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INTRODUCTION

Irrigation plays an essential role during root canal treat-
ment (Zehnder, 2006). The currently accepted paradigm 
suggests that irrigants accomplish the major part of clean-
ing and disinfection of the root canal system, whereas in-
strumentation is primarily a means to obtain access to the 
apical anatomy (Gulabivala et al., 2005), as instruments 
are unable to reach many areas (Peters, 2004). Anatomical 

complexities and the presence of bacteria as surface-
adherent biofilm structures are the foremost challenges 
for irrigation (Chávez de Paz & Ordinola Zapata, 2019) 
and motivate a continuous research interest. As a result, 
a plethora of studies have been published on this topic 
and new studies are continuously undertaken. Evidently, 
not all of them are accepted for publication. A recent re-
port suggested that approximately 85% of all manuscripts 
(including those on irrigation) that are submitted to a 
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Abstract
Irrigation plays an essential role in root canal treatment. The purpose of this narra-
tive review was to critically appraise the experimental methods and models used to 
study irrigants and irrigation systems and to provide directions for future research. 
Studies on the antimicrobial effect of irrigants should use mature multispecies 
biofilms grown on dentine or inside root canals and should combine at least two 
complementary evaluation methods. Dissolution of pulp tissue remnants should 
be examined in the presence of dentine and, preferably, inside human root canals. 
Micro-computed tomography is currently the method of choice for the assessment 
of accumulated dentine debris and their removal. A combination of experiments in 
transparent root canals and numerical modeling is needed to address irrigant pen-
etration. Finally, models to evaluate irrigant extrusion through the apical foramen 
should simulate the periapical tissues and provide quantitative data on the amount 
of extruded irrigant. Mimicking the in vivo conditions as close as possible and stand-
ardization of the specimens and experimental protocols are universal requirements 
irrespective of the surrogate endpoint studied. Obsolete and unrealistic models must 
be abandoned in favour of more appropriate and valid ones that have more direct 
application and translation to clinical Endodontics.
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leading Endodontic journal are rejected (Ahmad et al., 
2019), often because of major experimental design and 
methodological flaws (Nagendrababu et al., 2021). This is 
an important problem because of the time and resources 
invested in these studies.

Efforts to improve the quality of the submitted manu-
scripts have led to the development of reporting guidelines 
for various study types in Endodontology (Nagendrababu 
et al., 2020), but these guidelines focus on manuscript 
preparation rather than study design and methodology. 
The methodology of studies on root canal irrigation was 
critically appraised a decade ago (Shen et al., 2012), so an 
update is warranted to cover the latest developments in 
this field. Such information could assist researchers in 
the selection of the most suitable methods and models. 
Knowledge of their strengths and weaknesses may also 
assist the authors of future systematic reviews and readers 
to interpret the findings of published studies and distin-
guish between reliable and unreliable research.

Research on root canal irrigation entails a wide vari-
ety of methods and models, ranging from basic and trans-
lational (or applied) research to clinical research. Basic 
research aims to generate knowledge on fundamental 
mechanisms related, for instance, to the biofilm, chem-
ical reactions and physical action of irrigants, without 
attempting to extrapolate the findings directly to clinical 
practice. Translational research, on the other hand, aims 
to refine this knowledge and translate it into improved pa-
tient treatments using laboratory-based or animal-based 
models that mimic closely the in vivo conditions in hu-
mans (Fang & Casadevall, 2010). Clinical studies are the 
ultimate test for these treatments where they are evalu-
ated under real-life conditions.

The primary outcome of interest in clinical 
Endodontology is the prevention or healing of apical peri-
odontitis (Azarpazhooh et al., 2022; Ørstavik, 2019), but 
very few publications on root canal irrigation have actually 
reported it (Liang et al., 2013). To facilitate laboratory-based 
basic and translational research, surrogate end-points, such 
as the antimicrobial effect, the dissolution of pulp tissue 

remnants, the removal of dentine debris and the smear 
layer, and the penetration of the irrigant in the root canal 
system, have been used instead. Likewise, inadvertent ir-
rigant extrusion through the apical foramen has been used 
as a surrogate end-point for extrusion accidents, which are 
an important, yet rare, side effect of irrigation (Boutsioukis 
et al., 2013). These end-points are easier to quantify than the 
corresponding primary outcomes and they require shorter 
observation periods, so they have dominated the literature 
in this field, even though they often lack the necessary val-
idation and their correlation with the primary outcomes is 
based on assumptions. Some examples of basic and trans-
lational research experiments per surrogate end-point can 
be found in Table 1.

The purpose of this narrative review was to critically 
appraise the current experimental methods and models 
that are used to study irrigants and irrigation systems and 
to provide directions for future research. The review is or-
ganized according to the various end-points of interest.

ANTIMICROBIAL EFFECT

Due to the key role of bacteria in the development of pulpal 
and periapical disease (Chávez de Paz, 2007; Kakehashi 
et al., 1965; Möller et al., 1981), the reduction of the in-
tracanal microbial load is undoubtedly the most relevant 
surrogate end-point when studying root canal irrigation. 
There is evidence that this end-point is correlated to the 
healing of apical periodontitis, at least in single-rooted 
teeth assessed by two-dimensional imaging (Sjögren et al., 
1997), but there is a need to confirm these findings in pos-
terior teeth using three-dimensional imaging.

Direct contact tests on planktonic cultures 
(in vitro)

Planktonic cultures have been widely used to determine 
the antimicrobial effect of root canal irrigants (Generali 

T A B L E  1   Examples of basic and translational research experiments for various surrogate endpoints used in root canal irrigation studies

Surrogate endpoint Basic research Translational research

Antimicrobial effect Measurement of the minimum inhibitory 
concentration of an irrigant against 
planktonic bacteria

Killing/removal of a multispecies biofilm 
grown inside a human root canal ex vivo 
by an irrigant

Dissolution of pulp tissue remnants Dissolution of bovine pulp tissue by an irrigant 
in a test tube

Histological evaluation of pulp tissue 
remnants in human root canals irrigated 
ex vivo

Removal of dentine debris Dissolution of dentine debris by an irrigant in 
a test tube

Micro-CT evaluation of the accumulated 
dentine debris in root canals of extracted 
human teeth following irrigation.
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et al., 2020; Li et al., 2020; Nudera et al., 2007; Tong et al., 
2011; Torabinejad et al., 2003). These simple tests on bac-
teria in a liquid phase measure the minimal inhibitory 
concentration and minimal bactericidal concentration of 
an irrigant (Andrews, 2011). As planktonic bacteria rarely 
occur in real-life conditions in the root canal, the clinical 
relevance of these tests is very limited.

Another method that was used extensively in the past 
is the agar diffusion test (Sassone et al., 2008; Siqueira 
et al., 2000). Although simple and easy to perform, this 
test has important limitations that compromise the va-
lidity of the results. The measured antimicrobial effect is 
strongly affected by the ability of the irrigants to diffuse 
through agar, which depends on their molecular weight. 
Therefore, comparisons between different irrigants are 
unreliable. Moreover, the bacteria are in a planktonic state 
and the test cannot distinguish between bacteriostatic 
and bactericidal effects (Tobias, 1988). Contrary to its use 
for determining the effectiveness of systemic antibiotics 
against specific bacteria (Bonev et al., 2008), there are no 
accepted standards for its use to compare irrigants (Shen 
et al., 2012). Thus, this test should not be used to compare 
the antimicrobial activity of root canal irrigants, not even 
as a preliminary screening step (Editorial Board of the 
Journal of Endodontics, 2007).

Biofilm models in vitro and ex vivo

Root canal infections are caused by multispecies micro-
bial biofilms organized in heterogeneous communities 
attached to dentinal surfaces (Svensäter & Bergenholtz, 
2004). The biofilm mode of growth offers several advan-
tages over their planktonic counterparts, for example an 
increased resistance to antimicrobial agents (Costerton 
et al., 1999). Several factors contribute to the antimicrobial 
resistance; the extracellular polymeric substance (EPS) 
acts as a diffusion barrier and hinders the penetration of 
antimicrobials into the biofilm; the different oxygen and 
nutrient availability force the cells to enter slow-growing 
or starved metabolic states in the inner layers of the bio-
film, rendering them less susceptible to antimicrobials; 
existing ‘persister cells’ express a highly persistent phe-
notype when exposed to antimicrobials (Costerton et al., 
1999; Folkesson et al., 2008; Hall-Stoodley et al., 2004; 
Lewis, 2007); the large number and high diversity of the 
microorganisms within the biofilm facilitate gene trans-
fer that can confer antibiotic and antimicrobial resistance 
(Lerminiaux & Cameron, 2019). This greater resistance 
to antimicrobials has been observed in bacteria isolated 
from infected roots canals (Chávez de Paz et al., 2007). 
Overall, biofilms are the primary target of irrigants and, 
therefore, a variety of methods are used to determine their 

antimicrobial effect against biofilm grown in vitro or ex 
vivo.

Structure and composition of the biofilm

Most of the in vitro biofilm models used to study the ef-
fect of root canal irrigation have been composed of a 
single bacterial species (Du et al., 2014; Morago et al., 
2019; Rodrigues et al., 2018; Zeng et al., 2020), predomi-
nantly Enterococcus faecalis. Single-species biofilms are 
easy to grow and allow a high experimental throughput 
(Swimberghe et al., 2021). In the past, this species was 
thought to survive treatment procedures and persist even 
as a mono-infection, leading to treatment failure (Siren 
et al., 1997; Sundqvist et al., 1998). However, more recent 
studies have questioned its role (Zehnder & Guggenheim, 
2009; Zehnder & Paqué, 2011). E.  faecalis is not present 
in many failed cases, and, when found, it is hardly ever 
among the most prevalent species (Bouillaguet et al., 2018; 
Siqueira et al., 2016; Zandi et al., 2018). Perhaps the most 
attractive feature of E.  faecalis is its ability to tolerate a 
wide range of growth conditions, which greatly facilitates 
laboratory handling. The unwarranted attention paid to a 
single species is likely to have misled our understanding of 
the antimicrobial effect of various irrigants. For example, 
E. faecalis is particularly susceptible to chlorhexidine and 
early laboratory studies using only this species came to the 
erroneous conclusion that chlorhexidine is a very strong 
antimicrobial agent that could potentially replace NaOCl 
(Menezes et al., 2004). More recent work using multispe-
cies biofilms has overturned this conclusion (Ruiz-Linares 
et al., 2017).

Although single-species biofilm models represent a 
clear improvement over the planktonic bacteria used 
in the past, they still do not resemble real-life condi-
tions, as these have a multispecies nature (Bouillaguet 
et al., 2018; Gomes et al., 2015; Siqueira & Rôças, 2014; 
Zandi et al., 2018). Complex interspecies interactions 
(Tan et al., 2017) result in larger biofilm production, in-
creased virulence, as well as higher resistance to several 
antimicrobials (Jiang et al., 2011a; Stojicic et al., 2012). 
Thus, multispecies biofilm models formed from labora-
tory strains or clinical isolates of root canal bacteria have 
been established (Busanello et al., 2019; Chávez de Paz, 
2012; Marinković et al., 2020; Swimberghe et al., 2021). 
These models usually include a small number of species 
selected based on their availability and interspecies com-
patibility. Nevertheless, even multispecies models may not 
be able to replicate natural root canal communities due 
to the differences in the environmental conditions and 
the difficulty to include microorganisms with restricted 
culture requirements (Chávez de Paz & Marsh, 2015). 
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Increasing the biodiversity of multispecies biofilm models 
may compromise their standardization and reproducibil-
ity. Additionally, laboratory strains used in multispecies 
models have been shown to express different phenotypic 
characteristics than their clinical counterparts (Chávez de 
Paz et al., 2015).

As an alternative, natural biofilms can be grown di-
rectly from infected root canal samples (Clegg et al., 
2006; Du et al., 2013; Ruiz-Linares et al., 2017; Shen et al., 
2011; Figure 1) or dental plaque (Shen et al., 2009, 2011; 
Stojicic et al., 2013). For example, naturally formed den-
tal plaque biofilms have been grown on special intra-oral 
orthodontic devices (del Carpio-Perochena et al., 2015; 
Ordinola-Zapata et al., 2013). These naturally formed 
multispecies biofilms, especially those composed of root 
canal bacteria, resemble more closely the composition, 
interspecies interactions and metabolic cooperation of 
root canal biofilms in vivo, leading to an increased resis-
tance to antimicrobials (Chávez de Paz, 2007; Chávez de 
Paz & Marsh, 2015; Tan et al., 2017). However, selection 
of the most suitable incubation time, growth media and 
atmospheric conditions is challenging and some species, 
such as nonculturable ones, may be lost along the labo-
ratory workflow (Rudney et al., 2012). Furthermore, the 
exact microbial composition is initially unknown; the 
biodiversity within each sample can only be explored 
afterwards using molecular techniques such as 16S 
rRNA gene sequencing (see section ‘Molecular meth-
ods’). Hence, natural multispecies biofilms cannot be 
reproduced in different laboratories or at different times. 
Despite these limitations, multispecies biofilm models 
are the models of choice for future studies to investigate 
the antimicrobial effect of irrigants. Single-species bio-
films are not recommended anymore for this purpose 
(Swimberghe et al., 2021).

Substrate and surface coating

Both synthetic and natural surfaces have been used to 
grow biofilms in vitro. Synthetic surfaces, such as glass, 
polystyrene, polydimethylsiloxane, epoxy resin and hy-
droxyapatite (Layton et al., 2015; Liu et al., 2010; Pereira 
et al., 2021b; Petridis et al., 2019; Shen et al., 2010a; 
Townsend & Maki, 2009), allow better standardization 
of the specimens in terms of size, shape, composition 
and surface characteristics. However, they may alter the 
initial stages of biofilm formation because bacteria adhere 
to organic receptors on dentine, such as collagen fibrils, 
which influence the biofilm structure and composition 
(Kishen et al., 2008; Love & Jenkinson, 2002). In addition, 
synthetic substrates cannot reproduce the fine details of 
dentine microanatomy and the chemical interactions be-
tween irrigants and dentine, for example the consumption 
of the free available chlorine of NaOCl solutions (Macedo 
et al., 2010; Shen et al., 2012) or the detachment of biofilm 
bacteria due to chelation by EDTA (Banin et al., 2006). 
When a synthetic surface is needed for the growth of a 
multispecies biofilm, hydroxyapatite seems to have the 
most advantages (Shen et al., 2010a).

Natural surfaces, for example human dentine blocks 
and complete roots, have also been used to investigate 
the antimicrobial effect of irrigants ex vivo (Haapasalo 
& Ørstavik, 1987; Ma et al., 2011; Morago et al., 2019). 
However, age-related changes such as the continuous 
deposition of peritubular dentine (Carrigan et al., 1984; 
Eldarrat et al., 2010), the reduced permeability (Thaler 
et al., 2008) and the reduced number of infected dentinal 
tubules (Kakoli et al., 2009), along with variability in the 
configuration and mineralization of dentine, are difficult to 
control and may confound the results (Thaler et al., 2008). 
Still, human dentine is the substrate of choice for biofilm 
growth. Using pairs of extracted teeth from the same pa-
tient may reduce these differences (Baumgartner et al., 
2007; Kho & Baumgartner, 2006; Miller & Baumgartner, 
2010) but only two groups can be compared at a time and 
it may be difficult to obtain enough sound specimens.

To overcome some of the limitations of human dentine, 
bovine dentine is often used as an alternative. Bovine teeth 
are easier to obtain and their age can be standardized along 
with various other environmental conditions. Nevertheless, 
bovine dentine has slightly different morphology, chemi-
cal composition and properties (Yassen et al., 2011), most 
notably a lower mineral content and collagen crosslinking 
(Enrich-Essvein et al., 2021), as well as a significantly larger 
number of dentinal tubules compared to human dentine 
(Camargo et al., 2007). Its use as a substitute for human den-
tine when growing biofilm remains to be validated.

Sterilization of the specimens before biofilm growth 
is necessary to standardize the initial conditions. The 

F I G U R E  1   SEM photomicrograph of a natural multispecies 
biofilm grown from a necrotic root canal sample on dentine for 
3 weeks
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choice of the sterilization method depends on the toler-
ance of the material/tissue to heat, humidity and chem-
icals. Sterilization must ensure complete elimination 
of all microorganisms without affecting its physical, 
chemical and biological properties. Steam autoclaving 
is the most widely used method for dentine steriliza-
tion (Nawrocka & Łukomska-Szymańska, 2019), and 
it has only a minimal effect on its structure and min-
eral content (Parsell et al., 1998; Pashley et al., 1993). 
However, when dentine is pre-treated with a chelating 
agent, autoclaving denatures and disintegrates the ex-
posed collagen fibrils, so it affects dentine permeabil-
ity (Jiang et al., 2019; Soares et al., 2011) and bacterial 
adhesion (Chivatxaranukul et al., 2008), which are im-
portant during the initial steps of biofilm formation. 
Gamma radiation has given promising results without 
notable adverse effects on dentine (White et al., 1994), 
but it requires costly equipment and careful adjustment 
of its operating parameters (Nawrocka & Łukomska-
Szymańska, 2019). Ethylene oxide and immersion in 
ethanol, hydrogen peroxide, glutaraldehyde, quaternary 
ammonium compounds or sodium hypochlorite are 
not sufficiently effective (Dominici et al., 2001; Pashley 
et al., 1993; Sandhu et al., 2012) and they may also inter-
fere with bacterial adhesion (Sandhu et al., 2012).

Once the samples have been sterilized, they are often 
coated with saliva, mucin, bovine serum albumin or colla-
gen to facilitate bacterial adhesion (Busanello et al., 2019; 
Kayaoglu et al., 2005; Layton et al., 2015; Li & Bowden, 
1994; Lundstrom et al., 2010). Coating mimics the con-
ditioning film that is naturally adsorbed on dentine and 
acts as a receptor for bacterial adhesins, so it is useful for 
all types of substrates. It can influence the formation and 
structural organization of a biofilm (Shen et al., 2010a; 
Stepanović et al., 2004) and its resistance to antimicro-
bials (Chávez de Paz et al., 2010; Violante et al., 2013). 
Nevertheless, it remains unclear which coating protocol 
is the most suitable for biofilm formation.

Biofilm growth

Biofilm can be grown under static conditions, which 
may lead to the nutrient supply becoming scarce at some 
stage (Kishen & Haapasalo, 2012; Merritt et al., 2005). 
Alternatively, it can be grown under dynamic conditions 
in flow chambers (Chávez de Paz et al., 2010) or ferment-
ing devices (Pereira et al., 2020; Petridis et al., 2019) where 
a controlled continuous flow of medium provides fresh 
nutrients and drains the old medium and the waste prod-
ucts (Busanello et al., 2019; Chin et al., 2006; Pavarina 
et al., 2011; Shen et al., 2012; Tolker-Nielsen & Sternberg, 
2011). It is likely that the exudate penetrating an infected 

root canal in vivo flows very slowly and the applied shear 
force is not strong enough to affect biofilm formation. 
Consequently, static biofilm models seem to resemble 
more closely the root canal biofilms in vivo than dynamic 
ones (Shen et al., 2012), although neither type is able to 
fully replicate an in vivo infection.

The ‘dentine block’ model has been widely used to 
grow biofilm under static or dynamic conditions and eval-
uate the effect of root canal irrigants on infected dentine 
(Haapasalo & Ørstavik, 1987). The standardized geometry 
and infection of the specimens enhance the reproducibil-
ity. Owing to their small size, multiple blocks can be ob-
tained from the same tooth (particularly from bovine teeth 
or from the coronal third of human teeth), which enables 
matching of the specimens prior to randomization (Baca 
et al., 2011). Biofilm growth on the surface of the blocks 
needs to be confirmed (see section ‘Microscopy’) before 
the experiment (Shen et al., 2012). It should be noted 
that the size of the dentine blocks varies between studies, 
which hinders direct comparisons, and that the effect of 
root canal geometry is excluded, so the results should be 
interpreted with some caution. Nevertheless, this model 
can be used for the initial screening of the antimicrobial 
effect of irrigants. In another similar model, bacteria are 
forced into the dentinal tubules by centrifugation to create 
a more standardized deep infection (Ma et al., 2011). This 
contamination method is markedly different from the way 
root canals are infected in vivo. Centrifugation may have 
a negative impact on the bacteria (Ma et al., 2011), so ob-
ligate anaerobes are not suitable as they may not survive 
the process. Another important limitation of these mod-
els is that the blocks are typically obtained from the coro-
nal third of young teeth to avoid sclerotic dentine (Paqué 
et al., 2006; Vasiliadis et al., 1983a); therefore, the findings 
cannot be directly extrapolated to the apical third.

Biofilms have also been grown inside root canals ex 
vivo (Gazzaneo et al., 2019). This model resembles real-life 
conditions more closely than dentine blocks, but the anat-
omy of the root canal may compromise the effectiveness 
of the infection process. Thus, it is important to include 
root canals with similar anatomy. Pre-instrumentation 
is usually required to facilitate the entrance of bacteria 
in the root canal following the immersion in the bacte-
rial suspension (Gazzaneo et al., 2019) or inoculation 
(Villalta-Briones et al., 2021). Either way, successful bio-
film formation on the root canal wall should be confirmed 
(Bhuva et al., 2010).

Biofilm age

Biofilm formation is initiated by the attachment of plank-
tonic bacteria to a pre-coated surface. Subsequently, 
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microcolonies lead to total colonization and growth 
on the surface and form a complex biofilm community 
(Sauer et al., 2002). As the biofilm matures, its resistance 
to various antimicrobials increases (Lim et al., 2009; Shen 
et al., 2011; Stojicic et al., 2013; Swimberghe et al., 2021; 
Wang et al., 2012; Yang et al., 2016). In view of these find-
ings and given that most in vivo biofilms are likely to be 
quite old (weeks-, months- or even years-old) at the time 
of root canal treatment, mature biofilms are a more re-
alistic choice when evaluating the antimicrobial activity 
of irrigants in vitro or ex vivo. Unfortunately, the major-
ity of the available studies on this topic used very young 
biofilms (<7 days; Swimberghe et al., 2019a), so they may 
have overestimated the effect of the irrigants. An impor-
tant milestone seems to be reached after 3 weeks of bio-
film maturation irrespective of the initial composition of 
the biofilm (Stojicic et al., 2013). However, this period 
may be intrinsic to that particular model and environ-
mental conditions, so examining the biofilm growth ki-
netics in each particular model is recommended before 
initiating a study to identify and understand its matura-
tion stage (Swimberghe et al., 2019a).

During biofilm growth, the media is usually refreshed 
once per week (Shen et al., 2011; Stojicic et al., 2013; 
Wang et al., 2012). The constant nutrient supply main-
tains the bacteria in an exponential growth phase and fa-
vours the removal of nonadhered bacteria and metabolic 
by-products. This condition is clearly different from the 
clinical situation, particularly regarding secondary or 
persistent infections. Nutrients are very scarce in a pre-
viously treated root canal, and starvation makes the bac-
teria more resistant to adverse environmental conditions, 
including antimicrobials. Therefore, the type of biofilm 
used (starved/stressed or metabolically active) should 
be decided based on the particular focus of each study. 
Growing starved/stressed biofilms seems more reason-
able when simulating a persistent infection.

Evaluation of the antimicrobial effect of 
irrigants on in vitro and ex vivo biofilm

So far, there is no gold standard method for the assess-
ment of the antimicrobial effect of irrigants on biofilm, so 
it is recommended to combine two or more complemen-
tary methods that together can provide a more thorough 
view (Camilleri et al., 2020).

Direct contact test on biofilm

A direct contact test can be performed on biofilm grown 
in vitro to determine the minimal biofilm eradication 

concentration (MBEC; Figure 2). This test is quick, easy 
to perform and reproducible (Arias-Moliz et al., 2010; Ceri 
et al., 1999). However, the biofilm is brought in contact 
with an excess of irrigant in the absence of dentine, so 
MBEC is a very poor predictor of the antimicrobial effect 
of the irrigant ex vivo and in vivo. Hence, this test is only 
suitable for initial screening and should always be com-
plemented by more accurate methods (Arias-Moliz et al., 
2010; Ferrer-Luque et al., 2010; Giardino et al., 2020a, 
2020b).

Sampling

Effective sampling of the bacteria in a biofilm depends on 
the location. When the biofilm resides on a dentine block 
or an inert surface, it can be recovered in a liquid (e.g., 
broth or saline) by vortexing, sonication, or centrifugation 
(Baca et al., 2011). Fine-tuning of the recovery protocol 
is required for each particular biofilm/substrate combina-
tion to ensure that the applied shear force is enough to 
completely detach the biofilm from the surface without 
damaging the bacteria.

When the biofilm is grown inside a root canal, samples 
can be obtained by a combination of paper points, files 
and/or burs (Ercan et al., 2004; Ferrer-Luque et al., 2014; 
Gomes et al., 2003; Möller, 1966; Peters et al., 2011), a dif-
ficult and technique-sensitive procedure (Sathorn et al., 
2007). Paper points alone can only sample planktonic bac-
teria from the main root canal lumen and bacteria loosely 
adhered to the wall. The procedure can be improved by 
introducing a solution into the root canal and scraping the 
wall with files or burs in an effort to loosen the biofilm and 
adjacent dentine before inserting the paper points (Möller, 
1966). Vortexing or sonication of the paper points and the 
files/burs is then used to recover the sampled bacteria. 

F I G U R E  2   MBEC™-high-throughput device (Innovotech) that 
can be used to grow biofilms on 96 polystyrene pegs (top half). A 
flute trough (bottom half) guides the inoculated growth medium 
across the pegs when the device is placed on a rocker
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The information on the precise location of the bacteria in 
the root canal is lost during sampling. In addition, the mi-
crobial load in the sampled areas may not be representa-
tive of the remaining bacteria in isthmuses, lateral canals 
and other anatomic irregularities that are difficult to reach 
with instruments and irrigants (Sathorn et al., 2007).

These sampling limitations can be partially overcome 
in ex vivo experiments by cryo-pulverization of the roots, 
which facilitates the recovery of bacteria from difficult-to-
reach areas (Alves et al., 2009). However, this is a destruc-
tive method, so repeated testing of the same specimens is 
not possible, and care must be taken to disinfect the exter-
nal root surface before pulverization.

Culturing

The number of viable and cultivable bacteria in a sample 
can be determined by plating on agar plates (Hannig et al., 
2007) and counting the colonies formed (colony forming 
units—CFUs), a method that has been used extensively 
(Figure 3). It should be emphasized that only viable bacte-
ria that are able to divide and form colonies in the supplied 
culture medium are quantified by this method (Azeredo 
et al., 2017). A high proportion of the bacteria present in 
root canal infections are viable but nonculturable (VBNC), 
which means that they are metabolically active and viru-
lent bacteria that can initiate biofilm formation, albeit to 
a lesser degree than viable bacteria, but they lack the abil-
ity to grow in culture media (Li et al., 2014). As a result, 
culturing of samples from a natural multispecies biofilm 

model that includes VBNC bacteria will underestimate 
the diversity and the total number of bacteria. In addi-
tion, culture methods are laborious and time-consuming; 
a large range of culture media have to be prepared and 
samples must be incubated for extended periods of time in 
order to detect slow-growing microorganisms.

Molecular methods

Molecular methods are based on the detection of nucleic 
acids from microorganisms. Among them, the polymer-
ase chain reaction (PCR) is the one that revolutionized the 
field of molecular biology (Mullis et al., 1994). Early im-
plementations lacked the ability to quantify the amount 
of DNA in the sample. The real-time/quantitative poly-
merase chain reaction (qPCR) overcame this problem by 
monitoring the number of thermal cycles until a certain 
amount of DNA is produced. This number is correlated 
with the initial amount of DNA, thus with the number of 
bacteria. qPCR is very sensitive and as few as 10 bacterial 
cells can be detected in a sample (Siqueira & Rôças, 2017). 
The bacteria can be identified using either species-specific 
primers or universal primers that detect a broad spectrum 
of bacteria. The latter are very useful when analyzing 
natural multispecies biofilms, but they are not as sensi-
tive and even they cannot target all the species in a sample 
(Döring et al., 2008; Horz et al., 2005).

qPCR has been proposed as an alternative to cul-
turing when studying the effect of root canal irrigation 
(Blome et al., 2008; Rodrigues et al., 2017; Zandi et al., 
2016, 2019). This method is more sensitive than cultur-
ing and can detect microorganisms independently of 
their growth phase. Although a positive correlation of 
these findings to CFU counts has been reported (Aul 
et al., 1998; Malawista et al., 1994), qPCR can also de-
tect free extracellular DNA and DNA from dead cells 
(Brundin et al., 2014, 2015; Klein et al., 2012; Siqueira 
& Rôças, 2005a, 2005b; Young et al., 2007). Therefore, 
the effect of antimicrobials on biofilm may be underes-
timated. Some studies reported that the half-life of free 
DNA in an infected root canal seems to be very short 
because of the action of DNases and, therefore, it has 
only a minor effect on bacteria quantification by qPCR 
(Siqueira, 2008) but others have come to the conclusion 
that this DNA can be preserved for months, so it can 
be an important source of error (Brundin et al., 2014, 
2015; Young et al., 2007). To overcome this problem, 
pre-processing to degrade the free DNA prior to qPCR 
has been proposed (İriboz et al., 2018). This can be 
achieved by DNase treatment during sample preparation 
(İriboz et al., 2018). Alternatively, the samples can be 
treated with a photo-reactive viability dye which binds 

F I G U R E  3   CFUs of an E. faecalis suspension grown on a Brain 
Heart Infusion (BHI; Scharlau Chemie SA) agar plate (bottom side 
shown). A 10-μl drop of the suspension, either undiluted or diluted 
over the range 10−1 to 10−5, was plated at each location
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selectively to the DNA of membrane-compromised cells 
and leads to its degradation upon light exposure before 
DNA extraction and amplification, a technique named 
viability-PCR (Codony et al., 2020; Nkuipou-Kenfack 
et al., 2013). However, some DNA from diseased cells 
may persist (Codony et al., 2020). Recently, the disin-
fection procedure of the operative field and the steril-
ity controls that had been used in a number of studies 
employing PCR and qPCR were also criticized because 
they were based on the requirements of culture-based 
methods rather than molecular ones (Figdor & Brundin, 
2016). To serve their purpose, sterility controls need to 
be analyzed in the same manner as the experimental 
samples in a study. It should also be emphasized that 
molecular methods are generally subject to the same 
sampling limitations as culture-based methods.

Reverse transcriptase PCR is another molecular 
method that has been used to quantify the remaining 
bacteria following different irrigation protocols. This 
method is based on the detection of bacterial RNA and 
it provides more reliable information about the viability 
of the microorganisms in the sample compared to qPCR 
because RNA has a shorter half-life than DNA and it is 
degraded rapidly after cell death (Kempsell et al., 2000; 
Miskin et al., 1999; Teske et al., 1996). However, RNA is 
also more difficult to isolate and preserve (Kawane et al., 
2014).

A more recent development in molecular methods is 
next-generation sequencing (NGS), also known as high-
throughput sequencing (İriboz et al., 2018; Zandi et al., 
2018). NGS is based on PCR amplification and sequenc-
ing of the 16S rRNA gene, which allows the analysis 
of the taxonomic composition of microbiological eco-
systems. It is a very sensitive method but the DNA ex-
traction process may not be equally effective for all the 
taxa (Manoil et al., 2020). In addition, NGS is also unable 
to determine the viability of the bacteria and can detect 
free DNA and DNA originating from dead cells (Siqueira, 
2008), like other molecular methods. Finally, the cost of 
this method is still high and the necessary equipment is 
not widely available. Even though NGS has been mainly 
employed to characterize the composition of the micro-
biota present in root canal infections (Keskin et al., 2017; 
Sánchez-Sanhueza et al., 2018; Zahran et al., 2021), it 
has also been used to study the effect of chemomechani-
cal preparation on the microbial diversity (Gomes et al., 
2015; İriboz et al., 2018; Zandi et al., 2018). Moreover, 
the rRNA/DNA ratio calculated from NGS data has been 
used to estimate the proportion of active bacteria in a 
sample before and after instrumentation (Nardello et al., 
2020). Thus, NGS can be a valuable tool for analyzing the 
effect of irrigants on both the composition and the viabil-
ity of multispecies biofilms.

Microscopy

Light microscopy combined with histological staining 
allows for visualization of microorganisms in a speci-
men (Vera et al., 2012b). Although the resolution is not 
very high, it can provide valuable qualitative informa-
tion about the biofilm, its location within the root canal 
system and its relation with pulp tissue remnants (Nair 
et al., 2005; Peters et al., 2011; Ricucci & Siqueira, 2008). 
Thanks to its low magnification, larger parts of a specimen 
can be imaged compared to other methods. However, it 
requires laborious sample preparation that includes fixa-
tion, decalcification, sectioning and staining. Moreover, it 
only provides two-dimensional information and findings 
gathered from 2–3 sections may not be representative of 
the entire root canal. In addition, light microscopy is not 
a very sensitive method to detect bacteria and it does not 
provide information about their viability. Therefore, it is 
not suitable for the quantification of the antimicrobial ef-
fect of root canal irrigants but it could be used as a supple-
ment to quantitative methods.

Scanning electron microscopy (SEM) provides high-
resolution and high-magnification images of surface 
structures that allow morphological characterization 
of the biofilm on a specimen. Irregular surfaces can be 
easily imaged due to its larger depth of field compared 
to light microscopy (Azeredo et al., 2017; Morago et al., 
2016; Figure 1). It has been widely used to confirm the 
presence or growth of a biofilm on a specimen and for 
qualitative evaluation of the effect of root canal irrigants 
on biofilm (Arias-Moliz et al., 2021; Marinković et al., 
2020; Shen et al., 2011). However, the specimens must 
undergo laborious preparation before imaging, including 
fixation, freeze- or critical-point-drying and coating with 
a conductive material. These processes may alter the cell 
morphology and introduce artefacts (Hannig et al., 2010). 
Drying also leads to the collapse of biofilm matrix poly-
mers (Kachlany et al., 2001; Little et al., 1991) and con-
ductive coating may obscure some structures (Bergmans 
et al., 2005; Little et al., 1991). Similar to light microscopy, 
SEM does not provide information about bacteria viability 
and it does not allow their identification or quantification. 
Moreover, it does not provide any data about the biofilm 
layers below the surface. Some additional limitations of 
SEM are discussed in the section on the removal of debris 
and smear layer.

Environmental scanning electron microscopy (ESEM) 
is based on the same principles as SEM, but the specimen 
can be imaged in low vacuum following minimal or no 
preparation, so biological specimens, including delicate 
biofilm structures such as the EPS matrix, can be imaged 
without prior dehydration or coating (Bergmans et al., 
2005; Collins et al., 1993; Priester et al., 2007). This reduces 
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the artefacts (McKinlay et al., 2004) and enables longitu-
dinal evaluation of the same area at different times, for 
instance before and after irrigation (Bergmans et al., 2008; 
Reis et al., 2008), although exact repositioning of the spec-
imen in the microscope chamber is not straightforward 
(Reis et al., 2008). Its resolution is lower than SEM, so less 
topographical details can be obtained (Bergmans et al., 
2005) and, similarly to SEM, only the surface of the spec-
imen can be examined and no information is provided 
about the viability of the bacteria.

Confocal laser scanning microscopy (CLSM) is cur-
rently among the most valuable techniques for in situ 
visualization and quantification of a biofilm (Lawrence 
et al., 1991; Neu & Lawrence, 2014). Its resolution allows 
for visualization of single cells (Daddi Oubekka et al., 
2012). Capturing of multiple images along varying focal 
planes and computer-based processing enable the three-
dimensional reconstruction of the biofilm and measure-
ment of parameters such as the biofilm volume, thickness 
and surface coverage (Chávez de Paz, 2009). Unlike SEM, 
fixation, drying and coating are not required, so the biofilm 
remains hydrated and without alterations. To visualize the 
various components of the biofilm, the specimen can be 
stained with fluorochromes. Dual staining with SYTO 9 
and Propidium Iodide (PI; Live/Dead Baclight bacterial 
viability kit; Invitrogen) is probably the most widely used 
method to discriminate between intact (stained by SYTO 
9) and damaged cells (stained by PI) based on the integrity 
of their membrane. SYTO 9 labels both viable and VBNC 
cells (Netuschil et al., 2014). Therefore, this viability kit 
can reveal the three-dimensional cell distribution in a bio-
film (Hope et al., 2002) and the effect of antimicrobials on 
them, both on a surface and inside dentinal tubules (Ma 
et al., 2011; Villalta-Briones et al., 2021). It is considered 
good practice to adjust and validate the staining protocol 
before each study (Stocks, 2004) to cope with interspecies 
differences, particularly when examining a multispecies 
biofilm (Zotta et al., 2012). CLSM has a small depth of 
field, so to image biofilm grown on dentine, its surface 
needs to be flattened in advance, a process that inevitably 
alters its morphology (Figure 4). CLSM also works at very 

high magnification, so it is not feasible to scan the entire 
specimen and evaluation is limited to a few selected spots. 
In some cases, dentine debris and the smear layer may 
also retain the fluorochromes and lead to errors. Finally, 
a common pitfall in the interpretation of CLSM findings 
is that, following Live/Dead staining, green-stained and 
red-stained cells are incorrectly regarded as live and dead 
cells, respectively. However, cells with intact membranes 
(green-stained) can be metabolically inactive, thus dead, 
and cells with a damaged membrane (red-stained) may 
still be alive (Netuschil et al., 2014).

In fluorescence in situ hybridization (FISH), fluores-
cent probes bind to specific 16S rRNA sequences in per-
meabilized bacteria during incubation under controlled 
conditions. FISH can assist microscopic identification of 
bacteria and it also provides detailed information on the 
spatial organization of mixed microbial communities 
(Figure 5; Chávez de Paz et al., 2015; Lukic et al., 2020; 
Sunde et al., 2003). Furthermore, it is very sensitive and 
can detect microorganisms independent of their growth, 
although limited data are available concerning the detec-
tion of VBNC bacteria (Gao et al., 2021). However, it re-
quires an extensive preparation of the specimens, only a 
limited number of probes are available and hybridization 
may not be equally efficient in all cases (Azeredo et al., 
2017). The number of different microorganisms that can 
be detected simultaneously is also limited. Finally, simi-
larly to other molecular techniques, FISH can also detect 
the free extracellular DNA and the DNA derived from 
dead cells.

Optical coherence tomography (OCT) is an imaging 
method based on low-coherence interferometry. Light 
scattered by the biofilm is recorded and processed to ob-
tain a cross-sectional or fully three-dimensional image of 
the biofilm (Wagner & Horn, 2017). This method is non-
invasive and requires no sample preparation, so repeated 
evaluation of the biofilm in its native state is possible. 
Changes in the biofilm structure (volume, thickness, po-
rosity and roughness) after the application of an irrigant 
can be visualized and quantified through image analysis 
(Busanello et al., 2019; Wagner & Horn, 2017; Figure 6). It 

F I G U R E  4   Three-dimensional reconstruction of CLSM scans of natural multispecies biofilms grown from an infected root canal sample 
on dentine for 3 weeks: (a) untreated control, (b) after treatment with 2.5% NaOCl for 1 min, (c) after treatment with 0.2% cetrimide for 
1 min. Green-coloured bacteria are cells with intact membranes and red-coloured bacteria are cells with damaged membranes following 
Live/Dead staining (BacLight; Invitrogen)
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also provides a superior view of the substrate–biofilm and 
fluid–biofilm interfaces (Busanello et al., 2019; Pereira 
et al., 2020, 2021a). Its spatial resolution is lower than 
other microscopy techniques such as SEM and CLSM but 
the field of view is larger, so it is possible to scan the entire 
specimen in a very short time. Direct optical access to the 
biofilm is required at least from one direction. Another 
disadvantage is that OCT provides no information on the 
composition of the biofilm and the viability of the bacteria 
(Wagner & Horn, 2017).

Atomic force microscopy (AFM) is a high-resolution 
scanning probe microscopy method that can measure the 
cohesive strength of the biofilm and the adhesion force 
between the biofilm and the substrate (James et al., 2017). 
No special preparation of the biofilm specimen is required 
(Müller et al., 2009) but the scanned surface has to be flat, 
so the natural morphology of dentine must be altered in 
most cases. AFM has been used to study the effect of irri-
gants on the short-term adhesion force between bacteria 
and root canal dentine or filling materials (Kishen et al., 

2008; Xu et al., 2019). However, it is not possible to func-
tionalize the AFM tips with the same number of bacteria 
each time, which may affect the magnitude of the mea-
sured force (Kishen et al., 2008).

Chemical methods

The crystal violet assay is a colorimetric assay that has 
been used for rapid approximate quantification of the bio-
film mass after exposure to irrigants (Christensen et al., 
1985; Li et al., 2020; Mohmmed et al., 2016). This assay 
has been applied to biofilms grown on microtiter plates 
(Alves et al., 2013; Li et al., 2020; Mohmmed et al., 2016; 
Wilson et al., 2015) and also inside artificial root canals 
created in acrylic blocks (Layton et al., 2015; Townsend 
& Maki, 2009). It is easy to perform, inexpensive, and it 
can be applied to different bacterial species. However, it 
cannot differentiate between living and dead cells (Peeters 
et al., 2008; Pitts et al., 2003), so it can only quantify bio-
film removal (Peeters et al., 2008). Moreover, reproduc-
ibility is a problem (Arnold, 2008; Peeters et al., 2008) and 
there is no standard protocol, so comparisons between dif-
ferent studies are hindered. Due to these limitations, its 
use should be limited to screening of potential antibiofilm 
agents before using more laborious and accurate quantifi-
cation methods (Alves et al., 2013).

The adenosine triphosphate (ATP) assay measures the 
ATP production of the bacteria and reflects the metabolic 
activity of viable and VBNC cells (Beumer et al., 1992; 
Sánchez et al., 2013). Measurements can be taken using 
a variety of enzymatic assays, for example the one based 
on luciferase (Braissant et al., 2020). This assay is easy to 
perform, the results are obtained within a few minutes 
and it can detect as few as 10 bacterial cells (Tan et al., 
2015). The results have been correlated with the CFU 
counts over a wide range of bacterial species (Choi et al., 
2018; Solana et al., 2017; Tan et al., 2015). However, the 
reaction is non-specific, so it is not possible to identify the 
microorganisms, and the amount of ATP produced may 
vary depending on the species, so it is difficult to calcu-
late the number of microbial cells in a multispecies bio-
film (Stewart, 1990). Therefore, the ATP assay can be used 
mainly as a complement to other methods.

The XTT assay is based on the reduction of the XTT 
dye to a formazan (Roehm et al., 1991). The amount of 
the formazan is proportional to the number of metabol-
ically active microbial cells. This assay has been used to 
quantify the effect of irrigants on biofilm (Rana et al., 
2019; Wright et al., 2021; Ye et al., 2019). However, prob-
lems regarding intra- and interspecies variability have 
been reported (Peeters et al., 2008). It is also expensive, 
more time-consuming and less sensitive (>106  CFU/

F I G U R E  5   Three-dimensional reconstruction of CLSM scans 
of 16S rRNA FISH-labelled biofilm cells in cocultures of 3 species 
isolated from infected root canals. Streptococcus gordonii cells 
bind to probe STR405 (green fluorescence) and were detected by 
Ar-laser excitation (480 nm). Lactobacillus salivarius (red) and 
Actinomyces naeslundii (blue) were simultaneously detected using 
lasers G-HeNe (543 nm) and UV (390 nm). [for further information 
see Chávez de Paz (2012)]

F I G U R E  6   OCT scans of a dual-species biofilm 
(Streptococcus oralis and Actinomyces naeslundii) grown inside 
artificial lateral canals made of Polydimethylsiloxane using a 
constant depth film fermenter (a) before and (b) after ultrasonic 
activation of 2% NaOCl in the adjacent main root canal (to the left)
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ml) than other chemical methods (Honraet & Nelis, 
2006; Peeters et al., 2008). Consequently, its use is not 
recommended.

Resazurin is a stable redox indicator that is reduced 
to resorufin by metabolically active bacteria (O'Brien 
et al., 2000; Pettit et al., 2005). Similarly to the XTT 
assay, it can quantify both viable and VBNC bacteria 
(Gao et al., 2021) and its results correlate well with CFU 
counts (Jiang et al., 2011a; Pettit et al., 2005; Sandberg 
et al., 2009). It is a rapid, inexpensive and less time-
consuming method compared to the XTT assay (O'Brien 
et al., 2000; Peeters et al., 2008) and it has been used 
as an initial screening method to explore the effect of 
different irrigant concentrations on biofilm (Jiang et al., 
2011a). Unfortunately, its sensitivity is relatively low 
(>105–107 CFU/ml; Jiang et al., 2011a; Sandberg et al., 
2009) and microorganisms metabolize resazurin at a 
varying rate, so different incubation times are required 
for multispecies biofilms (Peeters et al., 2008). Similarly 
to the ATP assay, resazurin can be used to complement 
other methods.

Ex vivo models to evaluate irrigant 
substantivity

Some irrigants can bind on dentine and exert an anti-
microbial effect over time (substantivity) which may 
prevent bacterial (re)colonization after root canal treat-
ment (Komorowski et al., 2000; Rosenthal et al., 2004). 
However, published ex vivo studies often evaluated this 
property under unrealistic conditions. The dentine blocks 
that served as test specimens were totally immersed in the 
irrigant (Baca et al., 2012; Barrios et al., 2013; Komorowski 
et al., 2000; Parsons et al., 1980; Rosenthal et al., 2004), in 
some cases for up to 40 min (Parsons et al., 1980), which 
exaggerated the effect, and they were subsequently ex-
posed to high concentrations of bacteria (Baca et al., 2012; 
Barrios et al., 2013), which also differs from the conditions 
in a treated root canal. The use of a single species, namely 
E.  faecalis, as a test microorganism introduced further 
bias, as already explained. Some studies assessed the anti-
microbial effect rather than substantivity (Khademi et al., 
2006). The root canal was rarely filled (Rosenthal et al., 
2004), so the potential adverse effect of the filling materi-
als on substantivity was mostly ignored. Finally, irrigants 
that demonstrate substantivity (such as chlorhexidine) 
have a strong affinity for dentine, so they can be trans-
ferred together with dentine into the test assays and lead 
to false-negative results (Rosenthal et al., 2004). Therefore, 
careful neutralization of the irrigants prior to evaluation is 
essential but it was rarely done in published studies.

Considerations for animal studies

Animal studies can reproduce more closely the in vivo 
conditions in humans than in vitro and ex vivo studies 
(Haapasalo, 2016). Many of the methods described al-
ready can be also applied in animal studies but would be 
unethical to apply in clinical studies (Garcia de Paula-
Silva et al., 2009; Holland, 1992; López et al., 2015; Silva 
et al., 2004; Sperandio et al., 2008; Tanomaru Filho 
et al., 2002). However, ethical guidelines for animal 
studies are also strict and the studies can be very costly. 
Contamination is a concern when sampling animal root 
canals in vivo and, due to the polymicrobial nature of real-
life biofilms, it is recommended not to rely exclusively 
on culture-dependent quantification methods (Cohenca 
et al., 2010). Moreover, the control of confounding fac-
tors is not as effective as in in vitro and ex vivo studies, so 
a larger sample size may be required (Shen et al., 2012). 
There may also be differences in the root canal anatomy, 
host response and tissues between animals and humans, 
so the findings should not be directly extrapolated to 
the clinical situation, although they are usually more 
clinically relevant than those of laboratory-based studies 
(Haapasalo, 2016).

Considerations for clinical studies

Clinical studies are a higher level of evidence as they allow 
testing of irrigants and irrigation techniques under real-
life conditions (Haapasalo, 2016). Root canal anatomy, 
temperature, nutrients, dentine, host response and the 
biofilm are all present (Shen et al., 2012). Nevertheless, 
some of these parameters cannot be controlled, so they 
act as confounders. For instance, it is not possible (or 
ethical) to create standardized root canal infections. A 
larger sample size is usually recommended to circum-
vent this problem (Haapasalo, 2016) but recruiting 
enough patients may be difficult. Obtaining a representa-
tive sample from root canals in vivo is also notoriously 
challenging (Ruksakiet et al., 2020) and special protocols 
must be followed to disinfect the operating field (Figdor 
& Brundin, 2016; Möller, 1966). Similarly to animal stud-
ies, it is preferable not to rely only on culture-dependent 
methods when studying natural biofilms in vivo (Vianna 
et al., 2006). Clinical studies also need to follow very 
strict ethical guidelines (Shen et al., 2012). Depending on 
the design of each study, it may be possible to treat the 
teeth in vivo and evaluate them ex vivo (Nair et al., 2005; 
Vera et al., 2012b). However, the root canals can be eas-
ily contaminated even during tooth extraction (Kapalas 
et al., 2011).
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DISSOLUTION OF PULP TISSUE 
REMNANTS

Pulp tissue remnants are considered a potential source of 
nutrients for bacteria surviving in the root canal (Love, 
2012), and they may also interact with the irrigants and 
limit their antimicrobial action (Haapasalo et al., 2007). 
Therefore, their dissolution and removal from the root 
canal system is one of the goals of irrigation (Zehnder, 
2006), even though there is still no evidence that it has 
any effect on the healing of apical periodontitis.

Human pulp tissue remains the first choice for in vitro 
and ex vivo experiments focusing on this surrogate end-
point. However, the difficulty to obtain it in sufficient 
quantity (Cullen et al., 2015; Slutzky-Goldberg et al., 
2013) has motivated the use of other tissues, such as bo-
vine pulp tissue (Al-Jadaa et al., 2009a, 2009b; Camps 
et al., 2009; Guneser et al., 2015) or meat (Haapasalo et al., 
2014; Stojicic et al., 2010; Tartari et al., 2015, 2017; Tejada 
et al., 2019), pig pulp tissue (Clarkson et al., 2012) or pal-
atal mucosa (Conde et al., 2017; Naenni et al., 2004), rat 
tissue (Hand et al., 1978), and shrimp meat (Ballal et al., 
2021). These tissues are easily available and can be cut into 
standardized specimens (Stojicic et al., 2010). It is strongly 
recommended that the use of any substitute tissue is suf-
ficiently justified concerning its similarity to human pulp 
tissue.

In vitro studies have often immersed a standardized 
tissue specimen in abundant irrigant inside a test tube or 
other similar container and measured its dissolution rate 
(Cullen et al., 2015; Guneser et al., 2015; Haapasalo et al., 
2014; Hand et al., 1978; Stojicic et al., 2010). Such basic-
science experiments examine the direct chemical effect 
of the irrigant on tissue under optimum well-controlled 
conditions, so they are useful for initial screening but 
the results should not be directly extrapolated to clin-
ical practice. The absence of dentine leads to an overes-
timation of the dissolution capacity (Tejada et al., 2019). 
Moreover, test tubes cannot reproduce the fluid dynamics 
of a human root canal when the irrigant is delivered or ag-
itated (see section ‘General points’), so experiments of this 
kind should not be used to compare irrigation methods. 
Apart from their weight, the tissue specimens also need 
to be standardized in terms of size and shape (Haapasalo 
et al., 2014; Stojicic et al., 2010) because the exposed sur-
face area of the tissue is one of the parameters that affect 
their dissolution rate (Guneser et al., 2015). When quan-
tification is based on the time until complete dissolution 
(Cullen et al., 2015), the end of the reaction may be diffi-
cult to determine because of the large number of bubbles 
produced (Shen et al., 2012). Hence, the weight loss of the 
specimen after contact with the irrigant for a fixed time 
has been used instead (Hand et al., 1978; Naenni et al., 

2004; Stojicic et al., 2010). However, in this case, the mea-
surements can be affected by the hydration state of the 
specimen, which needs to be standardized before weigh-
ing (Hand et al., 1978; Stojicic et al., 2010; Tartari et al., 
2017). In addition, hypertonic irrigants will draw water out 
of the specimen and reduce its weight, whereas hypotonic 
irrigants will have the opposite effect. Tissue dissolution 
has also been evaluated indirectly through measurement 
of the available chlorine in the NaOCl solution before and 
after interaction with the tissue (Moorer & Wesselink, 
1982) or measurement of the amount of the amino acid 
hydroxyproline in the remaining tissue (Koskinen et al., 
1980). Evidently, these methods are more complicated and 
time-consuming than weighing.

To include the chemical interactions with dentine in 
the experiments, some studies have added dentine pow-
der (Guneser et al., 2015; Tejada et al., 2019) or bars to the 
solution (Cullen et al., 2015) or the experiments have been 
performed inside artificial dentine cavities instead of inert 
containers (Slutzky-Goldberg et al., 2013). Dentine pow-
der has an exaggerated surface to volume ratio compared 
to the root canal wall, which probably leads to overesti-
mation of its chemical effect on the irrigant. In addition, 
preparation of dentine specimens, whether in the form 
of powder, bars, or cavities, leads to inevitable structural 
modifications of dentine, which may also affect the chem-
ical reactions (Shen et al., 2012).

Artificial root canal systems created in transparent plas-
tic blocks have also been employed to mimic the flow con-
ditions and irrigant-tissue contact inside a real root canal 
(Al-Jadaa et al., 2009a, 2009b; Malentacca et al., 2012), 
albeit without including the chemical effects of dentine. 
These models contain accessory canals that are filled with 
minced tissue and its dissolution is quantified by digital 
photography. It may be difficult to ensure complete and 
homogeneous filling of these accessory canals and minced 
tissue may be easier to dissolve than intact pulp tissue in 
vivo. Moreover two-dimensional evaluation may not be 
able to describe a three-dimensional effect in full.

Experiments have also been conducted in human 
teeth with artificial grooves (Conde et al., 2017) or resorp-
tion cavities (Ballal et al., 2021; Ulusoy et al., 2018). The 
roots are split to create these irregularities and fill them 
with a pre-weighed amount of soft tissue and then they 
are reassembled. The tissue remaining after irrigation is 
weighed again. Although standardization of the tissue 
may not be as accurate as in the in vitro experiments in 
test tubes, these models combine more realistic flow con-
ditions with the chemical effect of dentine and allow an 
improved understanding of tissue dissolution inside the 
root canal. Nonetheless, the artificial grooves are often 
much wider than real fins and isthmuses and the cavities 
resemble advanced cases of internal resorption, so tissue 
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dissolution may be overestimated due to the exaggerated 
contact surface.

Instead of artificially placed tissue specimens, a few 
studies have used human teeth with a vital pulp that 
had already been scheduled for extraction. In some 
cases, the teeth were treated in vivo and subsequently ex-
tracted, fixed and processed for histological examination 
(Burleson et al., 2007; Gutarts et al., 2005), whereas other 
studies used freshly extracted teeth with a vital pulp that 
were immediately fixed and then treated ex vivo (De-Deus 
et al., 2013; Varela et al., 2019). An in vivo study design 
requires ethical approval and it may be difficult to recruit 
enough patients for such a procedure and control poten-
tial confounders (Shen et al., 2012). The ex vivo design, on 
the other hand, may allow better post-extraction standard-
ization of the anatomy, but it should be emphasized that 
fixed pulp tissue is more difficult to dissolve than unfixed 
tissue (Thé, 1979), so the effect of the irrigants may be 
underestimated. Regardless of the design, the presence of 
intact pulp tissue must be confirmed to ensure a standard-
ized initial condition.

Histological examination of the specimens after ir-
rigation requires time-consuming and complex prepa-
ration which may introduce artefacts because of tissue 
shrinkage. Two-dimensional evaluation of the slices can 
give quantitative information about the surface covered 
by pulp tissue remnants in the main root canal, unin-
strumented fins and isthmuses but the amount of his-
tological detail provided exceeds what is necessary for 
this purpose. Evaluation is usually limited to a few slices 
that may not be representative of the entire root canal. 
Finally, this is a destructive method that does not allow 
longitudinal evaluation of the same specimens before 
and after irrigation.

Recently, the removal of pulp tissue remnants stained 
with a radiopaque solution was examined ex vivo by 
contrast-enhanced micro-computed tomography (De-Deus 
et al., 2021). This new method is nondestructive, so re-
peated imaging of the specimens before and after irrigation 
is feasible. Extracted teeth with an intact pulp can be used 
instead of split roots with artificially placed tissue and there 
are no restrictions on the anatomy. This method is also eas-
ier and less time-consuming than histological evaluation 
while at the same time providing three-dimensional quan-
titative data. A similar approach using nano-computed to-
mography has also been described (Hildebrand et al., 2021). 
At the moment, the contrast achieved is not very high, but 
with some further improvement, these methods could be-
come the first choice for ex vivo studies in the future.

Artificial collagen films (Bryce et al., 2018; Huang 
et al., 2008; McGill et al., 2008) or hydrogels (Macedo et al., 
2014a; Robinson et al., 2018; Swimberghe et al., 2019b) 
have also been used as targets for root canal irrigants. 

These materials were originally proposed as biofilm sub-
stitutes; however, they resemble pulp tissue remnants 
more than biofilm, so they are described here. A standard-
ized amount of the material is easily applied to the main 
root canal wall following splitting of the root (Bryce et al., 
2018; Huang et al., 2008; McGill et al., 2008) or inserted in 
transparent artificial isthmuses and lateral canals (Macedo 
et al., 2014a; Robinson et al., 2018; Swimberghe et al., 
2019b). The specimens can be evaluated before and after 
irrigation and transparent models even allow for real-time 
visualization of the removal. However, the interaction be-
tween the irrigant and dentine is missing in these cases. 
At this point, it should be emphasized that even cleared 
teeth cannot reproduce these chemical interactions in 
full because the composition of dentine is altered during 
clearing (Huang et al., 2012; Marshall et al., 1997; Rosales 
et al., 1999). The removal of collagen films and hydrogels 
may also differ to some extent from the removal of pulp 
tissue remnants, so the most promising irrigants and ir-
rigation methods should be further tested against actual 
pulp tissue.

It is worthwhile mentioning that a potentially unre-
alistic initial condition may be created in the laboratory 
when an already prepared root canal (be it real or arti-
ficial) is completely filled or covered with pulp tissue or 
any substitute material. Clinically, preparation with in-
struments would remove the bulk of the pulp tissue from 
the main root canal, it would debride a large part of its 
wall and it would also create a pathway for the irrigant. 
However, this step is often omitted in laboratory experi-
ments and the specimens are directly exposed to irrigants. 
Under these conditions, agitation techniques employing 
oscillating metal or plastic files/tips are favoured com-
pared to other irrigation methods because of their direct 
physical action on the pulp tissue/substitute material in 
addition to their indirect action due to irrigant agitation. 
This additional direct action may seem desirable in the 
laboratory setting but clinically the same result would 
have already been produced by root canal preparation 
without the need for oscillating files/tips. Therefore, this 
laboratory model is not suitable for the evaluation of such 
agitation techniques. The problem can be circumvented if 
the tissue or substitute material is placed in a fin, groove, 
isthmus or lateral canal where it cannot be contacted 
physically by the oscillating files/tips, so its removal can 
only be achieved by the agitated irrigant.

REMOVAL OF DENTINE DEBRIS 
AND THE SMEAR LAYER

The removal of dentine debris and the smear layer, by-
products of instrumentation, is of interest because it is 
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believed that they can harbour bacteria or hinder the ac-
cess of irrigants to them (Gulabivala et al., 2005; Paqué 
et al., 2009). Similarly to other surrogate end-points used 
in root canal irrigation studies, so far, there is no evidence 
that the removal of dentine debris or the smear layer in-
creases the likelihood of healing of apical periodontitis.

Scanning Electron Microscopy

The debris and smear layer on the root canal wall were 
assessed for decades at very high magnification using the 
widely available SEM (Figure 7). Numerous ex vivo stud-
ies focused almost exclusively on single-rooted teeth that 
were split longitudinally to allow evaluation (Baumgartner 
& Cuenin, 1992; Baumgartner & Mader, 1987; McComb 
& Smith, 1975; Yamada et al., 1983). Nevertheless, sev-
eral key questions about the removal of dentine debris 
and the smear layer have not been answered and this has 
been largely attributed to the methodological limitations 
and lack of reproducibility of most SEM studies (De-Deus 
et al., 2011; Hülsmann et al., 2005).

Examination under SEM requires dehydration of the 
specimens and coating with a conductive material. This 
procedure can introduce artefacts that may interfere with 
the assessment (De-Deus et al., 2011) and it is destruc-
tive, so the specimens can only be examined once, after 
irrigation. The prior status of the root canal is unknown; 
therefore, it is impossible to conclude beyond doubt that 
a certain area was initially covered with dentine debris 
or smear layer and these were removed by irrigation 
(Gulabivala et al., 2005). A large portion of the root canal 
wall is left untouched by instruments (Peters, 2004), and 
no smear layer is formed on those areas (Sen et al., 1995). 
Moreover, additional dentine debris and smear layer may 
be produced by irrigant agitation devices that are used to 
remove them (Boutsioukis & Tzimpoulas, 2016; Kanaan 
et al., 2020; Retsas et al., 2016; Rodrigues et al., 2021), 
which also confounds the results of cross-sectional ex-
aminations. A nonirrigated control group is not enough 
proof of the pre-irrigation condition of the root canal 

because the area of interest is very large and diverse com-
pared to the few selected spots that are actually examined 
(De-Deus et al., 2011). A genuinely random selection of 
these spots is also rare. Instead, operators tend to select 
relatively clean areas and often there is additional bias due 
to the lack of blinding (Gulabivala et al., 2005; Hülsmann 
et al., 2005). Furthermore, the specimens are examined at 
varying magnifications (De-Deus et al., 2011; Hülsmann 
et al., 2005).

Assessment of the remaining dentine debris and smear 
layer on SEM images is also problematic. The evaluation 
is inevitably limited to two dimensions and it is qualitative 
or semiquantitative. Subjective scoring systems are often 
used but the observers are not calibrated and the repro-
ducibility of the findings is rarely checked (Gulabivala 
et al., 2005; Hülsmann et al., 2005). The difference be-
tween dentine debris and smear layer is not well-defined. 
The scoring of the residual smear layer is often based on 
the number of open tubules (Lottanti et al., 2009), which 
is inevitably confounded by the amount of sclerotic den-
tine in each specimen (Vasiliadis et al., 1983a, 1983b), but 
this is very rarely taken into account (Lottanti et al., 2009). 
The age of the specimens is hardly ever reported even 
though the amount of sclerotic dentine increases with age 
(Vasiliadis et al., 1983a). It should also be emphasized that 
the clinical relevance of residual debris and smear layer 
on the wall of the main root canal or their removal as 
viewed on SEM images remains unclear (Gulabivala et al., 
2005; Zehnder, 2012). Given the abundance of published 
studies, the widely recognized methodological limitations 
and the uncertain clinical relevance of the findings, fur-
ther SEM evaluation of dentine debris and smear layer 
removal is discouraged, which is in line with the policy 
of the International Endodontic Journal (Zehnder, 2012).

Alternative methods to study the 
removal of the smear layer

ESEM is a version of SEM adapted for the examination of 
hydrated specimens (further details have been provided in 

F I G U R E  7   SEM photomicrographs of dentine (a) covered with smear layer, and (b) after the removal of the smear layer with 2.5% 
NaOCl followed by 17% EDTA

(a) (b)
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the section ‘Antimicrobial effect/Microscopy’) and it has 
been proposed as an alternative for the study of the smear 
layer. The specimens can be examined repeatedly before 
and after irrigation (Kanaan et al., 2020), so the problem 
of the small field of view is partially ameliorated, but the 
assessment is still two-dimensional and it is limited by the 
same problems as SEM. Another option is AFM which 
provides high-resolution data on the three-dimensional 
surface topography of the specimens following minimal 
sample preparation. However, image acquisition is slow, 
so repeated imaging of rapidly progressing phenomena at 
short intervals is not possible. Moreover, there are limita-
tions in the surface height variation of the specimen, so 
polishing of the specimens is usually required (De-Deus 
et al., 2006). Finally, Co-site Optical Microscopy is another 
nondestructive method that allows almost real-time eval-
uation of smear-layer removal from a specimen through 
software-based analysis. Polishing of the specimens be-
fore the experiment is again required due to the limited 
depth of field of the microscope at the required magnifica-
tion (De-deus et al., 2007; Reis et al., 2008).

Alternative methods to study the 
removal of dentine debris

In principle, ESEM and AFM could also be used to examine 
dentine debris on the wall of the main root canal follow-
ing splitting of the root. However, currently, the research 
interest is focused on the large amounts of dentine debris 
that accumulate in uninstrumented areas of the root canal 
system, such as fins, isthmuses and accessory canals, dur-
ing instrumentation. In infected cases, such accumulated 
debris could hinder the access of irrigants to intact biofilm 
(Gulabivala et al., 2005; Paqué et al., 2009; Siqueira et al., 
2018) and this is arguably a more important problem than 
scattered dentine particles or a thin smear layer covering 
instrumented areas (Haapasalo et al., 2012).

A number of in vitro and ex vivo studies have examined 
the removal of dentine debris from artificial depressions 
or grooves created along straight root canals in split roots 
after instrumentation. Both artificial and real root canals 
have been used for this purpose (Jiang et al., 2011b; Lee 
et al., 2004; Rödig et al., 2010; van der Sluis et al., 2006). 
The ‘split-tooth’ model allows for standardization of the 
root canal anatomy and the pre-operative amount of de-
bris, and repeated examination under a regular stereo-
scopic microscope can take place without any dehydration 
or coating. However the fabrication of the specimens is 
time-consuming, the model is mostly limited to straight 
root canals, and the grooves and depressions are relatively 
large compared to real uninstrumented fins, isthmuses 
and accessory canals. In addition, the dentine debris 

is manually packed instead of gradually accumulating 
during instrumentation and the assessment of its removal 
is based on the scoring of a two-dimensional image. One 
additional concern is that assembly and disassembly of 
the models may move the debris.

Another approach is to pre-section the root at a few 
levels perpendicularly to the root canal before instrumen-
tation and reassemble it (Howard et al., 2011; Klyn et al., 
2010; Thomas et al., 2014). This model is not limited to 
straight root canals, dentine debris accumulates natu-
rally during instrumentation, and repeated evaluation 
at various stages of the chemomechanical preparation is 
possible. The amount of dentine debris is measured in two-
dimensions at the pre-selected levels under a stereoscopic 
microscope following disassembly of the specimens, but 
the findings from these levels may not be representative of 
the entire root canal. Fabrication of the specimens is also 
time-consuming and the location of the debris may also be 
altered during handling of the specimens.

The evaluation of dentine debris removal from 
root canals was greatly improved by the introduction 
of micro-computed tomography (micro-CT; Paqué 
et al., 2009, 2011). This method provides high-resolution 
three-dimensional images of the root canal system ex 
vivo (Figure 8) without damaging the specimens (Peters 
et al., 2000; Stock, 2008), so quantitative longitudinal 
evaluation before and after irrigation is possible even 
for teeth with complex anatomy. Dentine debris is grad-
ually accumulated during instrumentation (Paqué et al., 
2009) but the amount of debris cannot be standardized, 
so a larger sample size may be required. It is not rec-
ommended to alter the chemomechanical preparation 
protocols to favour debris accumulation (Leoni et al., 
2017; Paqué et al., 2009) because it could create an un-
realistic challenge for the irrigants. At high resolution, 
the scanning time of an entire root is still in the order of 
hours, although this is likely to decrease in the future. 
Scanning parameters can be easily standardized, but 
there are several critical steps during data processing 
that require attention (Moinzadeh et al., 2015). Filtering 
of the scans is necessary to reduce the noise and avoid 
spurious findings. Consecutive scans should also be 
coregistered automatically through digital image cor-
relation analysis, rather than being aligned manually, to 
allow more accurate image subtraction in three dimen-
sions. Automated observer-independent segmentation 
of the scans to distinguish dentine from air is preferable 
to visual determination of the threshold, the latter being 
highly subjective (Moinzadeh et al., 2015). Finally, it 
should be kept in mind that quantitative data extracted 
from micro-CT scans are strongly affected by the voxel 
size, so findings from studies that used different voxel 
sizes are not comparable (Paqué & Peters, 2011). It is 
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noteworthy that such three-dimensional analysis can-
not be carried out using the currently available cone-
beam computerized tomography scanners because their 
spatial resolution (Talwar et al., 2016) is still not enough 
for accurate detection of accumulated dentine debris.

IRRIGANT FLOW AND 
PENETRATION

To exert any physical or chemical effect on biofilm, pulp 
tissue remnants, dentine debris and the smear layer, ir-
rigants must first reach these targets. Therefore, informa-
tion on their penetration in the root canal system can be 
a useful guide to select the irrigation methods that have 
the best chance of reaching the areas of interest for fur-
ther testing in ex vivo and in vivo studies. Additionally, the 
irrigant velocity in artificial isthmuses and lateral canals 
has been correlated to biofilm removal from those areas 
(Pereira et al., 2021a). However, a direct link between ir-
rigant penetration and the healing of apical periodontitis 
has not been demonstrated so far.

Experiments using radiopaque solutions

Tracing of radiopaque solutions delivered in root canals in 
vitro or ex vivo with the help of periapical radiographs was 
one of the earliest proposed methods to study irrigant pene-
tration (de Gregorio et al., 2009; Munoz & Camacho-Cuadra, 
2012; Peeters & Gutknecht, 2014; Ram, 1977; Teplitsky 
et al., 1987). More recently, this method was also combined 
with micro-CT to obtain a three-dimensional view of the 
penetration pattern (Tay et al., 2010; Versiani et al., 2015). 

Unfortunately, radiopaque solutions (contrast agents or 
their mixtures with commonly used irrigants) have a much 
higher density and viscosity than NaOCl and other irrigants. 
Depending on the type of the experiment, other properties 
such as the solution's surface tension and its contact angle on 
dentine may also be relevant (Boutsioukis et al., 2014) and 
they are usually quite different as well. These physical prop-
erties have an impact on irrigant penetration, particularly in 
the narrower parts of the root canal system (Teplitsky et al., 
1987), so radiopaque solutions are not reliable substitutes 
for irrigants in such experiments.

Even if a hypothetical radiopaque solution could mimic 
the flow of an irrigant perfectly, its penetration inside the 
root canal system is a dynamic process that should be ex-
amined in real time. Radiographs and micro-CT scans can 
only capture a static image of the root canal a few seconds 
to a few hours after irrigation. Pressure changes, buoy-
ancy, vibration of the specimen or the inevitable increase 
in temperature during micro-CT scanning could alter the 
irrigant distribution and the size and location of any bub-
bles (Boutsioukis et al., 2014). Moreover, the detection 
limit of radiopaque solutions inside the root canal by peri-
apical radiographs or micro-CT is unknown (de Gregorio 
et al., 2009).

When radiographic tracing of these solutions takes 
place in clinical studies (Munoz & Camacho-Cuadra, 
2012; Vera et al., 2012a), there are additional ethical con-
cerns. NaOCl is a very reactive solution and its effects de-
pend primarily on the amount of free available chlorine 
(Zehnder et al., 2002). Thus, when mixing NaOCl with 
contrast agents, it is imperative to verify that the avail-
able chlorine is not reduced. Furthermore, repeated expo-
sure of patients to radiation that is neither beneficial to 
their treatment nor provides any reliable data on irrigant 

F I G U R E  8   Micro-CT cross-sections of extracted human teeth: a split and reassembled maxillary canine (a) before, and (c) after 
manual packing of dentine debris in an artificially-created depression (arrow), and the mesial root of a mandibular molar (b) before, and (d) 
after preparation with rotary Ni-Ti instruments. Note the dentine debris that accumulated in the uninstrumented fin of the molar during 
preparation (arrow)
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penetration violates the ALARA principle (As Low As 
Reasonably Achievable). In view of the above-mentioned 
limitations, tracing of radiopaque solutions in order to 
study irrigant penetration ex vivo or in vivo is discouraged.

Experiments using dyes

Other studies have opted for the visual tracing of dyes or 
mixtures of dyes and irrigants in transparent resin blocks 
or cleared teeth (de Gregorio et al., 2009; Park et al., 
2013; Vera et al., 2012a). Both dye penetration and clear-
ance of a pre-injected dye from the root canal have been 
evaluated. Even though dyes resemble root canal irrigants 
more closely than radiopaque solutions in terms of physi-
cal properties, their flow patterns may still differ to some 
extent (Boutsioukis et al., 2014). There are no validated 
standards regarding the type of dye that should be used in 
place of the irrigant or its optimum concentration. Thus, 
the physical properties of the dye and its resemblance to 
commonly used irrigants should be examined in advance. 
As NaOCl may bleach the dye, distilled or tap water is 
often used instead as an irrigant in dye-clearance experi-
ments. Irrigation should be continued for a clinically rel-
evant period of time or at least until a quasi-steady-state 
is reached but even then interpretation may be difficult 
because there may not be any sharp interface to mark the 
maximum penetration/clearance level. Transition may 
take place over an area occupied by diluted dye (Bronnec 
et al., 2010). Dye molecules will continue to diffuse across 
this area overtime at a rate that may not match the diffu-
sion rate of irrigant molecules/ions, so evaluation imme-
diately after the end of irrigation is critical.

Substitution of dentine by transparent acrylic blocks or 
3D-printed teeth may also affect irrigant penetration be-
cause the surface properties of polymethyl methacrylate 
and other hydrophobic resins are different from those of 
hydrophilic dentine (Boutsioukis et al., 2014). The same 
applies to cleared teeth (Robertson et al., 1980; Venturi 
et al., 2003) whose surface is also rendered less hydro-
philic than intact dentine during processing (Huang et al., 
2012; Marshall et al., 1997; Rosales et al., 1999). These 
problems are particularly important when examining dye 
penetration in empty root canals where a two-phase flow 
is developed (dye and air). The hydrophobic environment 
may favour the entrapment of air bubbles in these cases 
(Boutsioukis et al., 2014).

Infrared imaging

Another way to study irrigant penetration is to deliver 
warm irrigant (50°C) in cooled root canals (10°C) ex vivo 

and monitor the temperature gradients with an infrared 
camera (Hsieh et al., 2007). This method has the advan-
tage of using human teeth and real irrigants but increas-
ing the temperature may decrease the viscosity of the 
irrigant slightly and lead to a more favourable penetration 
pattern. Real-time imaging is feasible but the camera re-
cords heat transfer rather than irrigant flow, which may 
differ in some cases. Its spatial and temporal resolution 
may also be insufficient for a detailed analysis of the flow.

High-speed imaging

To visualize and quantify the flow in detail, high-speed im-
aging of the flowing irrigant seeded with microscopic neu-
trally buoyant tracer particles and analysis with Particle 
Tracking Velocimetry or Particle Image Velocimetry algo-
rithms is currently considered the state-of-the-art method 
(Boutsioukis et al., 2010a; Koch et al., 2014; Verhaagen 

F I G U R E  9   Experimental measurement of irrigant velocity by 
high-speed imaging and Particle Image Velocimetry analysis: (a) 
velocity vectors and (b) velocity magnitude in the apical third of an 
artificial root canal during syringe irrigation with a 30G closed-
ended needle. The needle is coloured in black. [Reprinted and 
modified with permission from Wiley (Boutsioukis et al., 2010a)]
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et al., 2014a). This method provides high-resolution time-
resolved data on the irrigant velocity inside the root canal 
(Figure 9). Being an optical method, it requires direct 
optical access to the irrigant at least from two sides, so 
artificial root canals made of transparent resin or polydi-
methylsiloxane have to be used. The concentration of the 
tracer particles must be balanced so that enough details 
of the flow can be captured without altering the flow it-
self (Westerweel, 1993). Imaging needs to be performed 
with a high-speed camera that is fast enough to capture 
the important characteristics of the flow at the relevant 
time-scale. The camera should be able to record several 
consecutive frames at frame rates at least 2× faster (and 
preferably 5–10× faster) than the highest temporal fre-
quency of the high-speed event of interest (Versluis, 2013). 
For example, to capture the oscillatory flow around an ul-
trasonic file during irrigant activation (f ≈  30 kHz), the 
camera should be capable of recording at least one full os-
cillation cycle at a rate of 150 000–300 000 frames per sec-
ond to capture the unsteady streaming; even higher frame 
rates may be required to capture the dynamics of transient 
cavitation bubbles (Macedo et al., 2014b). Otherwise, the 
analysis will reveal only a coarse time-averaged view of 
the flow and important transient phenomena may be 
missed (Koch et al., 2016; Layton et al., 2015).

Penetration in dentinal tubules

Assessment of irrigant penetration in dentinal tubules, a 
very slow diffusion-dominated process (Verhaagen et al., 
2014b), requires a different approach. Direct penetration 
tests using dyes or mixtures of dyes and irrigants are of 
limited value because of their properties, as already ex-
plained. Moreover, lack of penetration may also be at-
tributed to dentinal sclerosis (Vasiliadis et al., 1983a). 
Therefore, a two-step approach is recommended: first, a 
dye should penetrate all patent tubules (positive control) 
and then, the irrigant (mostly NaOCl) should be allowed 
to penetrate these tubules and bleach the dye (Zou et al., 
2010). The penetration pattern is then determined based 
on the extent of the bleached zone. Parameters known 
to affect diffusion, such as the temperature, the concen-
tration of the irrigant and the exposure time (Verhaagen 
et al., 2014b) should be carefully controlled to avoid bias. 
Still, it must be underscored that a chlorine concentration 
gradient will be developed along the tubules (Verhaagen 
et al., 2014b) and it remains unclear whether the concen-
tration that is sufficient to bleach the dye is also enough 
to kill bacteria or disrupt biofilm. One additional require-
ment is that the specimens must be kept fully hydrated, 
as close as possible to their natural in vivo condition 
(Jameson et al., 1994; Papa et al., 1994). It only takes a few 

minutes in a dry environment for dentine to lose a signifi-
cant amount of free water due to dehydration (Jameson 
et al., 1994). Dry dentine is far more hydrophobic than wet 
dentine (Rosales et al., 1999), and under these conditions, 
the surface tension of the irrigant may limit penetration 
ex vivo, something very unlikely to happen in wet dentine 
in vivo.

Computational fluid dynamics

Numerical models have also been used to obtain addi-
tional information on the flow of irrigants inside the root 
canal system (Boutsioukis et al., 2009, 2010a; Chen et al., 
2014; Shen et al., 2010b; Verhaagen et al., 2014b). These 
versatile models supplement experiments and provide 
information on irrigant velocity and pressure as well as 
their derivatives, such as the wall shear stress, in areas of 
the root canal system where experimental measurements 
are difficult or even impossible (Figure 10). However, 
they are based on a large number of assumptions and 
settings and even small modifications in these may pro-
duce very different results. Therefore, confirmation that 

F I G U R E  1 0   Irrigant flow calculated by different 
Computational Fluid Dynamics models: time-averaged streamlines 
indicating the main irrigant flow created by (a) a 30G open-ended, 
(b) a 30G closed-ended, and (c) a 31G closed-ended needle in a 
mesial root canal of a mandibular molar. [Reprinted and modified 
with permission from Elsevier (Boutsioukis & Gutierrez Nova, 
2021)]. (d). Two-phase flow (irrigant and air) in the apical part of 
a simplified straight root canal during the initial phase of irrigant 
delivery by a 30G closed-ended needle. The air-irrigant interface 
is depicted as a blue surface. Note the air bubbles apically to the 
needle (upper part of the image). The needles are coloured in red
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the model predictions are a sufficient approximation of 
reality (validation) is a universal requirement for all new 
models before they are used to simulate any actual case. 
This can be done by comparison to properly designed vali-
dation experiments (Oberkampf & Trucano, 2002) that 
reproduce the essential elements of the model and pro-
vide quantitative data on the relevant physical quantities 
(usually irrigant velocity and pressure). A perfect match 
between experiments and numerical simulations is hardly 
ever possible because of unavoidable experimental and 
numerical errors, so the level of agreement should be 
taken into account when interpreting the predictions of 
the model. The simplified root canal geometries that were 
modelled in early studies (Boutsioukis et al., 2009, 2014; 
Chen et al., 2014; Shen et al., 2010b) have been gradually 
replaced by more realistic ones based on micro-CT scans 
of human teeth (Boutsioukis & Gutierrez Nova, 2021; 
Loroño et al., 2020; Snjaric et al., 2012; Wang et al., 2015) 
but the benefits of the additional complexity are yet to be 
proven. Geometrical simplification is only one of many 
potential sources of error in a numerical model, so switch-
ing to more realistic root canal geometries does not guar-
antee the accuracy of the results though it does increase 
the workload and the computational time and resources 
required. In the process of model optimization, it is more 
reasonable to reduce all types of error to the same order of 
magnitude, so that none of them has a disproportionately 
large effect on the results, than to eliminate only one type 
of error (Oberkampf & Trucano, 2002).

IRRIGANT EXTRUSION THROUGH 
THE APICAL FORAMEN

Inadvertent extrusion of irrigant through the apical fora-
men may result in tissue damage and pronounced symp-
tomatology (Guivarc'h et al., 2017; Hülsmann & Hahn, 
2000), so it is considered an important side effect of root 
canal irrigation. A variety of methods have been employed 
to investigate the parameters involved in these accidents.

Measurement of the extruded irrigant 
ex vivo

One approach is to use the amount of irrigant that is ex-
truded through the apical foramen ex vivo as a surrogate 
end-point. Even though the hypothesis that this amount 
is correlated with the risk or the severity of an accident 
seems plausible, it has not been confirmed in any clinical 
study (Boutsioukis et al., 2013).

The model proposed by Fairbourn et al., (1987) and 
later modified by Myers and Montgomery (1991) has been 

used extensively to quantify the extruded irrigant ex vivo 
under various conditions and it still remains in use (Dos 
Reis et al., 2020; Vidas et al., 2020). In this model, the root 
of the specimen is attached to an empty vial where the ex-
truded irrigant is collected during irrigation, so the apical 
foramen is entirely surrounded by ambient air. The peri-
apical tissues are not simulated at all, even though they 
may act as a natural barrier in vivo (Salzgeber & Brilliant, 
1977), and this leads to considerable overestimation of ir-
rigant extrusion (Psimma et al., 2013a). Thus, this model 
has very limited clinical relevance. Another model based 
on the quantification of irrigant droplets ejected through 
the apical foramen (George & Walsh, 2008) shares the 
same limitations. It should be emphasized that air, 
whether free-flowing or confined inside a vial (Araquam 
et al., 2009; Mangalam et al., 2002), is not enough to sim-
ulate the resistance of the periapical tissues to irrigant 
extrusion.

In an effort to mimic the effect of the periapical tissues 
and develop more realistic models, the root apices have 
been immersed in water (Psimma et al., 2013a, 2013b), 
various types of gels (Fukumoto et al., 2006; Hauser et al., 
2007; Mitchell et al., 2011), silicone putty (Azim et al., 
2018; Rodríguez-Figueroa et al., 2014), or floral foam 
(Altundasar et al., 2011; Genc Sen & Kaya, 2018). Water 
may still exert less resistance to extrusion compared to 
a periapical lesion but it facilitates real-time quantifica-
tion of the extruded irrigant by electrochemical methods 
(Psimma et al., 2013a). Gels and silicone putty may re-
semble the tissue inside a periapical lesion more closely 
but they hinder the detection of the extruded irrigant. 
Chemical methods that rely on colour change of the gel 
are often used (Fukumoto et al., 2006; Mitchell et al., 2011; 
Yost et al., 2015) and quantification is based on the two-
dimensional discoloured area which may not be represen-
tative of the three-dimensional effect. Conversely, floral 
foam is a porous material with little clinical relevance that 
may absorb or lose moisture over time. This may interfere 
with the measurements of the extruded irrigant, so its use 
is not recommended. Apart from these materials, an ad-
justable electronic valve that allows irrigant extrusion only 
when the apical irrigant pressure exceeds a certain thresh-
old (Charara et al., 2016) and an apparatus that applies 
a pre-defined opposing pressure at the apical foramen to 
resist irrigant extrusion (Cai et al., 2018) have also been 
proposed. It is very unlikely that the periapical tissues in 
vivo behave like a valve and there is no validated pressure 
threshold for irrigant extrusion (see further details in the 
section ‘Apical irrigant pressure’), so the clinical relevance 
of these models is questionable.

In general, the selection of the material or method 
to simulate the periapical tissues and its relevance to 
the in vivo conditions should be justified. Moreover, it is 
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recommended that extrusion is evaluated quantitatively 
rather than qualitatively and all measurements are con-
verted to volume of extruded irrigant, which can be easily 
compared across studies. Binary evaluation (yes/no) as-
signs the same importance to minor and major extrusion, 
which could be misleading. Passive extrusion of irrigant 
through the apical foramen seems to occur continuously 
at a very low rate (~1  μl/s) during root canal treatment 
ex vivo and in vivo for as long as the canal contains irrig-
ant (Chu, 2010; Psimma et al., 2013a), but there is no ev-
idence of consequent clinical manifestations in the vast 
majority of the treated clinical cases. Thus, there may be 
no difference between no extrusion and extrusion of small 
amounts of irrigant.

Apical irrigant pressure

Instead of evaluating the amount of extruded irrigant, 
a number of studies measured the irrigant pressure at 
or near the apical foramen during irrigation (Conard, 
2012; Khan et al., 2013; Magni et al., 2021; Park et al., 
2013; Verhaagen et al., 2012a). This pressure is easier to 
measure than irrigant extrusion and it has been regarded 
as a suitable surrogate end-point, despite the lack of ap-
propriate validation. Miniature pressure transducers fit-
ted at the apical foramen can reduce the experimental 
error during in vitro and ex vivo measurements (Conard, 
2012; Verhaagen et al., 2012a), so they should be pre-
ferred. Large transducers connected to the apex through 
long tubes and containers (Khan et al., 2013; Park et al., 
2013) may allow the irrigant to flow through the apical 
foramen. In such a case, the location where the pressure 
is measured becomes uncertain because a pressure gradi-
ent develops along the path from the apical foramen to 
the transducer. It is also important to measure the api-
cal pressure at each root independently even if irrigation 
takes place simultaneously in all canals (Ordinola-Zapata 
et al., 2021). Otherwise, an unrealistic flow may develop 
through the surrounding container due to differences in 
the apical pressure at each foramen and this can introduce 
additional error in the measurements.

Several arbitrary pressure thresholds have been used to 
translate apical pressure measurements to risk of extru-
sion (Charara et al., 2016; Khan et al., 2013; Park et al., 
2013), often based on the hypothesis that there is a con-
stant pressure in the periapical area that opposes irri-
gant extrusion (Cai et al., 2018; Zhu et al., 2013). So far, 
none of these thresholds has been validated, so their use 
to formulate clinical safety recommendations is strongly 
discouraged. Additionally, the hypothesis of a constant 
opposing pressure in the periapical area is contradicted 
by the available in vivo evidence (Mohorn et al., 1971a, 

1971b) and also leads to a number of paradoxes (Psimma 
& Boutsioukis, 2019). Apical pressure values are mainly 
useful to compare the relative risk of different irrigation 
methods or protocols when a direct measurement of the 
amount of extruded irrigant is not feasible, for example 
during numerical simulations (Boutsioukis et al., 2010b; 
Shen et al., 2010b) but they should not be overinterpreted. 
Moreover, the comparison of the apical pressure created 
by positive- and negative-pressure irrigation methods 
(Chen et al., 2021; Haapasalo et al., 2016; Zhu et al., 2013) 
may be misleading, as the clinical significance and poten-
tial risks of high negative pressure at the apical foramen 
are not well understood yet.

Clinical studies

Randomized clinical trials on inadvertent irrigant extru-
sion cannot be conducted due to ethical restrictions but 
clinical studies examining radiographically the penetra-
tion of radiopaque solutions beyond the apical foramen 
have been published (Salzgeber & Brilliant, 1977; Souza 
et al., 2021). It should be noted that radiopaque solutions 
have different physical properties than irrigants (see sec-
tion ‘Irrigant flow and penetration’), so these experiments 
mainly demonstrate the presence of a continuous space in 
the periapical area adjacent to the apical foramen and not 
irrigant extrusion per se. Moreover, even if a small amount 
of irrigant leaks towards the periapical tissues, this alone 
may not be sufficient to trigger the signs and symptoms 
collectively described as ‘extrusion accident’, as already 
explained. Repeated exposure of the patients to radiation 
is another concern.

GENERAL POINTS

Basic and translational (or applied) research are comple-
mentary areas of science that interact in a bidirectional 
way. Basic research provides the fundamental knowledge 
to be translated into clinical applications (bottom-up ap-
proach) but it is not uncommon for observations in trans-
lational research to generate new questions that must be 
addressed at the basic science level (top-down approach; 
Fang & Casadevall, 2010). The boundary between these 
two areas is not well-defined, with most studies falling 
somewhere on the spectrum between pure basic science 
and pure translational research.

The translation of ideas generated by basic science 
experiments into improved treatments requires the use 
of validated models that mimic the in vivo conditions 
in humans as closely as possible. One important consid-
eration with regard to irrigation is that, in most cases, 
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the root canal in vivo is an apically closed system (Tay 
et al., 2010), which is a very challenging domain for ir-
rigants to penetrate. The same applies to lateral canals, 
isthmuses and dentinal tubules (Boutsioukis, 2019). 
Thus, in laboratory studies, the surface of the root and 
particularly the apical foramen should be sealed with 
enough layers of cyanoacrylate or composite before irri-
gation, taking care not to block the root canal. This is a 
critical requirement for all types of studies on irrigation 
with the exception of studies on the inadvertent irrig-
ant extrusion through the apical foramen. It should be 
noted that wax, nail polish and silicone putty may not 
be enough to create a fluid- and air-tight apical seal (Tay 
et al., 2010). In addition, creating an apically closed sys-
tem is more difficult when the roots are split/sectioned 
and reassembled (Bhuva et al., 2010; Villalta-Briones 
et al., 2021). The clinical relevance of laboratory models 
that do not ensure an apically closed root canal system 
during irrigation is very limited (Parente et al., 2010; Tay 
et al., 2010).

The geometry of the root canal is also of paramount 
importance. Experiments in glass tubes, beakers or large 
bovine root canals are unable to reproduce the fluid dy-
namics that occur inside the confined space of a human 
root canal (Verhaagen et al., 2012a) and may therefore 
over- or underestimate the performance of various irri-
gation systems. For instance, irrigant penetration and re-
moval of entrapped air bubbles is much easier under these 
conditions (Boutsioukis et al., 2014). Likewise, sonic and 
ultrasonic files/tips oscillating at large amplitude (Jiang 
et al., 2010; Neuhaus et al., 2016; Verhaagen et al., 2012b) 
probably perform much better when oscillating uncon-
strained than inside a human root canal.

Proper standardization of the experimental proto-
cols is imperative to increase the internal validity of the 
study and reduce the confounders. The apical prepara-
tion size is known to affect both the penetration of irrig-
ants in the apical third (Boutsioukis et al., 2010b; Hsieh 
et al., 2007) and its debridement (Huang et al., 2008), so 
it should be standardized. A common misconception is 
that standardization can be based on the size of the first 
file that ‘binds’ at the canal terminus (Saini et al., 2012; 
Topçuoğlu et al., 2018a, 2018b). There is ample evidence 
that the size of this file does not correspond to the initial 
diameter of the root canal (Paqué et al., 2010; Weiger 
et al., 2006; Wu et al., 2002). Instead of relying on sub-
jective tactile feedback, it is recommended to select root 
canals of similar shape and prepare all of them to the 
same apical size and taper.

Another critical parameter that needs to be standard-
ized is the insertion depth of needles, cannulas and ag-
itation files/tips (Adorno et al., 2016; Boutsioukis et al., 
2010c; Malki et al., 2012; Perez et al., 2017). The insertion 

depth has been defined in some studies based on the 
binding point of these components inside the root canal 
(Desai & Himel, 2009; Hauser et al., 2007). This point is 
very subjective and may vary even in root canals prepared 
to the same apical size and taper. Therefore, it is prefera-
ble to define the insertion depth using the apical end of 
instrumentation as a reference point. It should be noted 
that the constant in-and-out movement of these compo-
nents along the root canal, which may be applied by some 
clinicians, is difficult to standardize in laboratory studies 
without resorting to robotic arms.

The chemical effect of irrigation is sensitive to differ-
ences in the irrigant concentration, volume, contact sur-
face, temperature and time (Chau et al., 2015; Moorer & 
Wesselink, 1982), whereas the mechanical effect is sensi-
tive to differences in the flow rate and the intensity of ag-
itation (Boutsioukis & Gutierrez Nova, 2021; Jiang et al., 
2011b). Thus, depending on the type of the experiment 
and the particular irrigants or irrigation methods used, the 
relevant parameters should also be standardized. Battery-
powered irrigation devices should be connected to an ex-
ternal power supply to ensure their stable performance. 
Finally, if any parameters known to affect irrigation can-
not be standardized, then the sample size should be in-
creased and these parameters should be included in the 
analysis of the results as covariates.

To assist the interpretation of the findings, it is es-
sential to compare new irrigants and irrigation methods 
also to the current clinical standards (Dutner et al., 2012; 
Willershausen et al., 2015). A comparison between two 
irrigation methods that are rarely used or between these 
methods and no irrigation at all provides very little useful 
information for the vast majority of clinicians because it 
lacks a common point of reference. The clinical standards 
should be applied according to an optimum clinically rel-
evant protocol, otherwise the relative effectiveness of new 
irrigants and irrigation methods may be overestimated. 
Additionally, the value of a simple ranking of irrigants or 
irrigation methods according to a surrogate end-point is 
limited to the materials or devices compared. Once these 
are replaced or withdrawn from the market, this informa-
tion is no longer useful. Therefore, apart from ranking, it 
is worthwhile also to understand the fundamental mech-
anisms responsible for the observed performance, which 
often requires a basic-science approach. This knowledge 
may help to design new irrigants and irrigation methods 
or to predict their performance.

As already mentioned, with the exception of the an-
timicrobial effect, commonly used surrogate end-points, 
such as the removal of pulp tissue remnants, hard-tissue 
debris or the smear layer, have not been directly cor-
related to the healing of apical periodontitis. Instead, 
their use has been based on a number of hypotheses 
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and assumptions that link them to the reduction of the 
microbial load. However, a plausible hypothesis is not 
enough to justify the use of a surrogate end-point. The 
examples of leakage (De-Deus, 2012; Editorial Board 
of the Journal of Endodontics, 2007; Wu & Wesselink, 
1993), which was used extensively in the past to rank 
root canal filling materials, and, more recently, apical 
extrusion of debris (Pappen et al., 2019), which is still 
reported in root canal preparation studies, serve as re-
minders that surrogate end-points need to be validated. 
The purpose of validation is not only to confirm that 
they are actually correlated with the primary clinical 
outcomes but also to ascertain the minimum effect size 
that leads to a clinically relevant change in the primary 
outcome. It is strongly recommended that these limita-
tions are acknowledged in the Discussion section of fu-
ture studies on root canal irrigation.

Even though a detailed description of statistical tests is 
beyond the scope of this review, two important points that 
are frequently overlooked are worth mentioning. Contrary 
to common belief (Leoni et al., 2017; Liang et al., 2013; 
Thomas et al., 2014; Versiani et al., 2016), statistical test-
ing of pre-operative parameters or anatomical indices de-
rived from specimens randomly allocated to two or more 
groups and failure to demonstrate a significant difference 
does not prove that these groups are equivalent at base-
line. It only shows that there is not enough evidence to 
reject the null hypothesis (no difference). The difference 
between the groups has to be quite substantial to lead 
to a p-value below .05 (the commonly used alpha level). 
Depending on the variability within each group and the 
sample size, which is rarely selected to ensure sufficient 
power when comparing these pre-operative parameters, 
large between-group differences may easily pass unde-
tected. When multiple parameters are examined, spuri-
ous significant results (type I errors) are to be expected as 
well (Altman, 1985; Altman & Bland, 1995; de Boer et al., 
2015). Therefore, such tests are considered illogical and 
misleading and their use is strongly discouraged (Harvey, 
2018). Creating balanced groups with regard to any im-
portant pre-operative parameters should be primarily 
based on clearly defined inclusion criteria and proper ran-
domization (stratified if needed) along with a sufficiently 
large sample size.

Another problem often encountered in research is 
unaccounted data clustering. Dentine blocks originating 
from the same tooth, teeth originating from the same pa-
tient, and measurements on various areas of the same bio-
film specimen are examples of cases where the obtained 
data are related at various levels. Thus, the fundamen-
tal assumption of independent samples that underlies 
many common statistical tests (Altman, 1991) is violated. 
Clustered data require special statistical methods for their 

analysis (Masood et al., 2015). Alternatively, the experi-
ments can be designed to prevent data clustering, for ex-
ample by including truly independent specimens in each 
group.

CONCLUDING REMARKS

Irrigation is one of the key elements of root canal treat-
ment. Despite decades-long efforts, there are still a lot of 
gaps in our understanding of the penetration of irrigants 
in the root canal system, their interaction with bacte-
rial biofilm, pulp tissue remnants, and dentine debris, 
and their side effects, so additional research is needed 
in these areas. A wide variety of experimental methods 
and models have been used for this purpose. Unreliable 
or unrealistic ones are not uncommon and this may have 
contributed to the emergence of conflicting findings in the 
literature. When a method or model is not sufficiently reli-
able or realistic (criteria that may be tightening over time 
as new evidence comes to light), sound scientific judge-
ment dictates that it should be replaced by a better one 
that has more direct application and translation to clinical 
Endodontics. Prolonging its use simply because ‘there is 
no alternative’ encourages stagnation and overreliance on 
flawed methodology. Research methods should be evolv-
ing continuously. Models also need to be validated and 
surrogate end-points should be correlated with real clini-
cal outcomes instead of being based solely on assump-
tions. Finally, in most cases, there are no ideal methods 
and models that work perfectly irrespective of the condi-
tions while providing all the answers. Therefore, it may be 
necessary to combine two or more complementary ones 
and take into account their strengths and weaknesses 
when interpreting the results.
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