 9.05a 2.29 4.93a
Photosynthetic pathway
C3 2.04 4.69a 1.86 3.82a 2.04 5.14a 0.87 2.04a
C3–C4 1.13 0.63ab 0.85 0.69a 0.36 0.2b 0.37 0.24a
C4 1.75 1.85ab 1.37 2.65a 0.74 0.73b 0.71 1.29a
CAM 0.61 0.71b 2.57 2.43a 0.64 0.63b 0.76 0.52a

CAM, Crassulacean acid metabolism.
*These are the only two categories where rooting extents relative to aboveground volume showed significant differences between groups, where both
annual and herbaceous plants had DR/VS values greater than perennial and woody plants, therefore differing from the pattern shown by DR. DR and LR
relative to shoot volume (VS) did not differ across all other classifications. The lowercase letters represent significant differences between groups via Tukey’s
honest significance difference tests.
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global climate gradient of aridity (Fig. 7, see later). Nonlinear
regressions were fit to the mean ratio values for each aridity class.

The two-dimensional aspect ratios (Y : Xshoot and Y : Xroot)
depict a plant’s dimensions shifting towards either lengthening or
widening their maximum extents (Eqns 1, 2). A high Y : X ratio
represents a relative narrowing of plant morphology, whereas a
low ratio represents a widening. As water availability increases,
we expect to see relatively shallow plant growth belowground and
a narrowing aboveground because plants may not need to root
deeply in search of water and shoot heights are less limited by
plant water potential. We calculated the dimensional aspect ratios
as follows:

Y : X shoot ¼ H S

W S
Eqn 1

Y : X root ¼ DR

W R
Eqn 2

(HS, height of the plant; WS, aboveground width of the plant
(shoot diameter); DR, maximum rooting depth; WR: maximum
width of the root system). When WR was not reported but LR
was, we used 2 × LR in Eqn 2.

The second pair of growth indicator ratios, the shoot : root
size ratios (S : Ry and S : Rx), depict a plant’s vertical and hori-
zontal allometry (Eqns 3, 4). These metrics are similar to tradi-
tional shoot-to-root biomass ratios, but with biomass replaced by
vertical length (S : Ry) and horizontal width (S : Rx). A high
S : R ratio represents relatively greater aboveground investment,
whereas a lower ratio represents relative belowground investment.
We calculated the shoot : root size ratios as follows:

S : Ry ¼ H S

DR
Eqn 3

S : Rx ¼ W S

W R
Eqn 4

Comparing individual plant rooting depth observations
with ecosystem and plant-functional-type estimates

Because many terrestrial biosphere models rely on ecosystem-
level estimates of maximum rooting depth (Warren et al., 2015;
McCormack et al., 2017; Drewniak, 2019), we compared how
our rooting depth estimates for individual plants differ from
ecosystem-level estimates across biomes and climates. For
ecosystem-level data, we used the Root Profiles for Global
Ecosystems (RPGE) dataset (Schenk & Jackson, 2002b) available
online through the Oak Ridge National Laboratory Distributed
Active Archive Center (Schenk & Jackson, 2003). We compared
average individual plant rooting depth estimates by biome from
the RSIP with (1) the ecosystem rooting depths (D50 and D95) by
biome from the RPGE, and (2) the PFT rooting depth estimates
used by the Energy Exascale Earth System Land Model (ELM;
Fig. S2; Drewniak, 2019). ELM uses RPGE data to inform PFT
rooting depth estimates (Drewniak, 2019).

To analyze the effect that climate parameters have on
individual-plant (DR) and ecosystem-level rooting depths (D50

and D95), we used linear mixed effect regression models (LMERs)
with biome as a random effect, the climate metrics as fixed effects,
and rooting depth (D50, D95, and DR) as the dependent variable.
The LMERs were performed using the LME4 package (Bates et al.,
2015). We evaluated the LMERs using likelihood ratio tests,
which compare the ANOVA of the full LMER with the fixed
effects with the ANOVA of a null LMER with only random
effects. Through the likelihood ratio test we computed the cor-
rected Akaike information criterion AICc and P-values to analyze
only significant predictors (Winter, 2013; Hajduk & Bailey,
2017; Mazerolle, 2020). Using the model results for D50 and
D95, we compared the standardized coefficients with that of indi-
vidual plant maximum rooting depth DR (Fig. S3).

Results

Rooting extents covary with shoot size

The two main plant rooting extents we examined, DR and LR,
differed substantially across growth forms, with woody plants,
especially trees (mean DR of 3.64 m), rooting the deepest and the
widest (Fig. 4; Table 2). Semi-shrubs, succulents, forbs, and
grasses all had shallower, significantly indistinguishable rooting
depths, with DR being only c. 30% as deep as trees on average
(Fig. 4a; Table 2; P < 0.001). Trees and shrubs had the widest
lateral spreads (average LR of 7.04 m and 3.33 m, respectively),
whereas the average LR for succulents was 2.22 m, 4.5 times
wider than LR for herbs (forbs and grasses; Fig. 4b; Table 2; P <
0.001). Relative to aboveground volume, LR (LR/VS; Kruskal–
Wallis P = 0.173) and DR (DR/VS; Kruskal–Wallis P = 0.053)
ratios did not significantly differ across growth forms.

Both rooting depth and spread scaled linearly with shoot size –
specifically shoot height and width – across all growth forms (Fig. 5;
Table 3). Whereas stem diameter (DBH) had a strong positive lin-
ear relationship with both maximum rooting depth and spread for
trees (Table 3; P < 0.0001),WS andHS had stronger positive linear
relationships with the rooting extents for both woody and herba-
ceous plants (Table 3).

High phylogenetic signals for woody plant root system
lateral spreads (LR) and aboveground size (HS,WS, VS, and
DBH)

Pagel’s lambda values for woody plants showed high phylogenetic
signals for aboveground size traits (HS λ = 0.934; WS λ = 0.750;
VS λ = 1.0; DBH λ = 0.922) and for root lateral spread (LR λ =
0.865; Table S3). Lambda values for herbaceous plants were
much lower than those of woody plants, suggesting a lower phylo-
genetic signal, except for maximum rooting depth, where the phy-
logeny of herbs accounted for more of the variation in DR values
(herb DR λ = 0.644 and woody DR λ = 0.271; Table S3). For
herbaceous LR, WS, and VS the phylogeny accounted for little to
no variation in trait values across species (λ < 0.2), whereas phy-
logeny had a moderate effect on shoot height (HS λ = 0.558).
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There remained a positive relationship between shoot size
and root system size (Table 3), even when using phylogeneti-
cally independent contrasts for woody and herbaceous plants,
except for the relationship between HS and belowground
extents (DR and LR) when combining woody and herbaceous
plants (Figs S4a, S5a). The negative PIC slopes (β1) for DR

(β1 = −0.19, P < 0.0001) and LR (β1 = −0.05, P = 0.18)

when regressed against HS were due to the strong phylogenetic
signal for HS (λ = 0.985), and the large differences between
the shoot heights of woody and herbaceous plants (Table 3;
Figs S4a, S5a). Overall, the PIC regressions and correlations of
above to belowground plant size (Figs S4, S5) tended to be
consistent with the linear relationships between plant extents
(Fig. 5; Table 3).

Fig. 5 Scatter plots of plant root extents (LR, upper; DR, lower) against aboveground plant extents (HS, shoot height;WS, shoot width; VS, shoot volume;
DBH, stem Diameter), with woody plants in dark gray and herbaceous plants in light gray. Shoot volume is calculated using the equation
VS ðm3Þ ¼ π� HS �W2

S=6. The dashed lines (woody in dark gray and herbs in light gray) represent a linear regression where P < 0.05 in the form of
y = β + α × x, and the red shaded regions are the 95% confidence interval. The statistics and the parameters for the linear regressions are in Table 3. The
axes scales are in common log10.

Table 3 Linear and phylogenetically independent contrast (PIC) regressions of belowground extents (DR and LR) to aboveground extents (HS,WS, VS, and
DBH) in the form of y = β0 + β1x, where y is DR or LR, β0 is the intercept (Int.) and β1 is the slope.

Max. rooting depth DR Max. lateral spread LR

Linear regression PIC Linear regression PIC

Int. Slope (SE) R2 and P Slope (SE) R2 and P Int. Slope (SE) R2 and P Slope (SE) R2 and P

Shoot height HS

All observations 0.04 0.34 (0.011) 0.29*** −0.19 (0.029) 0.028*** 0.07 0.68 (0.016) 0.45*** −0.050 (0.035) 0.001
Woody 0.08 0.28 (0.016) 0.24*** 0.19 (0.024) 0.118*** 0.24 0.67 (0.024) 0.5*** 0.40 (0.020) 0.504***
Herbaceous 0.05 0.39 (0.021) 0.2*** 0.13 (0.045) 0.008* −0.2 0.39 (0.025) 0.17*** 0.51 (0.040) 0.155***
Shoot widthWS

All observations 0.09 0.39 (0.014) 0.28*** 0.65 (0.020) 0.454*** 0.15 0.81 (0.015) 0.6*** 0.87 (0.019) 0.627***
Woody 0.09 0.38 (0.023) 0.27*** 0.28 (0.038) 0.127*** 0.26 0.93 (0.024) 0.68*** 0.57 (0.031) 0.449***
Herbaceous 0.09 0.4 (0.022) 0.2*** 0.41 (0.030) 0.173*** −0.1 0.56 (0.022) 0.34*** 0.47 (0.027) 0.251***
Shoot volume VS

All observations 0.15 0.16 (0.005) 0.33*** 0.23 (0.010) 0.275*** 0.27 0.3 (0.0053) 0.63*** 0.33 (0.010) 0.459***
Woody 0.13 0.13 (0.0077) 0.29*** 0.083 (0.012) 0.122*** 0.35 0.31 (0.0084) 0.67*** 0.18 (0.009) 0.527***
Herbaceous 0.23 0.19 (0.0084) 0.29*** 0.17 (0.013) 0.161*** 0.08 0.24 (0.0084) 0.4*** 0.23 (0.012) 0.311***
Stem diameter DBH
Trees 1.09 0.41 (0.08) 0.16** 0.50 (0.10) 0.221*** 0.76 0.51 (0.11) 0.16** 0.31 (0.10) 0.112*

***, P < 0.0001; **, P < 0.001; *, P < 0.01. PIC regression intercepts (β0) set to zero.
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Plant size extents across morphological and leaf traits

Plant size extents differed significantly across the leaf and mor-
phological traits we collected (i.e. lifespan, tissue, seed category,
leaf longevity, leaf form, and photosynthetic pathway; Table 2).
The average absolute extents (DR and LR) of perennials were
more than six times greater than for annuals, but their extents rel-
ative to shoot volume were four times greater (Table 2). The DR

and LR of woody plants were, respectively, six times and 10 times
greater than forherbs, but the DR/VS of herbs was 2.3 times
greater than for woody plants.

Among woody plants (trees and shrubs), deciduous plants had
lateral spreads that were an average of 5.67 m (twice the width of
evergreens), and broadleaf plants had an average DR of 3.59 m
(two times deeper than needle-leaf plants) (Table 2). Above-
ground, we found similar trends, with perennial and woody
plants having greater shoot heights HS and widths WS (Table 2)
than annual and herbaceous plants did. Deciduous trees had aver-
age shoot widths of 2.6 m, which is twice that of evergreen trees.
The HS values of needle-leaf plants were 7.74 m, also two times
the HS of broadleaf plants, whereas DR was two times deeper for
broadleaf plants than for needle-leaf plants.

Deeper roots in drier and more seasonal climates

We found significant linear relationships between the rooting
extents and the primary climate metrics (MAE, MAP, Ai, and Sa;
see Table 1 for abbreviation definitions) we analyzed (Fig. S6;
Table S4). Rooting depth DR correlated positively with MAE
and negatively with Ai and MAP (P < 0.0001). Lateral spread LR
was positively related to MAP and Ai for all plants. LR was nega-
tively related to MAE for herbs, and with Sa for woody plants
(P < 0.0001; Fig. S6; Table S4).

Though the PIC results tended to agree with the trends shown
with the linear regressions (Table S4; Figs S6–S8) there were a
few instances where the trends of the PIC results differed from
the log-linear regressions. For example, there was a positive linear
relationship between LR and MAP for woody plants (β1 = 0.21 �
0.04; P < 0.0001; Table S4), whereas the PIC regression showed
a negative relationship (β1 = −0.45; P < 0.0001; Table S4).

Differences in predictor importance for shoot and root
extents

Our random forest approach highlighted the important predic-
tors for each of the plant size extents, with climate and tempera-
ture seasonality being important for DR and shoot size and plant
characteristics being the most important for LR (Fig. 6a–d). Cli-
mate descriptors such as MAE, mean annual temperature, tem-
perature seasonality, and maximum temperature were the most
important predictors of DR (Fig. 6a,c), with DR increasing with
warmer and more seasonal climates. LR was mostly affected by
shoot size (HS andWS, Fig. 6d) and plant descriptors (i.e. growth
form and family; Fig. 6b,d). Partial dependencies showed that LR
was greatest in woody plants, and in less seasonal climates (i.e. cli-
mates where temperature seasonality < 500, annual temperature

range < 25°C, and isothermality > 50). When shoot size (WS,
HS, and VS) was omitted from the random forest analyses (Fig.
6a,b) it had little effect on the variable importance ranking for
DR, but it led to growth form, family, phylogeny, and isother-
mality becoming the most important variables for predicting LR.

Aboveground, the growth form and family were among the
most important predictors of HS and WS, followed by various cli-
mate metrics (Fig. 6c,d). The partial dependencies showed that
trees, and plant families primarily made up of trees, represented the
greatestHS andWS values. Additionally,HS andWS were greatest in
less arid climates (Ai > 1). HS was greatest in climates with high
precipitation and high seasonal water surplus (Psur > 0.3). WS was
greatest in climates with low seasonal water deficits (Pdef < 0.2) and
colder climates (mean annual temperature < 10°C).

Divergence in woody plant dimensions across aridity

The dimensions of woody plants shifted towards deeper and nar-
rower root systems in more arid climates and towards taller and
narrower shoots in relatively humid climates (Fig. 7a). Signifi-
cant shifts in Y : X and S : R values with climate were seen only
for woody plants (Fig. 7; Table S5). The aspect ratios of shoots
and roots (Y : Xshoot and Y : Xroot) for woody plants in arid cli-
mates (Ai < 0.2) did not differ significantly (P = 0.308) (Fig.
7a). The average Y : Xshoot and Y : Xroot values of woody plants
in climates where Ai < 0.5 were 1.8 and 1.3, respectively. As Ai
increased, the aspect ratio curves diverged, crossing at an Ai of
0.43, near the arid–humid threshold (Ai = 0.5; Fig. 7a). The Y :
Xshoot curve saturated in humid climates (Ai > 0.5). Y : Xroot
decreases as climates become more humid, with root systems
being wider relative to their depth (Y : Xroot < 1) at an Ai of
0.73. The average Y : Xshoot and Y : Xroot values of woody plants
in humid climates were 1.6 and 0.7, respectively.

Woody plants, on average, had shoots taller relative to rooting
depth in humid climates (S : Ry > 1 when Ai > 0.34), but in
arid climates the rooting depth is generally greater than shoot
height (Fig. 7b). In arid climates, woody plants tended to be both
wider and deeper belowground than aboveground, with S : R val-
ues < 1 (Fig. 7b, purple). Horizontal allometry does not shift
much across Ai; and the mean S : Rx is 0.44, indicating that
woody plants are, on average, more than two times wider below-
ground than aboveground. Herb S : R and Y : X values do not
shift substantially across Ai (Fig. 7c,d), with mean S : R values
< 1 (S : Ry = 0.654; S : Rx = 0.452), indicating that herbs gen-
erally take up more vertical and horizontal space belowground
relative to aboveground dimensions.

Comparing RSIP individual plant data to broader scale
estimates of maximum rooting depth

We compared the average RSIP maximum rooting depths (DR)
across growth forms and biomes with the biome-based estimates
from the RPGE (D95; Fig. 8). For all biomes with trees, the aver-
age tree DR was significantly deeper than D95 (ecosystem-scale
maximum rooting depth; Table 1), sometimes by several meters,
except for boreal forests, where D95 was deeper. Tropical and
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seasonally dry climates had the largest disagreement between the
RPGE and RSIP values, with DR values for multiple growth
forms being significantly deeper than D95 (Fig. 8). The ELM
PFT parameters closely resembled RPGE D95 estimates, except
that ELM assigns tropical forest trees a maximum rooting depth
of 3 m (Drewniak, 2019).

The ecosystem-scale D50 (50th percentile rooting depth) was
more sensitive to climate than the individual-plant (DR) and
ecosystem-scale (D95) rooting depths were. The D50 climate

coefficients are greater than the DR coefficients, showing that D50

is more heavily skewed by climate variables than DR is (Fig. S3).
This is exemplified by the slope of the linear regression across the
coefficients, where a unit slope is a one-to-one relationship
between DR and D50 coefficients; however, the slope was 0.52
with an R2 = 0.81 (y = 0.52x − 0.016; Fig. S3). The opposite
was true for D95 vs DR, where the slope of the regression across
the climate coefficients was 2.62 (y = 2.62x − 0.04, R2 = 0.71;
Fig. S3), indicating that individual plant rooting depth DR is

Fig. 6 Random forest variable importance for (a) maximum rooting depth DR, (b) maximum lateral spread LR, (c) DR with shoot size included as predictors,
(d) LR with shoot size as predictors, (e) shoot height HS, and (f) shoot widthWS. The predictors are colored by predictor type, according to the figure key.
The y-axis is the 15 most important predictors in descending order, and the x-axis is a scaled variable importance. Scaled variable importance = variable
importance[i] � max(variable importance). The predictors used for the random forest analysis can be found in the fourth column of Supporting
Information Table S1. Measures of aboveground size were not included as predictors in (a) and (b), whereas shoot height, shoot width, and shoot volume
VS were included as predictors in (c, d). Belowground extents (DR and LR) were not included as predictors for HS andWS. [Correction added after first
publication 8 March 2022: panel (c) in Fig. 6 has been corrected.]
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more variable across climates than ecosystem-level rooting depth
D95 is. At both the individual plant and ecosystem scales, roots
were deeper in climates with higher mean and maximum temper-
atures and in climates with greater seasonal deficits of precipita-
tion (Fig. S3). Shallower roots were found in humid climates and
in climates with greater surpluses of precipitation (Fig. S3).

(a)

(b)

(c)

(d)

(e)

Fig. 7 Woody plant shapes diverge across aridity classes. Point range represents the mean and confidence intervals grouped by aridity index categories for
the four shape ratios with fitted nonlinear regressions. (a) Dimensional aspect ratios for woody plants, (b) shoot : root ratios for woody plants, (c)
dimensional aspect ratios for herbaceous plants, and (d) shoot : root ratios for herbaceous plants. Either log-normal (y ¼ aexpf�0:5½logeðx=x0Þ=b�2g) or
nonlinear saturation curves (y ¼ ax=ðbþ xÞ) were fitted to the means of each shape ratio across aridity classes, and the R2 values are stated (see
Supporting Information Table S5 for full equations). The aridity index categories, delimited by light gray dashed lines, are arid (0–0.2), semi-arid (0.2–0.5),
subhumid (0.5–0.75), humid (0.75–1.0), per-humid (1.0–1.5), and hyper-humid (1.5–2.0). The dashed black line represents ratio values equal to one.
(e) The color-coded schematics represent the relative dimensions for each ratio value. MAP, mean annual precipitation; MAE, mean annual potential
evapotranspiration; DR, max rooting depth;WR, root system width, HS, shoot height;WS, shoot width.

Discussion

Using our expanded RSIP database, we found the following pat-
terns in plant size and shape globally: shoot size and root system
size strongly covary; water availability and plant characteristics
greatly influence shoot size, whereas rooting depth is primarily
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influenced by temperature seasonality and lateral spread by shoot
size; woody plants have deeper, narrower root systems in more
arid climates and taller shoots in humid climates; and estimates
of the depth and lateral spread of plant root systems are likely
underestimated at the global scale.

Shoot size covaries strongly with root system size across
plant functional groups

Both rooting depth DR and lateral spread LR scale linearly with
aboveground size extents (HS, WS, VS, and DBH; Table 3), as
expected with allometric allocation (Niklas & Enquist, 2001;
Enquist & Niklas, 2002). Furthermore, multiple tropical forest
studies have highlighted the link between shoot size and root sys-
tem size (Ivanov et al., 2012; Brum et al., 2019; Smith et al.,
2019). Of all the aboveground variables, shoot width WS had the
strongest positive relationship to rooting depth and spread across
all plants (Table 2). Traditionally, stem diameter DBH is the
most common metric used for allometric scaling in forestry and
plant physiology (Cermák et al., 1998; Ledo et al., 2017),
including long-standing allometric relationships between DBH
and crown radius (Dawkins, 1963; O’Brien et al., 1995). DBH
has also been used to estimate coarse root biomass (Tobin et al.,
2007; Gou et al., 2017) and effective rooting depth (Brum et al.,
2019). However, though DBH strongly correlated with shoot
height and width, DBH did not correlate with rooting depth in
our analysis (Fig. S9). We suggest that shoot width may be better
used to estimate the size of root systems, as it correlates positively
with both rooting depth and spread (Table 3; Fig. S9).

As expected, woody plants, especially trees, had the largest
rooting (DR and LR) and shoot extents (WS, and HS) and herbs
had the smallest extents. Succulents have unique root system
shapes, having the shallowest root systems yet wider lateral

extents than herbs do (Fig. 4). One explanation for the shape of
succulent root systems may be that succulents are found in
regions with extremely dry soils, where shallow and elongated
root systems are adapted to acquiring intermittent rainfall and
fog (Jordan & Nobel, 1984; February et al., 2013). Additionally,
there can be a large degree of rooting depth plasticity within the
same species and environment. For example, a study on the root-
ing depth of Panicum maximum, a tropical perennial bunchgrass,
in the state of São Paulo, Brazil, found rooting depths for mature
grasses ranging from 0.85 to 4.85 ms across > 50 observations
(Villares et al., 1953).

We found that the rooting depths of annuals and herbs relative
to shoot volume (DR/VS) were much greater than that of perenni-
als and woody plants, demonstrating an investment in below-
ground organs by shorter-lived plants. John Ernest Weaver
(1958) observed the rooting patterns of forbs and found that
some forbs can root deeply below the root zone of neighboring
plants to avoid competition, quickly occupying depths of greater
than 1.2 m in their first growing season and up to 4.6 m at matu-
rity. The deepest-rooted forb in the RSIP, Alhagi maurorum –
commonly known as camelthorn – reached rooting depths of 20
m but rarely exceeded 1.2 m in height (Nechaeva, 1985). The
need of some plants to root deeply could also be due to competi-
tion in the form of root territoriality or resource depletion
(Schenk, 2006, 2008a). The ability of plants such as herbs (which
we often think of as being ‘small’ aboveground) to root at times
several meters in depth is surprising.

Maximum lateral root spreads were strongly influenced by
shoot size, even more than maximum rooting depth (Figs 5, S9;
Table 3), further evidenced by the high variable importance of
shoot height, width, and volume in the lateral extent random
forest model (Fig. 6d). Modeling studies have demonstrated that
lateral roots are more efficient at anchoring larger aboveground
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plants than deep roots are (Ennos, 1993), and a strong linear rela-
tionship has been found between lateral spread and stem diame-
ter (Schwarz et al., 2010). The relationship between lateral extent
and shoot size highlights the potential importance of lateral root
reinforcement for shoot anchorage.

Not surprisingly, there were strong phylogenetic signals for
several size and shape traits, especially for aboveground traits, but
also for the lateral spread of root systems. Plant species within a
genus tend to be similar in growth form, and many plant families
consist predominantly of woody plants, herbs, or succulents; and
some woody families include mostly trees, whereas others include
mostly shrubs and smaller trees. Different environments that
favor trees, smaller woody plants, or herbs will therefore cause
ecological and evolutionary sorting of genera and families, and
historical effects will contribute to this sorting as well (Herrera,
1992), leaving what appears to be a strong phylogenetic signal in
plants sizes and shapes (see Table S3).

The effect of temperature and precipitation seasonality on
rooting depth

Relationships among above and belowground plant traits that we
found are not static across the climate space. Our results agree
with Schenk & Jackson (2002a), who found that plants root
deeper relative to shoot size in arid climates. A global meta-
analysis of forest biomass allocation found contrasting results,
where root biomass decreased with temperature – analogous with
MAE – but found no relation with aridity (Reich et al., 2014),
potentially highlighting the difference between the space occu-
pied by roots and overall biomass. A decrease in root system size
relative to shoot size as climates become less arid would be
expected under a plant resource economics framework, where
increased water availability would allow plants to invest in above-
ground growth when they are no longer limited by water avail-
ability belowground (Shipley & Meziane, 2002; Farrior et al.,
2015; Anderegg et al., 2016; O’Brien et al., 2017).

Metrics of climate seasonality, specifically temperature season-
ality and proxies for water availability, are important for under-
standing global rooting patterns. The relationship between
precipitation seasonality and deep rooting has been well docu-
mented in seasonally dry ecosystems (Nepstad et al., 1994;
Oliveira et al., 2005; Singh et al., 2020), although predicting
deep rooting using global climate metrics is difficult given the
complexities of plant–soil–water interactions. However, we
provide ample evidence that deeper roots are more likely to occur
in arid climates with hotter temperatures and seasonal precipita-
tion (Figs 6a, S3, S6).

The exact relationships between rooting extents and seasonality
are still unclear because we need root data at finer scales coupled
with measures of seasonality that serve as better proxies for plant-
available water, such as plant-accessible water storage capacity,
dry-season water drawdown, and climatic water deficit (Fellows
& Goulden, 2017; Ledo et al., 2017; Klos et al., 2018). Addi-
tionally, as climates change, metrics of interannual seasonality
may provide insight on the climates that a plant is adapted to and
its rooting response (Fischer et al., 2013; Pratt & Mooney, 2013;

Stocker et al., 2013; Knapp et al., 2015). For instance, a study in
an arid grassland found that increased interannual variability in
precipitation causes a shift in community composition towards
deeply rooted shrubs (Weltzin & McPherson, 2000; Gherardi &
Sala, 2015). One promising method to understand spatial pat-
terns in maximum rooting depth is to consider the climatology
of the cumulative water deficit to estimate the rooting zone water
storage capacity to which plants are adapted (Gao et al., 2014;
Stocker et al., 2021).

Above and belowground woody plant geometries diverge
across climates

Woody plants shift their shapes across climates more than
other plant types do (i.e. herbs), with woody root systems
being relatively narrower in arid climates and relatively wider
in humid climates (Fig. 7a, red). In arid climates, woody plants
are short and wide aboveground (Y : Xshoot < 1); an important
transition occurs at the semi-arid to subhumid boundary,
where plants become taller in relation to their width (Fig. 7a).
Shoot height increases as plants compete for light, especially
when plants are no longer limited by other resources (Falster
& Westoby, 2003; Craine & Dybzinski, 2013). In humid cli-
mates, the aspect ratio of shoots (Fig. 7a, blue) does not
change much, potentially because of the biological limits to the
possible shoot size that plants can support and plants could be
limited by other resources (Reich et al., 2003; Koch et al.,
2004; Westoby & Wright, 2006; Niklas, 2007; Moles et al.,
2009; Krishnamurthy, 2015). Overall, the shapes of woody
plants above and belowground diverge across the climate space,
where, as aridity decreases, root systems widen and shoots nar-
row (Fig. 7a). The aspect ratio of root systems decreases with
increasing humidity, representing a relative widening of root
systems. This could demonstrate a shift in resource priority,
where, as plants become less limited by water availability, root
systems may prioritize lateral growth to increase nutrient forag-
ing (Lynch, 2005) and to anchor larger aboveground plants
(Gilman, 1990; Dupuy et al., 2007).

Woody and herbaceous plants’ root systems exhibit widths
that are more than twice their shoot widths on average (S : Rx
values of 0.44 and 0.45, respectively). Our results are consistent
with the literature review by Schwarz et al. (2010), who found
that the lateral radius of tree roots is typically one to three times
the shoot radius. The greater widths reached by plants below-
ground contradicts the common misconception that the width of
root systems mirrors the width of shoots (Day et al., 2010; Sina-
core et al., 2017). For example, a whole-tree harvest study found
that, unlike the tightly packed crowns of forest trees, roots over-
lap greatly with their neighbors, resulting in root system radii
being twice that of crown radii (Sinacore et al., 2017). We postu-
late that S : Rx may display plasticity across other resource and
competition gradients, such as nutrients belowground (Lynch,
2005), light aboveground (Takenaka, 1994; Cermák et al., 1998;
Vieilledent et al., 2010), or increased competition with neighbor-
ing plants (Schenk et al., 1999; Schenk, 2006; Cahill et al., 2010;
Lepik et al., 2021).
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Whereas woody plants growing in more arid climates had
deeper, narrower root systems than woody plants in humid cli-
mates did, herbs – forbs and grasses – did not show the same
trend. Herb root systems may rely on other trait-based strategies to
cope with resource stress (Roumet et al., 2016; Freschet et al.,
2018; Wang et al., 2020), such as going dormant or shedding fine
roots during the dry season (Eissenstat & Yanai, 1997), increasing
root density to avoid dehydration (Norton et al., 2016; Singh
et al., 2020), and optimizing for fast resource uptake by having a
high specific root length (Roumet et al., 2006). However, we did
find that herbs occupy much more space belowground compared
with aboveground (Fig. 7), which could be part of a stress or
disturbance-coping strategy (Singh et al., 2020).

Are we underestimating plant rooting depth?

The RPGE dataset has been a primary source of rooting depth
data used by many Earth system models, usually incorporated to
parameterize biome-level or PFT rooting depth distributions
(Schenk & Jackson, 2002b, 2005; Warren et al., 2015). For
example, the US Department of Energy’s ELM uses the RPGE to
inform its PFT maximum rooting depth, a static parameter, with
the exception that tropical tree PFT maximum rooting depths
were set to 3 m based on expert opinion (Fig. S2; Drewniak,
2019), considerably deeper than the RPGE estimates. Across sev-
eral biomes, our analysis found that RSIP rooting depths
averaged by growth form were much deeper than the RPGE
biome-level estimates (Fig. 8). This is especially true for biomes
with high seasonality and deeply rooted woody plants, such as
tropical, Mediterranean, xeric, and forested biomes (Fig. 8).

Comparing RSIP DR values with the RPGE, we found that
D50 was very sensitive to changes in temperature, whereas indi-
vidual plant maximum rooting depth DR was slightly more sensi-
tive to climate parameters than D95 was (Fig. S3). The
correlations between climate and estimates of rooting depths are
important because the estimates are generally used to characterize
entire biomes or PFTs without considering environmental
changes within biomes. Furthermore, studies have shown that
terrestrial-biosphere models are sensitive to changes in plant root-
ing depth, leading to significant global variations in gross primary
productivity, evapotranspiration, nitrogen uptake, and more –
suggesting a more accurate and dynamic approach to modeling
the size of plant root systems is needed (Kleidon & Heimann,
1998; Warren et al., 2015; McCormack et al., 2017; Drewniak,
2019). Based on our findings, we suggest the following: rooting
depth distribution should be modelled dynamically, by account-
ing for resource availability and plant optimality, as suggested in
previous studies (Schenk, 2008b; Drewniak, 2019), and that the
RSIP DR data could be used to parameterize maximum rooting
depth across PFTs, whereas the RPGE D50 could inform the rela-
tive distribution of roots within the vertical soil column.

Significance and pitfalls

Our study provides a global synthesis of maximum plant extents
and dimensions and shows that the lateral spread of root systems

covaries strongly with aboveground plant size, whereas rooting
depth is much more influenced by temperature and climate sea-
sonality. As suggested by Tumber-Dávila & Malhotra (2020), in
addition to climate variables, future studies should also focus on
root system characteristics across resource gradients. Future stud-
ies could also characterize plant volumes above and belowground
more explicitly. There are additional environmental constraints
on root systems that should be investigated, such as the temporal
or vertical availability of plant-accessible water and plant–soil
interactions that we were unable to accurately test at the global
scale, leaving a need for additional studies at the ecosystem or
individual plant scales (Brantley et al., 2017; Erktan et al., 2018).

We present novel findings on relationships of plant size and
shape above and belowground, and across the climate spectrum.
Given that aboveground plant size is a major axis of variation in
the global spectrum of plant form and function (Dı́az et al.,
2016; Joswig et al., 2022) and that our results characterized
strong links between above-and belowground plant size, our anal-
ysis and the RSIP can contribute to an improved understanding
of plant size trade-offs above and belowground. Better predicting
these trade-offs would have far-reaching consequences for under-
standing nutrient, water, and carbon cycling of ecosystems.
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