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Summary

� An essential step in the analysis of single-cell RNA sequencing data is to classify cells into

specific cell types using marker genes. In this study, we have developed a machine learning

pipeline called single-cell predictive marker (SPmarker) to identify novel cell-type marker

genes in the Arabidopsis root.
� Unlike traditional approaches, our method uses interpretable machine learning models to

select marker genes. We have demonstrated that our method can: assign cell types based on

cells that were labelled using published methods; project cell types identified by trajectory

analysis from one data set to other data sets; and assign cell types based on internal GFP

markers.
� Using SPmarker, we have identified hundreds of new marker genes that were not identified

before. As compared to known marker genes, the new marker genes have more orthologous

genes identifiable in the corresponding rice single-cell clusters. The new root hair marker

genes also include 172 genes with orthologs expressed in root hair cells in five non-Arabidop-

sis species, which expands the number of marker genes for this cell type by 35–154%.
� Our results represent a new approach to identifying cell-type marker genes from scRNA-

seq data and pave the way for cross-species mapping of scRNA-seq data in plants.

Introduction

Single-cell RNA sequencing (scRNA-seq) has recently emerged as
a powerful approach to investigate gene expression in multicellu-
lar organisms. Compared with bulk RNA-seq, scRNA-seq can
identify rare cell populations and reveal transitions of cell states
at different developmental stages, which are difficult to capture
using traditional methods (Trapnell, 2015; Wang & Navin,
2015; Butler et al., 2018). As a transformative technology,
scRNA-seq is particularly important for plant research because
traditional methods for determining gene expression in individ-
ual cell types rely on transgenic lines expressing cell type-specific
fluorescent markers, which are not available in most nonmodel
species. Because of the advantages of using scRNA-seq in plants,
this approach has been applied in a number of studies to profile
transcriptomes of Arabidopsis, rice (Oryza sativa), tomato
(Solanum lycopersicum) and maize (Zea mays) (Jean-Baptiste et al.,
2019; Shulse et al., 2019; Satterlee et al., 2020; Bezrutczyk et al.,
2021; Liu et al., 2021; Roszak et al., 2021). Among the published
scRNA-seq data in plants, the majority of data are from the Ara-
bidopsis root, which is an ideal system to address important ques-
tions in plant biology, including the analysis of the expression

patterns of rare cell types (Denyer et al., 2019; Ryu et al., 2019),
determination of developmental trajectories of root cells (Denyer
et al., 2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; T-Q.
Zhang et al., 2019) and characterization of stress-responsive genes
at the single-cell level (Jean-Baptiste et al., 2019; Ryu et al., 2019;
Shulse et al., 2019).

Determining cell types is a key step in the analysis and interpre-
tation of scRNA-seq data (Luecken & Theis, 2019). Currently,
approaches to define Arabidopsis root cell types fall into three
major categories, (1) Index of cell identity (ICI) method. This
approach uses selected marker genes based on information theo-
retic scores from the published cell expression profiles (Efroni et al.,
2015; Shulse et al., 2019; Turco et al., 2019). (2) Definition of
cluster-marker genes. This approach generates clusters of cells with
unsupervised dimension reduction methods and assigns cell types
by visualizing expression patterns using known marker genes
(Jean-Baptiste et al., 2019; Ryu et al., 2019; T-Q. Zhang et al.,
2019). (3) Correlation methods. These methods compute correla-
tion coefficients between single cells and published gene expression
data (Jean-Baptiste et al., 2019; Shulse et al., 2019). All of these
strategies rely on the knowledge of genes expressed in specific cell
types (also known as cell marker genes), and each of these three
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approaches has limitations. The ICI method was developed using
microarray data and only included 15 cell types with c. 20 marker
genes per cell type. This method did not use more recent data from
bulk RNA-seq or single-cell experiments. The cluster-marker gene
methods used marker genes that vary from publication to publica-
tion. There has not been a standardized statistical test to determine
how many marker genes are optimal. The correlation methods
require expression profiles of all expressed genes from all known
cell types, and these methods have difficulty assigning cell types
between highly diverged species due to the loss of orthologous
marker genes in nonmodel species (Liu et al., 2021). In Arabidop-
sis, > 1500 cell-type marker genes have been determined from
fluorescent-activated cell sorting (FACS)-based gene expression
data in the root cells of Arabidopsis (Birnbaum et al., 2005; Brady
et al., 2007; Bruex et al., 2012; Efroni et al., 2015; Li et al., 2016).
Several computational approaches have been developed to identify
novel marker genes from scRNA-seq data in nonplant systems
(Butler et al., 2018; Wang et al., 2019; X. Zhang et al., 2019;
Boufea et al., 2020); however, none of these approaches have been
applied to plant systems. The aim of this work was to develop and
compare machine learning (ML)-based approaches in order to
identify new cell marker genes from plant scRNA-seq data.

ML has been widely applied to solve classification problems in
genomics (Libbrecht & Noble, 2015). With regard to scRNA-
seq data, supervised ML algorithms have been used to build cell
type classifiers, which have outperformed traditional correlation-
based approaches (Alquicira-Hernandez et al., 2019; Pliner et al.,
2019; A. W. Zhang et al., 2019). However, none of these ML
methods addresses the question of selecting marker genes in
scRNA-seq data (see Supporting Information Table S1 for a
comparison of 16 state-of-the-art ML methods for single cell type
assignment). Feature selection refers to a class of techniques that
assign scores to the input features (genes) to indicate how much
each feature contributes to the performance of a predictive ML
model (Cai et al., 2018). Feature selection is a key component of
modern ML methods because it provides interpretability to the
ML models (Azodi et al., 2020). For scRNA-seq analysis, a sup-
port vector machine (SVM)-based recursive feature elimination
was used to identify marker genes to differentiate developing neo-
cortical cells from neural progenitor cells (Hu et al., 2016). These
novel marker genes not only performed better than traditional
gene sets, but also uncovered hidden regulatory networks with
novel interactions (Hu et al., 2016). We have also developed a
feature selection-based approach to determine key regulators of
transcription regulatory networks with single-cell data (Song
et al., 2020).

In this study, we have integrated five published scRNA-seq
data sets from the Arabidopsis root containing over 25 000 cells
and 17 cell clusters (Fig. 1). Using the SPmarker pipeline, we
have compared seven ML and conventional methods for the clas-
sification of 10 different root cell types in Arabidopsis. We
selected the best performing methods, random forest (RF) and
SVM, to use for the identification of marker genes. For RF, we
used a novel feature selection method called shapley additive
explanations (SHAP) method (Lundberg et al., 2020). By com-
parison, we used the method suggested by Hu et al. (2016) to

identify SVM method-based marker genes (SVMM). The SHAP
and SVMM markers were compared with other sets of marker
genes, including those that have been published (KNOW),
selected using correlation (CORR), from bulk RNA-seq (BULR)
and those used in the index of cell identity model (ICIM). When
tested with the two newly published data sets that were not used
in the training of the models, the SPmarker method and the
SHAP markers successfully assigned cells to respective cell types.

We further demonstrated the power of ML-based marker
selection is not dependent on any specific cell type assignment
approach. For example, we trained SPmarker on cells that were
labelled by a WEREWOLF (WER)-GFP promoter line and
identified new WER expressed cells. We also used SPmarker to
determine annotations from additional markers that specify cell
developmental stages in the root hair and epidermal cell types
(Ryu et al., 2019). These new cell types could not be defined
using traditional methods such as the ICI approach. We found
that the majority of new cell marker genes identified by SPmarker
were not identified before. Finally, we found that orthologous
genes of SPmarkers showed a significant overlap with single-cell
marker genes found in rice, and in root hairs in five plant species,
suggesting our approach can facilitate cell type identification in
scRNA-seq data from diverse plant species.

Materials and Methods

Data preprocessing

The scRNA-seq data of root cells from five publications were
downloaded from the NCBI GEO website (Denyer et al., 2019;
Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al., 2019;
T-Q. Zhang et al., 2019). For each data set, raw counts were used
as input data, and any samples from mutant background or under
a treatment were removed. A gene was retained if it was expressed
in more than three cells, and each cell was required to have at least
200 but not more than 5000 expressed genes. The cells that have
over 5% mitochondrial counts were removed. A global-scaling
normalization method and multicanonical correlation analysis
(SEURAT v.3.1) were used to normalize the expression data and to
remove batch effects (Butler et al., 2018). Scrublet tool (Wolock
et al., 2019) was used to predict doublet cells in this data set. The
normalized expression values in this merged data set (57 333 cells
and 25 092 genes) were used for the downstream analysis. In the
processing of scRNA-seq data from a GFP-tagged line (Ryu et al.,
2019), raw reads were mapped to the TAIR10 reference genome
using CELL RANGER pipeline (v.2.1.1) with default settings (Zheng
et al., 2017) to generate an expression matrix of 17 687 cells.

Cell type annotation and training data preparation

To assign cell types to cells collected from the previous five data
sets, index of cell identity (ICI) score was computed (Efroni et al.
(2015) for 15 root cell types including trichoblast, cortex, lateral
root meristem (LRM), late phloem-pole pericycle (Late_PPP),
protophloem, meristematic xylem (Meri_Xylem), phloem_CC,
protoxylem, phloem, pericycle, endodermis, atrichoblast,
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Fig. 1 Classification performance of 10 root cell types of Arabidopsis. (a) Comparison between seven machine learning models on cell type classification.
AUPRC, area under precision-recall curve; SVM, support vector machine; RF, random forest; KNN, K-nearest neighbours; PCA, principal component
analysis; and BNN, CTNN and TRINN, baseline, contrastive and triplet neural networks. In these boxplots, the mid-horizontal line represents the median
and dots represent data points. (b) Comparison of classification performance of all the 10 cell types. Dots represent outliers. Colour coding for cell types in
(b, c, d) is the same. (c) A UMAP plot where cells were clustered into 17 clusters. If one cell type is represented in more than one cluster, each cluster has a
slightly different colour to distinguish the clusters. For example, green is used to represent endodermis, and clusters 3, 8 and 13 in the UMAP are all
coloured in green. The right pie plot indicates cell composition in each cluster (Supporting Information Table S5). If over 50% of cells in a cluster belong to
the same cell type, this type is defined as the dominant cell type. The labels above the pies are names of the dominant cell types of the clusters. Otherwise,
the label for the clusters is ‘Mix’. *, clusters with > 95% of cells belong to the same cell type. (d) Comparisons of proportion of expressed cells among the
six marker types. All pairwise comparisons are statistically significant as indicated by different letters. If two bars have the same letter, then they are not
significantly different from each other. Error bars represent �SE.
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columella, quiescent centre (QC) and xylem-pole pericycle
(Late_XPP). A cell type with the highest ICI score was assigned
to the cell as the cell type label. To compare the performance of
our methods by using different ICI thresholds, we set two cut-
offs: ICI > 0.5 and > 0.9. There are 6662 cells with ICI scores
higher than 0.9 and only seven cell types that have > 100 cells per
cell type were retained for analysis at this ICI threshold. In addi-
tion to the ICI method, we also used two other methods to assign
cell types: (1) by using reads mapped to an internal GFP marker
genes and (2) by using manually identified developmental stage-
related markers from a trajectory analysis (Ryu et al., 2019).

Before the training process, two steps were used to balance the
number of cells for each cell type: (1) five cell types with small
number of cells (< 300) were removed; and (2) 5000 cells from
atrichoblast and cortex were randomly selected to reduce the size
of the training sets. Finally, 25 618 cells from 10 cell types were
used for our analysis (Table S1). For GFP-tagged cells, we labelled
955 cells as ‘positive’ because these cells contain reads that mapped
to the GFP gene, and other randomly selected 955 cells without
GFP reads as ‘negative’ examples. Same analysis was performed
using WER-AT (cells with reads mapped to AT5G14750, which
is the ID for the WER gene) to label 1970 cells as ‘positive’ and
1970 cells as ‘negative’ examples. To train the models, the data sets
were divided into a training data set of 90% cells and an indepen-
dent testing data set of 10% cells. The training data sets (90% of
cells) were separated into subtraining (80%) and validation (20%)
sets for five-fold cross-validation. The independent testing data set
was used to compare the performance of the ML methods.

Classification methods

ML approaches evaluated in this work include SVM, KNN, RF,
baseline NN, triplet NN and contrastive NN methods that were
implemented using SKLEARN v.0.23.1 and KERAS v.2.2.4
(Pedregosa et al., 2011; Chollet, 2015). The implementations of
neural networks were modified based on a published study (Alavi
et al., 2018). Although a few published methods were able to clas-
sify cell types, we did not find methods that can provide the flexi-
bility to select marker genes using all ML methods tested in our
work (see Table S1 for a discussion of a list of published meth-
ods). Therefore, instead of trying to compare with other stand-
alone methods that implemented specialized methods for select-
ing marker genes, we used a generic ML package (SKLEARN) such
that the methods are more directly comparable. The details for
each ML approach are briefly described in Methods S1. Source
code for our SPmarker pipeline is available at GitHub (https://
github.com/LiLabAtVT/SPMarker).

Results

Comparison between different ML models for cell type
classification

The SPmarker pipeline includes two major steps (Fig. S1). In the
first step, the expression data of cells from different data sets were
normalized and integrated (Fig. S2) using an established

approach (Butler et al., 2018). The identities of these cells were
assigned by three approaches: (1) using the ICI method (Efroni
et al., 2015), (2) an internal GFP marker gene and (3) by manu-
ally identified developmental stage-related markers from a trajec-
tory analysis (Ryu et al., 2019). In the second step, several ML
methods were trained and compared to determine the methods
that best predict cell types.

To test different ML methods, we first used the ICI method to
label the cell type for each cell (Efroni et al., 2015). The ICI score
(0 ≤ score ≤ 1) of each cell represents a similarity of each cell to
one of the 15 known cell types in Arabidopsis root, and only 56%
of all cells were able to be assigned by ICI (ICI > 0.5) to a single-
cell type. These 56% of cells were used for comparing the perfor-
mance of seven ML methods (Fig. 1). These methods were
selected because they represent approaches where each is based
on distinct underlying mechanisms (Fig. S1C). The area under
precision-recall curve (AUPRC) values are shown for all the
methods (Fig. 1a), while other evaluation metrics were also calcu-
lated and compared between methods (Figs S3, S4). The SVM
and RF had highest AUPRC among the seven models (Fig. 1a).
For the deep learning-based methods, the contrast NN and
triplet NN had similar performance but had higher AUPRC than
the baseline NN. In general, non-neural network models showed
relatively higher AUPRC than the NN-based models. This is not
unexpected, and further optimization of hyperparameters for
NN models might improve the performance of NN-based
approaches. Performance comparisons were also obtained using
seven other metrics (Figs S3–S5). Regardless of the evaluation
metrics used, the performances of SVM and RF are better than
other methods tested. Interestingly, the ML models performed
better for some cell types (e.g. trichoblast and atrichoblast) than
other cell types (QC cells, Fig. 1b). This is not entirely due to the
low number of cells in QC (537 cells, see Table S2) because other
cell types such as phloem companion cell (phloem_CC) and pro-
tophloem had similar or fewer cells (565 and 380 cells, respec-
tively) as compared to QC, but the ML model performances on
these cells are higher than QC (Fig. 1b). Due to their better per-
formances, RF and SVM were used for downstream analyses to
select marker genes using feature selection.

Next, we compared the marker genes identified by ML with
marker genes identified by other methods by comparing their
expressions in different cell clusters. To make these genes compa-
rable, we selected only the top 20 markers for each cell type (200
markers for all cell types) for SHAP, SVMM and CORR, respec-
tively. We also selected 180 BULR, 161 KNOW and 232 ICIM
markers. We cannot select exactly 200 markers for these pub-
lished types of markers because they were predetermined by pre-
vious publications (see Tables S3, S4 for the list of these marker
genes). From the 17 clusters from the integrated single-cell data
set, we focused on five clusters (5, 8, 9, 13 and 14) with a domi-
nant cell type that accounts for over 90% cells in each cluster
(Fig. 1c, see Fig. S6 for a comparison of all cell clusters). These
clusters were selected because they are the most homogenous
clusters, making the results easier to interpret. For each marker
gene in each cluster, we calculated the proportion of cells in
which this marker gene is expressed, and we calculated the
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average ‘fraction of expressed cells’ for all 20 markers in each clus-
ter. For example, given the 20 SHAP markers for cluster 8, on
average each SHAP marker was detected in 95.9% of cells
(Fig. 1d, Cluster 8, Endodermis). In these homogenous cell clus-
ters, the SHAP markers achieved a higher or similar proportion
of the expressed cells as compared to all the other markers. In
cluster 5 that represents the cortex, the SHAP markers had signif-
icantly (P < 0.05) higher expression rate (96.7%) than all other
marker types (< 85%) (Fig. 1d). The BULR markers were
detected in the lowest number of cells and followed by the ICIM
markers. Because the ICI method does not require all ICIM to be
detected in a given cell, it is not surprising that ICIM was only
found in 50% of cells in some clusters. On average, the percent-
age of cells expressing the SHAP markers was 29% more than the
ICIM markers and 67% more than the BULR markers. Because
both BULR and ICIM were not determined using the data from
scRNA-seq experiments, these results might suggest BULR and
ICIM include cell type-specific, but relatively low-expressed
genes that cannot be detected by scRNA-seq.

Using newly developed markers to assign cell identity

Because only 20 marker genes were selected for each marker type
per cell type, we compared the expression patterns for these six
types of markers using heat maps (Figs S7–S12). Markers identi-
fied by SHAP, CORR and ICIM had stronger cell type-specific
expressions than those by KNOW, SVMM and BULR. To fur-
ther quantify the specificity of the SHAP markers and other
marker types, we calculated their cumulative correlation with
specific cell types in the atrichoblast, trichoblast and endodermis
(Fig. 2a–c). These three cell types were selected because all of
these cell types have a higher number of cells than other cell
types, and these cell types are consistently identified by the major-
ity of marker types. The cumulative correlation rates for the
SHAP markers were among the top three in all cell types, suggest-
ing stronger preferential expression for this marker type. The
SHAP markers had similar performance as compared to the
CORR markers in atrichoblast and had higher performance than
the CORR markers in two other cell types. The ICIM markers
were among the top three in atrichoblast and endodermis but
ranked fourth in trichoblast. This is consistent with the observa-
tion that not all the ICIM markers were detected in all cells.

To demonstrate the specificity for the SHAP markers, we plot-
ted the top three most specific markers from the 20 selected
SHAP and KNOW markers (Fig. 2d,e). We also plotted the
expression of the bottom 3 markers (ranked 18, 19 and 20 by
marker specificity) from the 20 markers (Fig. 2f,g). We found
that the SHAP markers showed high cell type specificity in both
cases, whereas the specificity of the KNOW markers was lower in
at least seven cases for those ranked at 18–20. One interesting
observation is that most of the SVMM markers were highly
expressed in multiple clusters (Fig. S13), suggesting SVM pro-
vides a different approach to detect cell types.

One potential limitation of the ML model selected markers is
that other model parameters such as the decision thresholds for
RF and feature weights for SVM associated with each group of

markers has to be evaluated using model-dependent algorithms.
Because of the high correlation of the SHAP markers with speci-
fic cell types, we developed a voting procedure to simplify the
process of assigning cell identities using the newly developed
markers and the existing marker genes (Fig. 2h). Applying this
method to the 17 clusters, we found 15 clusters were assigned
consistently to the same cell types by three or more marker types
(black and grey colour marked the clusters in Fig. 2h). These
results show that cluster assignments are largely consistent
between the existing markers and the new marker genes.

Identification of marker genes with different training labels

The SPmarker method is more flexible than traditional
approaches because our method can be trained on different cell
labels and select different sets of marker genes to classify cell
types. To demonstrate this, we tested three additional scenarios:
(1) label cells with a different ICI threshold; (2) label cells in the
same lineage under different developmental stages; and (3) label
cells with an internal GFP marker.

We first compared the performance of SPmarker with other
conventional approaches using two different ICI thresholds, 0.5
and 0.9 (Fig. 3a,b). Marker genes were selected by RF and SVM
models, and only the top 20 marker genes were used for the anal-
ysis to match the number of genes in ICIM and other marker
types (CORR, KNOW and BULR). Random forest models were
trained using these marker genes separately, and performances
were compared using AUPRC. We have only five cell types with
enough cells or enough marker genes from all methods for com-
parison with ICI > 0.9 (see Fig. S14 for all five cell types). ICIM
performed best in both thresholds in five cell types tested, which
is expected because the ICIM was used to label cells. Interest-
ingly, we found that the performance of the SHAP and SVMM
markers increased significantly for prediction cells with ICI > 0.9
as compared to cells with ICI > 0.5. These results may suggest
that ICI > 0.9 cells are more specific as compared to cells with
ICI > 0.5 and they are easier to be classified using different sets of
markers. By contrast, the CORR, KNOW and BULR markers
did not show an improvement in performance, partly because
these marker genes were determined not based on cells labelled
by training samples, thus are less flexible than marker genes deter-
mined by SPmarker.

We next tested whether we can use ML to transfer labels from
one experiment to another (Fig. 3c–f). First, we used our pub-
lished single-cell data (Ryu et al., 2019) and selected cells from
root hair, nonroot hair and lateral root caps. These cell types were
selected because they are located at the outmost layer of roots and
represent distinct cellular functions. These cells were further clas-
sified into nine different developmental stages based on a trajec-
tory analysis (Ryu et al., 2019). SPmarker was trained on these
data to select the SHAP and SVMM markers, and predictions
were made on the other four data sets in the integrated root cell
data set (Fig. 1c). In the UMAP plots, we found that cell types
from Ryu et al. (2019) follow three separate trajectories that cor-
responded to the three selected cell types (Fig. 3c). Most impor-
tantly, the labelled cells (Fig. 3d) were overlapped strongly with
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the cells from other publications and form similar trajectories.
For example, from the Ryu et al. (2019) data (Fig. 3c,d), we
found that the ‘differentiating lateral root cap’ was located close

to the centre of the UMAP (dark blue), whereas the mature lat-
eral root cap cells were located towards the outskirt of the UMAP
plot (light blue). Cells from other four publications showed

(a) (b) (c)

(h)
(e)(d)

(g)(f)

Fig. 2 Assignments of cell identity using newly developed Arabidopsismarkers. (a–c) Cumulative correlation plot for top 20 markers for six types of
markers. (d–g) Violin plots that show the expression of top three markers (d, e) and bottom three markers (f, g) in three cell types, across all clusters. Only
distributions of the marker gene expression are shown in (d–g). (h) Heat map of cell types assigned to each cluster by different markers. On top of the heat
map, black bars show clusters assigned consistently by four or more methods, and grey bars show clusters assigned consistently by three out of six
methods.
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similar distribution (Fig. 3e, dark and light blue cells). This is
also observed for the root hair lineages (dark green, purple and
dark pink cells), and for the nonhair lineages (light green, brown
and red cells). We also identified new marker genes from these
cell types at different developmental stages, which showed stage-
specific expression patterns (Fig. 3f). These results show that
SPmarker can identify marker genes with fine-grained resolution
for cell types at different developmental stages.

Interestingly, some cells were not classified to the same type
using RF or SVM (Fig. S15). In these cells, RF predicted these
cells as nonhair epidermal, whereas SVM predicted these cells as
lateral root caps. Upon further investigation, we found that these
cells expressed the marker gene WER (Lee & Schiefelbein, 1999),
which was highly expressed in root cap, and moderately expressed
in nonhair cells. The prediction actually reflects the biological
similarity of these cells and intrinsic cell identities of these cells.
Following this observation, we tested our method using an inter-
nal control gene to label cells (Fig. 3g,h). In our published
scRNA-seq data (Ryu et al., 2019), we used a WER-promoter-
GFP line to generate scRNA-seq data. Therefore, in the scRNA-

seq data, we were able to identify reads that mapped to both GFP
(WER-GFP) and the WER (WER-AT, AT5G14750) genes. We
labelled cells using reads mapped to WER-GFP first and trained
the model to predict WER-GFP-positive cells. WER-GFP was
removed from the training data such that this gene will not be
used as a marker. The same analysis was performed using the
WER-AT gene. As expected, when we labelled cells by WER-
GFP and selected marker genes using either RF or SVM, the best
markers to predict WER-GFP-positive cells were WER-AT genes
in both methods (Fig. 3h). More interestingly, when we removed
both WER-GFP and WER-AT from the gene expression matrix,
we can still predict WER-positive and WER-negative cells with
high AUPRC (Fig. 3g, nGFP_marker), suggesting that other
marker genes can also provide predictions to the WER-positive
cells. We further compared the correlation between the SHAP
and SVMM markers to the expression of the internal WER-GFP
tag. We found that the correlation was low (r = 0.385), and most
importantly, the top ranked genes by SHAP or SVMM were not
top ranked genes by correlation. When we labelled with WER-
AT instead of WER-GFP, we observed similar results but

(a) (b)

(e)
(g)

(f)

(c) (d)

(h)

Endodermis Atrichoblast

Fig. 3 Identification of marker genes with three different ways to label cells in Arabidopsis root. (a, b) Comparison of classification performance based on
index of cell identity (ICI) labelling method between 0.5 and 0.9 thresholds in (a) endodermis and (b) atrichoblast cells. P value < 0.05 indicates significant
differences between ICI05 and ICI09 groups. (c–f) Label cells under different developmental stages. (c) Trajectory analysis of cells from root hair, nonroot
hair and lateral root caps from our published single-cell data. (d) A UMAP (UniformManifold Approximation and Projection) of nine developmental stages
derived from these three cell types. The label ‘Others’ indicates cells from other publications including four studies with trichoblast and atrichoblast cells
and with WEREWOLF (WER) cells generated from a WER-promoter-GFP line (Ryu et al., 2019). D, fully differentiated; ED, early differentiated; MD,
middle differentiated; LD, late differentiated. (e) A UMAP shows predictions of cell identities from the other publications. The label ‘Others’ indicates cells
from Ryu et al.’s study (2019). (f) Identification of the Shapley additive explanations (SHAP) markers in the nine developmental stages. (g–h) Identification
of markers with labelling cells using internal green fluorescent protein (GFP) marker. (g) Comparison of classification performance on GFP-labelled WER
cells (positive cells) between using all genes (control) and genes without GFP marker (nGFP_marker) for both random forest (RF) and support vector
machine (SVM) models. Error bars represent �SE. (h) Ranking of best SHAP and SVMMmarkers to predict WER-GFP-positive cells. The third column
indicates expression correlation between GFP and other genes. The fourth column indicates ranking based on correlation values.
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obtained a different list of high-ranking genes (Fig. S16). Since
WER-labelled cells were not included in the original ICI cell
types, these results demonstrate that our ML method is applicable
in identifying new cell types with alternative methods of cell
labelling.

Most ML-derived markers are new markers

Because SHAP and SVMM are very different from correlation
markers in the WER-GFP analysis, we sought to understand how
many new markers can be identified in other cell types. We iden-
tified the SHAP marker genes that were unique to each cell type
using ICI > 0.5. We found 1840 and 1460 unique marker genes
for cortex and atrichoblast, respectively, while 63 and 37 unique
marker genes were found for the QC and protophloem (Fig. 5a).
In other words, there were almost 30 times more unique SHAP
marker genes in cortex as compared to QC cells. By overlapping
the cumulative SHAP values from genes with the unique SHAP
marker, we found fewer than 50 unique genes accounted for
50% of the total SHAP values in each cell type (Fig. S17). This
suggested that QC had a small number (Fig. 5a, 63 genes) of the
unique SHAP markers and more markers (Fig. S17, 475 genes)
were shared with other cell types, whereas cortex or atrichoblast
had large numbers of the unique SHAP markers, but only a frac-
tion of these markers carried the most weight.

To study the identity of the SHAP marker genes, we focused
on the top 20 genes in each cell type with the highest SHAP
value. There were 146 genes out of 200 SHAP marker genes
(73%) that were not identified before in a collection of 1813
marker genes from other publications (Table S6). In particular,
in the protoxylem, all SHAP markers are new (Fig. 5b) and 80%
of the SHAP markers from the atrichoblast and phloem_CC are
new markers (Fig. S18). The same results were observed for
SVMM, where the majority of new markers were specifically
found by the SVM method but not by other methods (Fig. S19).
Interestingly, there was little overlap between these marker genes
such that 93.5% or 1027 marker genes were unique to a single
method. When we compared the top 200 marker genes identified
by six different methods, we found that most markers were found
by a single method, whereas only 71 markers were found by two
methods (Fig. 5c) and there was no single marker ranked as top
20 by more than three methods.

We also found unique biological functions for these newly
identified marker genes (Fig. 4; Tables S7–S9). Among the three
new marker types, we are most interested in the function of the
SHAP markers and we studied the gene ontology (GO) annota-
tion of the SHAP markers. These annotations were compared to
the KNOW and ICIM markers which represent the majorities of
published markers (Table S6). Nearly one third (30.5%; 61/200)
of the SHAP markers were involved in the responsiveness of

(a) (b) (c)

(e)(d)

Fig. 4 Biological function comparison between the Shapley additive explanations (SHAP) markers and the KNOWmarkers in Arabidopsis. (a) Number of
unique gene ontology (GO) and biological processes identified in marker genes. The dots under the bars indicate the GO categories specifically exist in the
relative marker type. The line connected between two or more dots under the bars mean GO categories exist in two or more marker types. If two or more
marker types do not have connection, it means these groups do not have shared GO categories. (b, c) The number of markers annotated in the specific GO
terms for the SHAP and KNOWmarkers. (d, e) The GO enrichment tests for the SHAP and KNOWmarkers.
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stimulus in the biological process. By contrast, nearly half of the
terms (46.2%; 18/39) associated with the KNOW markers were
related to root vegetative and reproduction development (Fig. 4a,
c). In the ICIM markers, only two specific GO terms were identi-
fied. One possible reason that the KNOW markers were enriched
in root developmental processes is that these KNOW marker
genes might have been used to define GO annotations. The GO
enrichment analysis also showed 19 SHAP markers were mainly
enriched in water transport (GO:0006833), response to water
(GO:0009415) and to water deprivation (GO:0009414)
processes and participate in water transmembrane transporter

(GO:0005372) and water channel activity (GO:0015250)
(Fig. 4d; Table S7). Among these markers, more than half of
them (11/19) were under cortex, endodermis, protoxylem and
meri_xylem cells (Table S7). These four cell types are essential
for water transportation and minerals assimilation (Steudle &
Peterson, 1998; Qiao & Libault, 2013). Eighteen SHAP marker
genes were also enriched in the cell wall biosynthesis (Fig. 4d).
One third (6/18) of these SHAP markers were found for the pro-
toxylem and meri_xylem cell types (Table S7) that are known to
be important for cell wall formation (Oda & Fukuda, 2012). In
summary, the SHAP markers are enriched with environmental

(a) (b) (c)

(d)

(e)

Fig. 5 Testing of new markers with independently labelled cell types in Arabidopsis. (a) Number of Shapley additive explanations (SHAP) markers identified
in each cell type. (b) Comparison of number of SHAP and known markers in the 20 genes with the highest SHAP value in each cell type. (c) Summary of
gene counts from six marker types. Set size means gene count of different marker types. The dots under the bars mean the genes specifically exist in the
relative marker type. The line connected between two or more dots under the bars mean genes exist in two or more marker types. If two or more marker
types do not have a connection, it means these groups do not have shared genes. (d) Comparisons of proportion of expressed cells between the six marker
types. All pairwise comparisons are statistically significant as indicated by different letters. If two bars have the same letter, then they are not significantly
different from each other. Error bars represent �SE. (e) Comparison between six marker types on cell type classification. The mid-horizontal line represents
the median, and dots represent outliers.
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response functions, especially water responsiveness and cell wall
formation, which suggests that the SHAP marker genes can not
only serve as cell identity markers but also may play important
cell-specific biological functions in roots.

To validate these newly identified marker genes, we searched
literature for published experimental evidence for cell type speci-
ficity of these genes. We have identified 11 cases of published
wet-bench data supporting our new markers, and all the cases
were not found by traditional methods for single-cell data analy-
sis (Table S10; Methods S1). More importantly, these 11 cases
were generated by independent publications and thus are unbi-
ased validation of our newly identified markers.

Testing new marker genes with independently labelled cell
types and new single-cell data

When we first implemented SPMarker, only five single-cell data
sets were available from Arabidopsis roots. To test whether
SPmarker can predict cell types in data that were not used in
training, we evaluated the model performance using two newly
generated single-cell data sets for Arabidopsis roots (Figs 5d,e,
S20). In both data sets, different approaches were used to label
cell clusters. In one paper, the top variable genes from each
single-cell cluster were selected and correlated with published
bulk-RNA-seq data (Wendrich et al., 2020). In the other paper,
three different methods were used to assign cell types and the
consensus of three methods was to assign cell types (Shahan et al.,
2022). To evaluate the new marker genes identified in our
approach, we calculated how many cells in each cell type where
these marker genes expressed (Figs 5d, S20). For example, for
cells identified as trichoblast in one paper (Wendrich et al.,
2020), > 99% of cells also expressed marker genes from SHAP,
CORR and KNOW categories. About 88.1% of cells expressed
the SVMM markers, and fewer than 70% of cells expressed the
ICIM or BULR markers. This result shows that if only ICIM
were used to assign cell types, > 30% of cells might not be
assigned due to the lack of marker genes. This also shows that the
SHAP, CORR and KNOW markers, and to a lesser extent,
SVMM, work well to define trichoblast cells determined in this
publication. Not all ML-based markers performed well; for
example, the SHAP markers have low expression rate in col-
umella and QC cells (Fig. 5d). Interestingly, the BULR markers
showed lower performance in all cell types. One possible reason
is that the BULR markers are lowly expressed and cannot be
detected in single-cell data, but they are highly specific to individ-
ual cell types. These results are also observed when evaluating
these marker genes in Shahan et al. (2022) (Fig. S20).

Finally, we tested the performance of different marker genes
when we used them with a RF model to predict cell types
(Fig. 5e). These models were trained using an integrated data set
(Fig. 1c) that did not include the new data, thus serving as a com-
pletely independent validation. We found that AUPRC was close
to 1.0 for five marker types in endodermis and trichoblast, and
close to 0.9 for cortex, representing high performance of the
model to transfer annotation to a different data set. By contrast,
AUPRC for all types of markers was more variable and lower for

columella and atrichoblast, suggesting additional methods would
be needed to determine the best way to assign cell types in these
cases. CORR had better performances in two cell types where the
overall AUPRC was lower than 0.9, suggesting when cells are
harder to classify, CORR might be better markers to use.

Newly identified marker genes can be used to assign cell
types in other species

As scRNA-seq experiments expand to other plant species, it
becomes challenging to accurately determine cell types, because
some marker genes in Arabidopsis may have altered their func-
tions in other species or may be absent from genomes of other
species. A major usage of new marker genes is to expand the list
of candidate marker genes in other species. To this end, we com-
pared the marker genes identified from a single-cell sequencing
data from rice roots (Fig. 6a; Table 1) (Liu et al., 2021). There
are three clusters that have the same cell type names in both the
Arabidopsis and rice data; therefore, we can only compare marker
genes in these three clusters. We found very small number of Ara-
bidopsis marker genes whose orthologous genes were also found
in the corresponding cell types in rice. For example, for cortex,
there are no marker genes from the ICIM and BULR that were
also found in rice cortex cluster (Table 1). There are only 10
KNOW markers that were also found in rice cortex cluster, and
such overlapping is not statistically significant. Although the
ICIM and KNOW marker showed a significant overlapping in
endodermis and trichoblast, respectively, the absolute number of
overlapping markers is small. These results are consistent with
the observations from the rice paper in that there is a limited
number of marker genes in Arabidopsis that are also marker genes
in rice (Liu et al., 2021). When we compared the SHAP and
SVMM markers, we found a substantial increase of overlapping
markers and such overlapping are statistically significant in five out
of six cases (Table 1). By contrast, the overlapping of the CORR
markers is only significant for trichoblast (P < 0.01) but not for
other two cell types. When we analysed how many markers were
also detected in the three cell types (Fig. 6a), we found c. 60% of
cortex and endodermis cells and > 75% of trichoblast cells from
rice also had orthologous genes of SHAP or SVMM markers. The
CORR markers showed lower detection rates than one or both
markers in the two cell types. The ICIM and KNOW markers
were missing from one cell type and showed similar or lower detec-
tion rates than the SHAP and SVMMmarkers.

Because we found a substantial increase in marker genes in the
comparison between Arabidopsis and rice data, we asked whether
such comparison could be expanded to other species. To address
this question, we analysed root hair cell expression from five plant
species including cucumber, soybean, rice, tomato and maize
(Huang et al., 2017). To consider the most specific markers, we
tested the top 20 markers from each marker type from single-cell
data. In these five species, we found a total of 172 genes were sig-
nificantly differentially expressed in root hair cells that were also
orthologous genes to the six types of marker genes (Fig. 6b). The
SHAP and SVMM markers accounted for 26.1–60.7% of these
root hair genes, and these new marker genes increased the
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number of candidate marker genes by 35.3–154.5% in these five
species (Fig. 6b).

Discussion

The scRNA-seq technology provides a novel platform to anal-
yse the transcriptomic profile of individual cells to character-
ize heterogeneous cell populations. In plants, this process has

been heavily reliant on the use of marker genes that are pref-
erentially expressed in specific cell types (Ryu et al., 2021).
Here, we introduce a ML-based approach, SPmarker, to iden-
tify marker genes by analysing their feature importance. ML
methods provide a number of principled approaches to evalu-
ate marker performance including cross-validation, leave-out
testing sets and evaluation metrics such as auROC (area
under the receiver operating characteristic), auPRC (area

(a)
(b)

Cs Gm Os Sl Zm

Fig. 6 Testing of newly identified markers in other species. (a) Comparisons of proportion of expressed cells between the four marker types in a published
rice scRNA-seq data (Liu et al., 2021). All pairwise comparisons are statistically significant as indicated by different letters. If two bars have the same letter,
then they are not significantly different from each other. Error bars represent �SE. (b) Number of root hair marker genes identified using five marker types
in five species including Cucumis sativus (Cs), Glycine max (Gm),Oryza sativa (Os), Solanum lycopersicum (Sl) and Zea mays (Zm). SHAP, Shapley
additive explanations; SVMM, SVM method-based marker genes; ICIM, index of cell identity model.

Table 1 Comparison of number of overlapped rice markers in three cell types between six marker types.

Marker
type Cell type

Arabidopsismarker
number

Rice marker
number

Overlap marker
number

Overlap
fraction

Binomial test
P-value

SHAP Cortex 2118 674 93 0.138 5.74E�11
SVMM Cortex 1286 674 54 0.080 4.91E�06
CORR Cortex 894 674 28 0.041 0.0320
ICIM Cortex 42 674 0 0.000 1
KNOW Cortex 304 674 10 0.014 0.1285
BULR Cortex 62 674 0 0.000 1
SHAP Endodermis 696 1295 25 0.019 0.7292
SVMM Endodermis 479 1295 41 0.031 7.75E�06
CORR Endodermis 4538 1295 107 0.082 1
ICIM Endodermis 25 1295 6 0.004 0.0008
KNOW Endodermis 66 1295 1 0.000 0.9205
BULR Endodermis 81 1295 1 0.000 0.9664
SHAP Trichoblast 511 1387 46 0.033 3.40E�12
SVMM Trichoblast 1231 1387 58 0.041 2.64E�05
CORR Trichoblast 4237 1387 237 0.170 5.43E�28
ICIM Trichoblast 39 1387 3 0.002 0.1056
KNOW Trichoblast 610 1387 29 0.020 0.0025
BULR Trichoblast 29 1387 1 0.0007 0.5035

Arabidopsismarker number is the number of orthologous genes of Arabidopsismarkers in the rice genome according to phytozome annotation. Overlap
ratio is calculated as overlap marker number divided by rice marker number. Binomial test P-values were calculated using 100 random draws of the same
number of marker genes and compared these random overlap ratios with the observed overlap ratio. SHAP, Shapley additive explanations; SVMM, SVM
method-based marker genes; CORR, correlation; ICIM, index of cell identity model; BULR, bulk RNA-seq.
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under the precision-recall curve) and F1 scores. These evalua-
tion methods allow us to compare different marker genes in a
more rigorous and unbiased fashion. In addition, the SEURAT

package is a standard method that needs prior knowledge of
cell clustering to identify marker genes. We have compared
marker genes identified by ML methods with those identified
by the FindAllMarkers function (with default parameters).
We have found there is no statistically significant difference
in the expression rate for the SHAP markers as compared to
Seurat-identified markers (Fig. S21). More importantly, the
majority of the SHAP and SVMM markers are different from
the Seurat markers (Fig. S22). We have shown that these new
markers can yield high performance using ML-based evalua-
tion metrics. More importantly, because these machine learn-
ing derived markers are not based on the prior knowledge of
gene functions, these markers may have new biological func-
tions that have not been characterized before.

In the evaluation of different ML methods, the SVM and RF
methods outperformed the three deep learning models (Fig. 2).
One possible reason is SVM and RF are effective for relatively
small data sets or fewer outliers (Ben-Hur & Weston, 2010; Ali
et al., 2012). The deep learning algorithms (Fig. S23) usually
require a relatively large data set to work well and achieve good
performance for solving more complex problems (Zou et al.,
2019). A previous study utilized the contrastive NN and triplet
NN to successfully classify cells in mouse by using > 100 000
cells to train these two models (Alavi et al., 2018), while our
study used < 30 000 cells. If more cells with accurate cell identity
were available in Arabidopsis, the performance of the deep learn-
ing model in our study may be improved (Eraslan et al., 2019).
Based on the computational evaluation, SHAP and SVM per-
formed consistently better than other methods. However, based
on heat map analysis (Figs S7–S12), correlation analysis (Fig. 2a–
c) and literature search (Table S10), SHAP and CORR markers
have better correlation with expression patterns and literature
support. One possible reason is that SVM is searching for ‘sup-
port vectors’, which are cases that separate different clusters of
data, and thus, genes considered important by SVM are closer to
the boundaries of cell types.

Cell populations of Arabidopsis roots are characterized by a
high level of heterogeneity. Results from animal systems have
demonstrated that, even within a cell population, the cells are not
homogeneous because subpopulations may exist (Liu & Trapnell,
2016). Furthermore, it is not clear whether all cell types have
been discovered for the Arabidopsis root (T-Q. Zhang et al.,
2019), in particular, for cells in a transition stage or regulated by
periodical signals (Voß et al., 2015). This highlights the impor-
tance of identifying new marker genes, which may be expressed
at different levels in subpopulations as compared to traditional
marker genes.

The identification of new marker genes is particularly impor-
tant for the plant biology research community because cell type
markers are largely unknown from nonmodel species. We have
demonstrated that our ML-based approaches can substantially
expand the number of known root hair marker genes and that
orthologs of these marker genes can also be found in other plant

species. One future direction is to define root cell types in non-
model species from cross-species mapping of marker genes and
their expression pattern in roots.
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