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Abstract
Network meta-analysis can synthesize evidence from studies comparing multi-
ple treatments for the same disease. Sometimes the treatments of a network are
complex interventions, comprising several independent components in differ-
ent combinations. A component network meta-analysis (CNMA) can be used
to analyze such data and can in principle disentangle the individual effect of
each component. However, components may interact with each other, either
synergistically or antagonistically. Deciding which interactions, if any, to include
in a CNMA model may be difficult, especially for large networks with many
components. In this article, we present two Bayesian CNMA models that can
be used to identify prominent interactions between components. Our models
utilize Bayesian variable selection methods, namely the stochastic search vari-
able selection and the Bayesian LASSO, and can benefit from the inclusion of
prior information about important interactions. Moreover, we extend these mod-
els to combine data from studies providing aggregate information and studies
providing individual patient data (IPD). We illustrate our models in practice
using three real datasets, from studies in panic disorder, depression, and multi-
ple myeloma. Finally, we describe methods for developing web-applications that
can utilize results from an IPD-CNMA, to allow for personalized estimates of
relative treatment effects given a patient’s characteristics.
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1 INTRODUCTION

Network meta-analysis (NMA) is a statistical technique that generalizes the usual (pairwise) meta-analysis. NMA can
jointly synthesize evidence from multiple studies comparing different sets of treatments for the same disease.1-3 In
standard applications of NMA, each node of the network corresponds to a single, independent treatment. Sometimes,
however, the nodes of a network are complex interventions (ie, combinations of a set of basic components). For example,
a network on psychological treatments for panic disorder included studies that examined cognitive behavioral therapy
(CBT)4; CBT was however administered in many different formats, for example, with or without a muscle relaxation
component, with or without breathing retaining and so forth. These components were also included in other treat-
ments, for example, physiological therapy. In such cases, it is reasonable to expect that the effectiveness of a treatment
will depend on the exact components that it included, and it is of high clinical relevance to identify the most efficient
components.

Such data can be analyzed using a component network meta-analysis (CNMA) model. This model was first pro-
posed by Welton et al,5 and is an extension of NMA that takes into account the way different components are combined
to make up the interventions of the network. The model by Welton et al was developed in a Bayesian setting, and
Rücker et al6 implemented it in a frequentist setting. The frequentist version of CNMA is included in the net-
meta7 package in R, via the netcomb function. A recent paper by Petropoulou et al8 provided an overview of the
methodology. A CNMA model can be used (in principle) to estimate the individual effect of each component, and
to identify the most beneficial components. One attractive feature of this model is that it can be implemented even
if the network is disconnected at the treatment level6 (ie, it consists of two or more subnetworks with no common
nodes) so long as some components are common across subnetworks. Another characteristic, which is unique in evi-
dence synthesis, is that this model can be used to design new treatments. For example, if the model identifies a set
of components to be beneficial, the best treatment according to the model will be the combination of these com-
ponents; this may be a completely new combination, that is, a treatment previously not tested in a trial. This new
treatment can then be tested in a new trial, provided of course that we are able to put these components together in
practice.

The simplest and most common assumption of a CNMA model is additivity, that is, to assume that each compo-
nent acts independently of others. In real applications, however, there may be interactions between at least some of the
components. Welton et al described5 how to extend the CNMA model to account for such interactions, and this is also
incorporated in netmeta. However, when the number of components is large, there are numerous interactions that can
be included in the model and including all possible interactions would lead to large uncertainty in the estimates. Thus,
a method for selecting potentially relevant interactions to include in a CNMA model is of interest. Rücker et al9 recently
described forward and backward stepwise strategies for selecting interactions. The advantages of these methods are that
they are relatively objective, they are easy to apply, easy to replicate, and they lead to simple models. On the other hand, the
use of stepwise methods for variable selection in regression modeling in general has been widely criticised.10,11 Relatively
more recent methods for variable selection are based on shrinking regression coefficients, for example, as in LASSO.12

There is, however, currently no guidance for applying shrinkage methods for selecting interaction terms in CNMA. More-
over, individual patient data (IPD) NMA is becoming increasingly popular,13 while the available CNMA models can only
handle aggregate (study-level) data.

In this article, we aim to address these gaps, by presenting a set of Bayesian models for CNMA. Our aggregated
data models can identify the most prominent interactions between components without resorting to stepwise selection
methods, while incorporating prior information about possibly important interactions. Our IPD models can additionally
include component-covariate interactions, and their results can be used to obtain patient-specific estimates of relative
treatment effects between any two combinations of components. We illustrate all methods in three real clinical examples,
and we discuss how to utilize results from IPD CNMA models to develop web-applications that can provide patient-level
estimates of relative treatment effects.

2 EXAMPLE DATASETS

We present here two real datasets to illustrate our methods. In the Appendix, we describe one additional example from
multiple myeloma.
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2.1 Psychotherapies for panic disorder (aggregate data only)

This dataset comprises study-level information from 60 RCTs in patients suffering from panic disorder. The inter-
ventions were psychological therapies, and active treatments were compared with each other or with control inter-
ventions. The outcome we focus on is short-term binary remission of panic disorder at 3 months. The treatments
were combinations of 12 components: wl (waiting list), pl (placebo), ftf (face-to-face), pe (psychoeducation), ps (psy-
chological support), br (breathing retaining), mr (progressive/applied muscle relaxation), ive (in vivo exposure), ine
(interoceptive exposure), vre (virtual reality exposure), cr (cognitive restructuring), and w3 (third wave). This dataset
has been described in more detail elsewhere.4 We show the network in the Appendix, and we provide the data in
GitHub.

2.2 Internet delivered psychological therapies for depression (aggregate
and individual patient data)

This dataset includes data from RCTs on people with depression, comparing several internet-based psychotherapies with
each other or with inactive controls. The outcome of interest is depression symptom severity, measured on the Patient
Health Questionnaire-9 (PHQ-9). This scale takes values from 0 to 27, with larger values indicating more severe symp-
toms. For a total of 21 RCTs there were only aggregate (study-level) data available, that is, mean, SD and number of
patients per treatment arm. There were also 49 RCTs that provided patient-level information on 10 331 patients. In
addition to the primary outcome, these 49 studies provided information about baseline severity in PHQ-9 and gender;
all studies except one provided information about age; all studies except one provided information about relationship
status (in relationship: yes/no). The treatments were a combination of a set of 17 components: wl (waiting list), dt
(drug therapy), pl (treatment effects), pe (psychoeducation), cr (cognitive restructuring), ba (behavioral activation), is
(interpersonal skill training), ps (problem solving), re (relaxation), w3 (third wave), bi (behavioral therapy for insom-
nia), rp (relapse prevention), hw (homework required), ftf (face to face), ae (automated encouragement), he (human
encouragement), and tg (therapeutic guidance). More details on the components have been provided elsewhere.14,15 The
network is shown in the Appendix. Due to restrictions in data sharing agreements, the data cannot be made publicly
available.

3 METHODS

Here we describe the standard NMA model (ie, at the “treatment level”) and then discuss various modeling approaches
for performing the analysis at the “component level.”

3.1 Network meta-analysis at the treatment level

Assume that study i compares treatment X and Y and it provides aggregate data (AD), that is, an estimated treatment
effects on a continuous scale (eg, mean difference, standardized mean difference, but also log-odds/risk ratio, etc.) denoted
as yi, and the corresponding sampling variance is s2

i . Then the usual random effects Bayesian NMA model can be written
as follows:

Model I: Aggregate data network meta-analysis (AD-NMA)

yi ∼ N
(
𝛿YX,i, s2

i
)

𝛿YX,i ∼ N
(

dYA − dXA, 𝜏
2)

𝜏
2
, dXA, dYA, … ∼ (prior distributions)
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where A is the reference treatment in the network (which can be chosen arbitrarily), and 𝜏
2 is the variance of

the random effects, assumed common for all pairwise treatment comparisons in the network. The model can be
easily modified for the case when arm-level information is available (ie, mean outcome and SD). Also for binary
outcomes, the model can be modified to include a binomial distribution when numbers of events per treatment
arm are available. For multi-arm trials the model needs to be adjusted by including multivariate normal dis-
tributions. For more details on the standard AD-NMA model and its extensions we refer to a comprehensive
review.3

The NMA model can be readily extended to studies with IPD.13,16,17 Assume that for patient k randomized in study
i to receive treatment tik we observe the outcome yik. Also assume that for this patient we have information on several
covariates included in vector xik (which without loss of generality will be assumed to be centralized using the overall mean
of each covariate across the whole dataset). Finally, assume that this study was a two-arm study comparing treatments X
and Y , and that A is the reference. The model is as follows:

Model II: Individual participant data network meta-analysis (IPD-NMA)

yik ∼ N
(

mik, 𝜎
2
i
)

mik =

{
𝛼i + 𝜷′xik if tik = X
𝛼i + 𝜷′xik +

(
𝜸YA − 𝜸XA

)′xik + 𝛿YX,i if tik = Y

𝛿YX,i ∼ N
(

dYA − dXA, 𝜏
2)

𝜸AA = dAA = 0

𝜎
2
, 𝜏

2
, 𝛼i, 𝜷, 𝜸XA, 𝜸ZA, … , dXA, dYA, … ∼ (prior distributions)

In this expression, 𝜷′ is the transpose of 𝜷, the vector of coefficients that encapsulate the prognostic power of x. Vec-
tor 𝜸XA includes the regression coefficients for effect modifications (treatment-covariate interactions), for treatment X
vs A. Parameter dXA estimates the relative treatment effects for X vs A at x = 0. Unexplained variability in the out-
come is included in the study-specific variance parameter 𝜎

2
i . Note that 𝜷 and 𝜸 are assumed common across studies,

while for 𝛿 we assumed random effects. We can make alternative modeling choices, for example, to assume a common
𝜎

2 for all trials, to assume random effects for 𝜷 and 𝜸, to assume exchangeability on the different 𝜸 for comparisons
of active vs control and so forth. Also note, that the model above is a “one-stage” model, that is, it performs a joint
analysis of all data. Alternatively, we could follow a “two-stage” approach,18 where the studies are analyzed on the
first stage, and their results are meta-analyzed on the second stage. We do not discuss such extensions further in this
article.

3.2 Additive aggregate data component NMA

This model was originally presented by Welton et al in their seminal paper.5 Assume that study i compares
treatment X , comprising components c1 and c2, vs treatment Y , comprising component c3 and c4. Also assume
that for this study aggregate data (AD) are available, that is, relative treatment effects yi and variance s2

i . The
model is:

Model III: AD additive CNMA (continuous outcome)

yi ∼ N
(
𝛿i, s2

i
)

𝛿i ∼ N
(
𝜃Y − 𝜃X , 𝜏

2)

𝜃X = d1 + d2, 𝜃Y = d3 + d4

𝜏
2
, d1, d2, … ∼ (prior distributions)
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For multi-arm trials we need multivariate normal distributions, as in Model I. Parameters dq (q = 1, 2, … Nc, with
Nc being the total number of components) denote the benefit or harm of adding component cq to treatment. For
example, when yi is mean difference, dq estimates the mean difference between treatments X and X + dq, where X
denotes any combination of components other than cq, under the assumption of additivity. For the case of a binary
outcome, we can use instead a binomial likelihood to model the probability of an event in each arm, for example, via
a logit function. In this case, dq will denote the change in log-odds when adding cq to any combination of compo-
nents (ie, the log-odds ratio between cq and X + cq). Readers should note that dq are not estimates of absolute effect
(eg, mean outcome or log odds), and should not be interpreted as such. The inputs of Model III (ie, 𝛿i, s2

i ) are on
the relative effects level. Thus, our inference can be only about relative, not absolute, effects. This holds true for all
models in this article, even models using arm-level information (eg, events and non-events per arm), because even
in such cases we still synthesize relative effects (eg, log odds ratios) across trials. Also note that, depending on the
network structure, some of the d parameters may be unidentifiable (eg, when c1 and c2 are always given together
we cannot disentangle their effects). However, the relative effects between combinations of components compared
in the trials will always be identifiable. We discuss issues regarding identifiability in more detail in Section 2 of the
Appendix.

3.3 Aggregate data component NMA with component interactions

It is straightforward to add interactions between components to Model III.5,6 For example, if we assume two-way
interactions only, the model can be written as follows:

Model IV: AD-CNMA with interactions (continuous outcome)

yi ∼ N
(
𝛿i, s2

i
)

𝛿i ∼ Normal
(
𝜃Y − 𝜃X , 𝜏

2)

𝜃X = d1 + d2 + d1.2, 𝜃Y = d3 + d4 + d3.4

𝜏
2
, d1, d2, … , d1.2, d1.3, … ∼ (prior distributions)

Parameter dp.q models the interaction between components cp and cq. This can be positive, in which case the two com-
ponents have synergistic effects, negative, in which case the effects are antagonistic, or zero, when the effects of the
components are purely additive. Estimating an interaction term requires a specific network structure. For example,
to estimate d1.2 we need to have in the network studies including c1 in some but not all of their treatment arms,
studies including c2, and studies including both c1 and c2 in the same arm (while also assuming that these effects
can be disentangled from the rest of the components). Note that including too many interactions in the model will
lead to some of the main or interaction terms to be unidentifiable. However, comparisons between combinations of
components may still be identifiable, for example, an interaction model may be able to estimate c1 + c2 vs c3 with-
out being able to separately estimate d1, d2, d3, and d1.2. We discuss more about identifiability in Section 2 of the
Appendix.

One question that comes up in practice is whether we should include interactions in the model and if yes, which ones.
A priori, we may expect non-zero interactions between any two components (or, to put it differently, it might be unrealistic
to expect an interaction term to be exactly zero), although in practice the effects of these interactions might be negligible
(they might be practically zero). The netcomb and discomb functions included in the netmeta package7 in R19 can
be used for fitting frequentist CNMA models with interactions. Rücker et al6 recently described a method for deciding
on whether the additive model or models with interactions provide better fit to the data, as compared to the standard
NMA model. Rücker et al9 also described two stepwise model selection methods (a forward and a backward method) for
deciding which interaction(s) to include in the model. These methods perform tests using Cochran’s Q statistic to compare
different models. A practical problem with this approach is that the number of tests can be large for networks with many
components, comparing many different combinations. Moreover, stepwise variable selection methods in general have
been criticized in the past,20 because they may lead to suboptimal model performance. We provide some additional detail
on these issues in Section 3 of the Appendix.
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3.4 Bayesian model selection in aggregate data component NMA with component
interactions

We hereby propose a different way of addressing the question of which interactions to include in the model, utilizing
Bayesian model selection methods. Such methods have been already shown to perform well for the case of estimating
patient-specific relative effects in pairwise IPD meta-analysis.21 The main idea is that, instead of comparing all possible
models with interactions with each other, we include all suspected interaction terms in the model, and shrink their cor-
responding coefficients. Coefficients of interactions for which there is small evidence in the data will be shrank more
aggressively as compared to coefficients of interactions for which the data offers stronger evidence. Below we describe
two different approaches.

We first discuss the method of stochastic search variable selection (SSVS). This Bayesian method is a form of the spike
and slab model.22,23 It was originally proposed by George and McCulloch24 and can be used to perform variable selection
at each iteration of a Markov Chain Monte Carlo (MCMC) process. This is achieved through the introduction of indicator
variables Ip.q, which, as we will see, have the advantage of allowing us to easily incorporate expert opinions. We hereby
follow a variant of SSVS proposed by Meuwissen and Goddard25:

Model V: AD-CNMA with SSVS for interactions (continuous outcome)

yi ∼ N
(
𝛿i, s2

i
)

𝛿i ∼ Normal
(
𝜃Y − 𝜃X , 𝜏

2)

𝜃X = d1 + d2 + d1.2, 𝜃Y = d3 + d4 + d3.4

𝜏
2
, d1, d2, … ∼ (prior distributions)

𝜋
(

dp.q|Ip.q
)
=
(
1 − Ip.q

)
N
(
0, 𝜂2) + Ip.q N

(
0, g2

𝜂
2)

𝜂 ∼ (narrowly distributed around zero), g = (large number)

Ip.q ∼ (prior distribution)

The idea behind this model is to have the prior distribution for the coefficients of the interaction terms we want to include
in the model to be a mixture of two normal distributions. Both are centered around zero, but one is very narrow (“spike”),
and one is vague (“slab”). When there is indication in the data that the interaction term between component cp and cq is
non-zero, then it is more likely for the interaction coefficient dp.q to have been derived from the vague normal distribution;
conversely, if there is evidence that the value is close to zero, the narrow distribution is more likely. We denote by 𝜂

2

the variance of the narrow distribution, and g2 is a large number multiplied to 𝜂
2, to create the variance of the vague

distribution. Note here that the version of SSVS used in model V25 assumes a prior for 𝜂, for extra flexibility. Alternatively
we can use the original version of SSVS24, which assumes a fixed value for 𝜂. The values of 𝜂 will influence posterior
estimates. 𝜂 should take small values, but putting it too close to zero will make the SSVS model less efficient.26 Ideally, the
choice of prior should be guided by practical considerations regarding the nature of the outcome. George and McCulloch24

mention that the choice for 𝜂 should be such that for practical purposes the distribution N
(
0, 𝜂2) can be “safely” replaced

by zero. For example, if a dp.q smaller than 0.5 is clinically unimportant, 𝜂 could be given a prior N
(
0, 10−2), because this

distribution corresponds to interaction terms being practically zero. Given the prior for 𝜂, g should be large enough to
allow for non-zero values of dp.q to be supported. It should not be too large, however, because this way it would give support
to unrealistic values.24 For example, if we are analyzing a binary outcome using log odds ratios or we are synthesizing log
hazard ratios, a reasonable choice of priors might be 𝜂 ∼ N

(
0, 10−3) and g2 = 100.

The indicator variable Ip.q shows which of the two normal distributions has been selected in each MCMC iteration.
It can take values 0 or 1, and it controls whether dp.q will acquire a non-zero value, or equivalently whether the interac-
tion between cp and cq will be included in the model. Effectively, when Ip.q = 0 the interaction term is absent from the
model, and when Ip.q = 1 it is included. The prior of Ip.q reflects the prior probability for the interaction to be included
in the model. If there is no prior knowledge about possible interactions between components, we could assign to Ip.q a
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Bernoulli prior with probability 0.5. This choice, however, makes all models a priori equally probable, that is, it favors
models that include half of the interactions. This might be unrealistic in most scenarios, and it might lead to identifia-
bility issues. A much better option is to use expert opinion to first preselect interactions to be included in the model. All
implausible interactions (eg, between components that cannot be combined, or between components for which there is
prior knowledge that they do not strongly interact) should be excluded from the model upfront, by setting dp.q = 0. For
the interactions to be included in the model, we can formulate informative priors for the Ip.q. For example, a very prob-
able interaction may be given an 80% prior probability of being included in the model. This may be particularly useful
when clinicians have insights about possible mechanisms of interactions between components. This feature constitutes
an important advantage of SSVS.

One important characteristic of SSVS is that, strictly speaking, there is no overall, final variable selection. In other
words, we do not end up with a single model. Rather, in each MCMC iteration we use a different model, as determined by
the values for Ip.q in that particular iteration (either 0 or 1). The importance of each interaction term in our final estimates
can be assessed via the posterior distribution of dp.q and Ip.q. The latter tells us how often this interaction was included in
the model. If for a particular interaction the data offers evidence that the effect is small, the corresponding parameter will
shrink to zero, and it will have minimal effect on the model estimates. Note that we can easily include three-way, four-way,
or higher-order interactions in the model, following the exact same strategy. However, estimating such interactions in
usual cases of data availability will be infeasible.

Another way to perform the analysis is to use a Laplacian shrinkage, also called a Bayesian LASSO12,27 prior for dc.c′. In
this formulation, the interaction terms are assigned a Laplace (ie, double exponential) prior, which again tends to shrink
their effects towards zero:

Model VI: AD-CNMA with Bayesian LASSO for interactions (continuous outcome)

yi ∼ N
(
𝛿i, s2

i
)

𝛿i ∼ Normal
(
𝜃Y − 𝜃X , 𝜏

2)

𝜃X = d1 + d2 + d1.2, 𝜃Y = d3 + d4 + d3.4

𝜋
(

dp.q
)
= 𝜆

2
e−𝜆|dp.q|

𝜏
2
, 𝜆, d1, d2, … ∼ (prior distributions)

The 𝜆 parameter of the Bayesian LASSO determines the amount of shrinkage performed to the dp.q parameters. For fitting
purposes, we can treat 𝜆 as a random parameter and assign an informative hyperprior.28 In practice a sensitivity analysis
might be required, while Lykou and Ntzoufras discussed strategies for constructing a prior for 𝜆 based on Bayes factors.29

Contrary to the frequentist LASSO (and similar to SSVS) this model does not perform any variable selection in the strict
sense of the term. In other words, all interaction terms are included in the model, but their effects are shrunk towards
zero. Interactions for which little evidence is available are shrunk more aggressively. Readers should note that it is much
easier to include prior knowledge about interactions between components using SSVS, that is, via the indicator variables,
rather than Bayesian LASSO. Also, it is not straightforward to select a prior for 𝜆 using expert opinion. Thus, in terms of
applicability, SSVS has a clear advantage over Bayesian LASSO.

3.5 Individual patient data component NMA models

Let us now assume that some studies only provide aggregate data (“AD studies”), while some studies provide patient-level
data (“IPD studies”). The likelihood of our CNMA model now has two parts, one for each type of studies. Following the
notation of the previous sections:

Model VII: AD&IPD additive CNMA (continuous outcome)
Likelihood for an AD study comparing X vs Y :

yi ∼ N
(
𝛿i, s2

i
)
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Likelihood for an IPD study comparing X vs Y :

yik ∼ N
(
𝛿ik, 𝜎

2
i
)

𝛿ik =

{
𝛼i + 𝜷′xik, if tij = X = (c1 + c2)
𝛼i + 𝜷′xik +

(
𝜸3 + 𝜸4 − 𝜸1 − 𝜸2

)′xik + 𝛿i, if tij = Y = (c3 + c4)

Random effects structure and prior distributions:

𝛿i ∼ N
(
𝜃Y − 𝜃X , 𝜏

2)

𝜃X = d1 + d2, 𝜃Y = d3 + d4

𝜏
2
, d1, d2, … 𝛼l, 𝜷, 𝜸1, 𝜸2, … ∼ (prior distributions)

Vector 𝜸q includes the regression coefficients for effect modification (component-covariate interaction), for component
cq. It shows the added benefit of adding cq to the treatment, per unit increase of xik. Component-specific parame-
ters dq are jointly estimated using the AD and IPD studies. Given the estimated parameters of this model, we can
estimate the relative treatment effects between any two combinations of components for new patients given their
covariates.

Of note, the IPD part of model VII provides conditional estimates of relative effects (ie, adjusted for covariates), while
the AD part provides marginal estimates (ie, population average). At the second level of the model, these two estimates
are pooled, that is, assuming they are exchangeable. We can expand the AD part by regressing over the mean value of the
covariates in each study, for example, instead of yi ∼ N

(
𝛿i, s2

i

)
we use yi ∼ N

(
𝛿i + 𝜷′xi, s2

i

)
.30,31

Note that model VII requires the estimation of potentially many parameters. For example, for the depression case
study there are 17 components and 4 covariates, which means that we need to estimate 68 different coefficients in
𝜸. Aiming for a better generalizability of findings, and to avoid issues related to overfitting, we can also apply a
shrinkage method for the 𝜸. One way is to extend this model by using again SSVS or Bayesian LASSO for 𝜸, that
is, shrinking the coefficients towards zero. For a continuous outcome, we use a conditional Laplace prior on the 𝜸,
as proposed originally by Park and Casella.28 This has the added feature that it leads to unimodal posteriors for the
coefficients. To use this prior we need to assume a common 𝜎

2
i for all IPD studies, that is, 𝜎

2
i = 𝜎

2. The prior is
then:

𝜋
(
𝜸(c)|𝜎2) =

Nc∏

k=1

𝜆

2𝜎
e−𝜆

|||𝛾
(c)
k
|||∕
√
𝜎2

where Nc is the number of covariates. Note that this form of the Bayesian LASSO could not be used for aggregate data, for
example, in Model VII. The reason is that we cannot assume a single 𝜎

2, because each study estimates comes with each
own precision, s2

i .
Model VII can be further extended to also include interactions between components:
Model VIII: AD&IPD CNMA with component interactions (continuous outcome)
Likelihood for an AD comparing X vs Y :

yi ∼ N
(
𝛿i, s2

i
)

Likelihood for an IPD comparing X vs Y :

yik ∼ N
(
𝛿ik, 𝜎

2
i
)

𝛿ik =

{
𝛼i + 𝜷′xik, if tij = X = (c1 + c2)
𝛼i + 𝜷′xik +

(
𝜸3 + 𝜸4 − 𝜸1 − 𝜸2

)′xik + 𝛿i, if tij = Y = (c3 + c4)
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Random effects, component specification and prior distributions:

𝛿i ∼ N
(
𝜃𝛶 − 𝜃X;, 𝜏

2)

𝜃X = d1 + d2 + d1.2, 𝜃Y = d3 + d4 + d3.4

𝜏
2
, d1, d2, … 𝛼i, 𝜷, … ∼ (prior distributions)

dp.q ∼ (SSVS or Bayesian LASSO prior distribution)

𝜸1, 𝜸2, … ∼ (SSVS or Bayesian LASSO prior distribution)

This model can be easily modified to address more complex modeling requirements, for example, to include a richer
random effect structure (eg, on the 𝜷 or 𝜸 parameters) or to assume exchangeability on the component effects.32 Binary
outcomes and multi-arm studies can be accounted for as discussed in previous sections.

3.6 Utilizing an IPD-NMA model in clinical practice

An IPD-NMA model (such as Model II) can estimate relative treatment effects for every treatment comparison and for
any combination of patient covariates. Furthermore, IPD-CNMA models (such as Models VII and VIII) have the capac-
ity to do so for any combination of components. Thus, such models could be used to inform the choice of treatments
in clinical practice at the patient level; this might be particularly important in some medical fields, where assigning a
patient to an intervention is often a matter of trial and error. In practice, this requires some sort of calculator, where a
user can input patient characteristics and obtain an estimate of treatment effects. In Section 4 of the Appendix we pro-
vide some details on developing an online web application using shiny33 in R. We describe such an app in the results,
Section 4.2.

3.7 A note on imputing missing covariate data in IPD studies

One usual problem in IPD studies is missing covariate data. Missing data can be either systematically missing (eg, when
a study does not collect information on patients’ relationship status), or sporadically missing (eg, when some patients
did not provide information about their age). To use the IPD models described in previous sections we need to impute
missing covariates, otherwise patients with incomplete covariate data will be excluded from the analyses. For that, we
follow the recommendations by Zhou and Reiter34: we create multiply imputed datasets, we fit the IPD models in each
imputed dataset separately, and we mix the posterior draws, to summarize the posterior distribution.

4 APPLICATIONS

Here we give results from the analysis of the datasets presented in Section 2. The R code used for all analyses is available
in https://github.com/esm-ispm-unibe-ch/Bayesian-CNMA.

4.1 Panic disorder

This dataset had only aggregate data. Each study provided the number of events and number of patients per treatment arm.
For the analysis we employed four different models: (i) Model III, the additive AD-CNMA model assuming no compo-
nent interactions; (ii) Model V, the AD-CNMA model with SSVS for interactions. We assumed equiprobable interactions,
that is, for all Ip.q we assumed Ip.q ∼ Bernoulli(0.5), and we used 𝜂 ∼ N

(
0, 10−2) and g = 100; (iii) Model V again, using

clinical opinion4 to inform the probability of inclusion for some interaction terms. More specifically, for six interactions
we assumed Ip.q to follow a Bernoulli distribution with p = 0.8: ftf+ ine, ftf+ cr, pe+ ine, cr+ ive, br+ ine, br+ ive. Other

https://github.com/esm-ispm-unibe-ch/Bayesian-CNMA
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T A B L E 1 Estimated log odds ratios [95% credible intervals] for each component (wl, pl, … , w3), heterogeneity (τ), and odds ratios for
three treatment comparisons, based on three different CNMA models

Estimated quantity
Additive CNMA
(no interactions)

CNMA with
SSVS (equiprobable
interactions)

CNMA with
SSVS (external
information for
interactions)

CNMA with
Bayesian LASSO

wl −2.64 [−4.11; −1.26] −2.66 [−4.20; −1.26] −2.57 [−4.06; −1.18] −2.75 [−4.63; −1.17]

pl 0.17 [−1.16; 1.52] 0.23 [−1.13; 1.68] 0.20 [−1.14; 1.53] 0.30 [−1.20; 1.98]

ftf −0.11 [−1.09; 0.88] −0.15 [−1.44; 1.07] −0.05 [−1.13; 1.08] −0.23 [−2.22; 1.40]

pe −0.30 [−1.11; 0.46] −0.36 [−1.49; 0.59] −0.29 [−1.11; 0.48] −0.46 [−2.20; 0.75]

ps 0.00 [−1.09; 1.10] −0.08 [−1.36; 1.10] 0.00 [−1.12; 1.10] −0.20 [−1.80; 1.13]

br −0.13 [−0.71; 0.42] −0.12 [−0.99; 0.79] −0.13 [−0.79; 0.52] −0.13 [−1.51; 1.30]

mr −0.62 [−1.18; −0.07] −0.50 [−1.30; 0.61] −0.63 [−1.20; −0.07] −0.38 [−1.54; 1.31]

ive −0.19 [−0.77; 0.43] −0.32 [−1.57; 0.52] −0.26 [−0.96; 0.41] −0.53 [−2.77; 0.59]

ine 0.29 [−0.35; 0.92] 0.36 [−0.50; 1.45] 0.39 [−0.39; 1.36] 0.49 [−0.70; 2.20]

vre −0.10 [−1.44; 1.30] −0.11 [−1.73; 1.51] −0.08 [−1.42; 1.34] −0.17 [−2.35; 2.00]

cr 0.31 [−0.28; 0.92] 0.23 [−0.82; 1.08] 0.25 [−0.58; 0.98] 0.12 [−1.68; 1.30]

w3 −0.26 [−2.69; 2.15] −0.15 [−2.69; 2.41] −0.16 [−2.59; 2.21] 0.02 [−2.84; 3.08]

τ (heterogeneity SD) 0.66 [0.28; 1.37] 0.61 [0.23; 1.33] 0.64 [0.25; 1.34] 0.56 [0.16; 1.26]

Estimated odds ratios for example comparisons

(pl+ ftf+ pe+ ps+ ive) VS
(wl)

9.15 [4.49; 20.35] 8.92 [4.26; 20.22] 8.62 [4.19; 19.60] 8.88 [4.22; 20.34]

(pl+ ftf+ pe+ ps+ ive+ cr)
VS (pl+ ftf+ ps+mr)

1.55 [0.55; 4.53] 1.51 [0.51; 4.55] 1.54 [0.54; 4.46] 1.51 [0.48; 4.86]

(pf+ ftf+ ive+ cr) VS
(pl+ pe+ br+mr+ ine+ cr)

1.60 [0.29; 9.78] 1.23 [0.15; 9.26] 1.59 [0.29; 10.39] 0.90 [0.05; 9.52]

Note: Abbreviations of components in Section 2 of this article.
Abbreviations: CNMA, component network meta-analysis; SSVS, stochastic search variable selection.

interactions were excluded from the model; (iv) Model VI using a Bayesian LASSO prior for all interactions. For the penal-
ization parameter of the model, we used 𝜆

−1 ∼ U(0, 5) as a prior distribution. For all analyses we used Binomial likelihood
at the arm level. We assumed an informative prior distribution for 𝜏2, namely 𝜏2 ∼ LN

(
−1.67, 1.4722), based on empirical

data,35 vague priors for the baseline log-odds (N(0,100)), and vague priors for the main component effects, dq ∼ N
(
0, 102)

for all q. For all models, we estimated the log odds ratio for each component, and heterogeneity SD (𝜏). Also, for illus-
tration purposes we estimated the odds ratios for the following comparisons across all models: (pl+ ftf+ pe+ ps+ ive)
vs (wl); (pl+ ftf+ pe+ ps+ ive+ cr) vs (pl+ ftf+ ps+mr); (pf+ ftf+ ps+ ive+ cr) vs (pl+ pe+ br+mr+ ine+ cr). We
used four independent chains of 30 000 MCMC iterations after 10 000 iterations burn-in and we checked conver-
gence by visually checking the posteriors and the mixing of the chains. The analyses took 30 min to run on a laptop
computer.

In Table 1 we show results. We present the estimated d parameter for each component (in log-odds ratios), hetero-
geneity 𝜏, and estimated effects for the treatment comparisons defined above, in odds ratios. We saw that the inclusion of
interaction terms slightly reduced the estimated heterogeneity as compared to the additive model, suggesting that inter-
actions may explain some of the observed variation. In Figure 1 we show the estimated point estimates of all interaction
terms vs their inclusion frequency for the SSVS model with equiprobable interactions. We see a roughly V-shaped distri-
bution, as expected: interaction terms with larger estimated absolute values had a higher probability of being included
in the model. Interestingly, two of the interactions that stand out (ftf-ine and ive-cr) were among the six suggested by
the experts. Note that many points are in the middle of the plot, that is, with a coefficient around zero and inclusion
probability around 50%. These were interaction terms for which there was small information in the data. Aiming to assess
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F I G U R E 1 Results for component interactions from the stochastic search variable selection (SSVS) model for the panic disorder
example, where all interactions were assumed equiprobable. x-axis: estimated interaction terms (log odds ratios); y-axis: frequency of
selection for each interaction term (ie, percent of times the interaction term was included in the model). The six most prominent interactions
are labeled. Component abbreviations given in Section 2.1

the sensitivity of our results on the choice of priors, we repeated analyses using different priors for main effects, that is,
dq∼U(−3, 3), different priors for the baseline log-odds, that is, U(−3, 3). We also tried a different prior for 𝜆 in model
(iv), that is, 𝜆−1 ∼ N(0,100)I(0, ). In all cases, we saw small differences in results, which did not materially change our
conclusions.

In general, we saw some discrepancies in the estimated effects across models, especially when comparing the Bayesian
LASSO with the additive model. However, differences were not clinically important. In summary, we conclude that, there
is only weak evidence of some relatively small interactions between components for this example.

4.2 Depression

This dataset included both AD and IPD studies. To account for missing data in the IPD studies, we created multiply
imputed datasets (m = 10) with thejomo package36 in R19 and used Rubin’s rules to estimate aggregated treatment effects
from each study separately. Then we fit three models: (i) Model III (ii) Model IV with equiprobable interactions, where,
assuming values of the outcome smaller than 0.5 to be clinically unimportant we used 𝜂 ∼ N

(
0, 10−2) and g = 100; (iii)

Model VI. In all models we assumed a normal likelihood at the arm level, with a prior for baseline outcome N(0,100).
Heterogeneity was given a vague prior, 𝜏 ∼ N(0, 10)I(0, ). Other model details were as described in the previous paragraph.
For illustration purposes, we estimated the relative treatment effects for the following comparisons: (pl+ cr+ ba +ps) vs
(wl); (pl+w3+ ftf) vs (wl); (pl+ pe+ ae) vs (wl). Note that the drug therapy component (dt) was either present or absent
in all arms of the included studies; thus, the corresponding d parameter was not estimable. However, its interactions with
other components were included in the interaction models. Analyses used four independent chains, 30 000 iterations after
10 000 iterations burn-in, convergence assessed as above. The analyses took approximately 30 minutes to run in a laptop
computer.

Results are shown in Table 2. As in the previous example, results from the SSVS and Bayesian LASSO CNMA models
with interactions were almost identical. Compared to the additive model, it is obvious that the inclusion of interac-
tions had a rather small impact on the estimate for 𝜏, suggesting that interactions terms were not able to explain much
of the observed heterogeneity between the studies. The estimates for the components were slightly different in some
cases, but the three estimated relative treatment effects were rather similar across all three models. Figure 2 shows
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T A B L E 2 Estimated values [95% credible intervals] for each component (wl, pl, … , tg), heterogeneity parameter (τ), and relative
effects (mean differences in PHQ-9) for three treatment comparisons, based on three different CNMA models

Estimated quantity
Additive CNMA
(no interactions)

CNMA with SSVS
(equiprobable interactions)

CNMA with
Bayesian LASSO

wl 0.17 [−1.00; 1.34] 0.24 [−1.08; 1.54] 0.24 [−1.14; 1.56]

dt 0.11[−61.99;61.93] 0.05[−62.11;61.16] 0.04[−19.48;19.53]

pl −1.56 [−2.73;-0.38] −1.30 [−2.61; 0.08] −1.28 [−2.63; 0.15]

pe 0.06 [−0.88; 1.01] −0.18 [−1.50; 0.91] −0.21 [−1.62; 0.92]

cr 0.40 [−0.78; 1.55] 0.19 [−1.48; 1.60] 0.17 [−1.59; 1.60]

ba −1.92 [−3.03;-0.84] −1.75 [−3.12;-0.23] −1.75 [−3.17;-0.20]

is −0.55 [−1.61; 0.54] −0.48 [−2.06; 1.25] −0.49 [−2.16; 1.45]

ps −0.64 [−1.44; 0.15] −0.62 [−1.95; 0.78] −0.59 [−2.08; 0.99]

re 1.05 [−0.01; 2.13] 0.98 [−0.70; 2.55] 0.97 [−0.85; 2.56]

w3 −0.60 [−1.69; 0.47] −0.85 [−2.57; 0.51] −0.89 [−2.69; 0.50]

bi −2.19 [−4.35; 0.02] −2.00 [−4.54; 0.68] −1.98 [−4.54; 0.81]

rp 0.22 [−0.84; 1.25] 0.32 [−1.04; 1.79] 0.37 [−1.08; 1.91]

hw 0.24 [−0.82; 1.34] 0.39 [−0.98; 2.06] 0.40 [−1.05; 2.17]

ff 0.76 [−2.22; 3.73] 0.59 [−2.44; 3.64] 0.60 [−2.43; 3.62]

ae −0.29 [−1.21; 0.61] −0.39 [−1.92; 0.88] −0.44 [−2.25; 0.91]

he −0.32 [−1.30; 0.65] −0.33 [−1.66; 1.08] −0.33 [−1.75; 1.14]

tg 0.17 [−0.79; 1.15] 0.00 [−1.77; 1.43] −0.05 [−2.01; 1.43]

τ (heterogeneity SD) 1.31 [0.99; 1.71] 1.23 [0.85; 1.65] 1.22 [0.83; 1.64]

(pl+ cr+ ba+ ps) VS (wl) −3.87 [−5.58;-2.28] −3.75 [−5.71;-1.80] −3.74 [−5.74;-1.69]

(pl+w3+ ftf) VS (wl) −1.58 [−4.72; 1.55] −1.78 [−5.11; 1.53] −1.80 [−5.16; 1.49]

(pl+ pe+ ae) VS (wl) −1.96 [−3.28;-0.64] −2.11 [−4.06;-0.44] −2.17 [−4.28;-0.41]

Note: Abbreviations of components in Section 2 of this article.
Abbreviations: CNMA, component network meta-analysis; SSVS, stochastic search variable selection.

the scatterplot of the indicator variables vs estimated interaction effects from SSVS. The interactions with the highest
inclusion probability are labeled on the graph and were mostly related to the face-to-face (ftf) component. The same
interactions were also picked up by the Bayesian LASSO. However, the corresponding coefficients were very small,
bearing little evidence of clinically important interactions. We repeated the analysis using a different vague prior for
d ∼ U(−5, 5). Also, using different priors for the baseline outcome (U(0, 30]). We also tried a different prior for heterogene-
ity, 𝜏 ∼ U (0, 5) and a different prior for the Bayesian LASSO, 𝜆−1 ∼ N(0,100)I(0, ). In all cases results did not materially
change.

Next, we fitted an IPD-CNMA model in the data. Based on the results from the analysis at the aggregate level presented
above we decided to not include interactions between components, to keep the model relatively simple. Thus, we fitted
Model VIII with a Bayesian LASSO to model the component-covariate interactions. For this, we used multiple imputation
with 10 repetitions, and we fit the IPD-CNMA model in each multiply imputed dataset separately. We used a single
chain, of 1000 iterations after 500 burn-in. At the end we mixed the draws from the 10 imputed datasets, to create the
final posterior distribution.34 The analysis took approximately 30 hours to run in a laptop computer. Results for all model
parameters are given in Section 2 of the Appendix. Heterogeneity was only slightly decreased and was estimated 1.20 [0.89;
1.57], that is, only a small part of the heterogeneity was explained by inclusion of patient-level information from the IPD
studies. Overall, there was evidence that baseline severity was strongly prognostic. Age and relationship status were found
to be less important prognostic factors, while there was no evidence for a prognostic role of gender. The effect modification
due to covariates (ie, component-covariate interactions) was stronger for baseline severity as compared to age, gender
or relationship status, but effects were generally small. The estimated effects of the components were comparable to the
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F I G U R E 2 Estimated interaction terms (in PHQ-9) for components of psychotherapies for depression on the x-axis, and corresponding
indicator variables (ie, probability of being included in the model) on the y-axis. The five most prominent interactions are labeled in the
graph. Component abbreviations given in Section 2.2

F I G U R E 3 Snapshot of the web application for utilizing the IPD component NMA model in clinical practice. The user inputs patient
characteristics and combination of components to be compared. The app provides the estimated relative treatment effects for the two
combinations, for two outcomes of interest

ones presented in Table 2, showing strong evidence for beneficial effects of two components (pl, ba) and strong evidence
for a detrimental effect of one component (re).

Based on the results of this model we developed a web-application15 accessible in https://esm.ispm.unibe.ch/shinies/
cNMA_iCBT/. A snapshot of the web-app is shown on Figure 3. This app can be used to input patient characteris-
tics (ie, baseline severity, age, gender, and relationship status) and two combinations A and B of components (left
panel). Outputs of the app are estimated treatment effects and 95% Credible Intervals among combinations A and B
(right panel).

https://esm.ispm.unibe.ch/shinies/cNMA_iCBT/
https://esm.ispm.unibe.ch/shinies/cNMA_iCBT/
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5 DISCUSSION

We presented a set of models for performing Bayesian CNMA. One difficulty when using CNMA is deciding which inter-
actions of components to include in the model, if any. Here, we illustrated the use of Bayesian variable selection methods
for identifying the most prominent interactions. More specifically, we used the SSVS and the Bayesian LASSO methods.
Both tend to shrink the effect of interaction terms; for interactions for which the data suggests a weak effect, the corre-
sponding parameters will shrink close to zero and have a minimal impact on the estimated relative treatment effects. For
interactions for which there is evidence of an effect, the shrinkage will be much less. The advantage of this approach, as
compared to a previously published method for selecting interactions,9 is that it avoids possible deficiencies associated
with stepwise selection. Moreover, the use of Bayesian methods, and especially SSVS, conveys the advantage of facilitat-
ing the incorporation of external (prior) information about important interactions, as well as about other parameters of
the model that may be hard to estimate, such as heterogeneity. In addition, our Bayesian methods offer increased flex-
ibility in model building, such as the potential to use binomial likelihood for binary outcomes, specify random effects
structures and so forth. Among the two variable selection models, we promote the use of SSVS, because it is much eas-
ier to decide on prior distributions for parameters as compared to Bayesian LASSO, when incorporating expert opinion.
One limitation of both approaches is that they assume familiarity with Bayesian methods and software, and require a
careful selection of the priors for all model parameters. This is especially true for priors for interactions between com-
ponents, because in practice there may be weak information in the data regarding most of them. Notably, in practical
applications, some component interactions may be impossible to exist, for example, between mutually exclusive com-
ponents. In general, it is good practice to pre-select interactions based on clinical opinion, and exclude from the model
such impossible interactions, interactions that are improbable, or interactions that are expected to be very weak accord-
ing to experts. We hereby illustrated these methods in three real examples; in all examples the inclusion of interactions
did not materially change results, as compared to the simple additive model. This suggests that the additivity assumption
may be a good approximation for many cases in practice. However, more empirical evidence is needed to clarify
this issue.

In this article we also described how to generalize CNMA models to allow the inclusion of IPD from all or only
some studies in the network. We demonstrated how IPD CNMA models can include interactions between compo-
nents, but also interactions between covariates and components. The latter goes into the direction of personalized
(“stratified”) medicine, that is, when the estimated treatment effect depends on the patient characteristics. We dis-
cussed how to develop online calculators that can facilitate their use, that is, to take full advantage of such analyses in
clinical practice. One limitation is that the IPD-NMA models we presented did not differentiate the within- from the
across-study interactions of the covariates and the components.16 However, they could be modified to accommodate such
a change.

There are several other potential extensions of the work described in this article. First, we could envision models that
also shrink the main effects of the components, and not just their interactions. This would be straightforward, using either
LASSO or SSVS. However, with SSVS we may end up with “unnatural” models in each MCMC iteration, where the main
effect of a component is excluded from the model while some of its interactions are included. Whether this would lead
to better or worse estimates of relative treatment effects is unclear. Related to this, an interesting area of future work is
to perform a simulation study to explore the advantages and disadvantages of the Bayesian models and to see how these
compare to frequentist approaches.

To summarize, we have presented a range of Bayesian models for CNMA. Our models facilitate the identification of
important component interactions and can combine aggregate and patient-level data to estimate patient-specific relative
treatment effects.
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