Skip to main content
. 2022 Jun 29;10(7):1551. doi: 10.3390/biomedicines10071551

Table 2.

Benchmarking of the previous seizure-prediction methods and our MViT approach: Kaggle/AES Seizure Prediction dataset.

Authors/
Team
Year EEG Features Classifier SENS
(%)
AUC Score
Public/Private
Medrr [32] 2016 N/A N/A - 0.903/0.840
QMSDP [32] 2016 Correlation, Hurst exponent, LassoGLM, - 0.859/0.820
fractal dimensions, Bagged SVM,
Spectral entropy Random Forest
Birchwood [32] 2016 Covariance, spectral power SVM - 0.839/0.801
ESAI CEU-UCH [32] 2016 Spectral power, Neural Network, - 0.825/0.793
correlation, PCA kNN
Michael Hills [32] 2016 Spectral power, correlation, SVM - 0.862/0.793
spectral entropy, fractal dimensions
Truong et al. [24] 2018 EEG Spectrogram CNN 75.0 -
Eberlein et al. [56] 2018 Multi-channel time series CNN - 0.843/-
Ma et al. [57] 2018 Spectral power, correlation LSTM - 0.894/-
Korshunova et al. [58] 2018 Spectral power CNN - 0.780/0.760
Liu et al. [27] 2019 PCA, spectral power Multi-view CNN - 0.837/0.842
Qi et al. [28] 2019 Spectral power, variance, correlation Multi-scale CNN - 0.829/0.774
Chen et al. [59] 2021 EEG Spectrogram CNN 82.00 0.746/-
Hussein et al. [29] 2021 EEG Scalogram SDCN 88.45 0.928/0.856
Usman et al. [60] 2021 statistical and spectral moments Ensemble of SVM, 94.20 -
CNN, and LSTM
Zhao et al. [61] 2022 Raw EEG CNN 91.77–93.48 0.953–0.977/-
Proposed Method 2022 EEG Scalogram MViT 90.28 0.940/0.885