Skip to main content
. 2022 Jul 17;23(14):7877. doi: 10.3390/ijms23147877

Table 3.

Performance metrics of individual features and fused features, according to the machine learning methods used to derive them.

Feature Model Dim 10-Fold Cross-Validation Independent Test
ACC MCC Sn Sp F1 auPRC auROC ACC MCC Sn Sp F1 auPRC auROC
SSA b SVM c 53 0.820 0.641 0.840 0.801 0.824 0.910 0.909 0.914 0.829 0.937 0.891 0.916 0.948 0.941
LGBM c 77 0.816 0.634 0.848 0.785 0.822 0.877 0.892 0.883 0.768 0.922 0.844 0.887 0.947 0.940
RF c 16 0.805 0.610 0.820 0.789 0.808 0.860 0.881 0.867 0.734 0.875 0.859 0.868 0.888 0.894
UniRep b SVM c 65 0.875 0.750 0.875 0.875 0.875 0.946 0.943 0.906 0.813 0.891 0.922 0.905 0.952 0.952
LGBM c 313 0.854 0.707 0.855 0.852 0.854 0.946 0.938 0.914 0.829 0.891 0.937 0.912 0.954 0.948
RF c 329 0.836 0.672 0.824 0.848 0.834 0.918 0.908 0.891 0.785 0.844 0.937 0.885 0.958 0.957
BiLSTM b SVM c 344 0.820 0.641 0.824 0.816 0.821 0.913 0.915 0.922 0.844 0.937 0.906 0.923 0.955 0.956
LGBM c 339 0.871 0.742 0.883 0.859 0.873 0.925 0.929 0.906 0.813 0.906 0.906 0.906 0.969 0.966
RF c 434 0.830 0.660 0.836 0.824 0.831 0.906 0.914 0.898 0.797 0.906 0.891 0.899 0.957 0.950
SSA
+ UniRep b
SVM c 62 0.865 0.730 0.863 0.867 0.865 0.944 0.942 0.914 0.828 0.906 0.922 0.913 0.958 0.957
LGBM c 106 0.881 0.762 0.887 0.875 0.882 0.961 0.957 0.891 0.783 0.859 0.922 0.887 0.952 0.947
RF c 47 0.838 0.676 0.859 0.816 0.841 0.937 0.931 0.906 0.816 0.859 0.953 0.902 0.956 0.947
SSA
+ BiLSTM b
SVM c 267 0.836 0.672 0.836 0.836 0.836 0.910 0.911 0.914 0.828 0.906 0.922 0.913 0.956 0.952
LGBM c 317 0.861 0.723 0.875 0.848 0.863 0.924 0.929 0.906 0.813 0.906 0.906 0.906 0.962 0.958
RF c 176 0.832 0.664 0.848 0.816 0.835 0.922 0.925 0.906 0.813 0.906 0.906 0.906 0.959 0.952
UniRep
+ BiLSTM b
SVM c 186 0.873 0.746 0.887 0.859 0.875 0.932 0.934 0.914 0.829 0.937 0.891 0.916 0.961 0.965
LGBM c 106 0.889 a 0.777 0.891 0.887 0.889 0.947 0.952 0.944 0.889 0.922 0.977 0.952 0.984 0.977
RF c 45 0.871 0.742 0.871 0.871 0.871 0.937 0.941 0.938 0.875 0.938 0.938 0.938 0.976 0.971
SSA
+ UniRep
+ BiLSTM b
SVM c 336 0.881 0.762 0.883 0.879 0.881 0.940 0.942 0.922 0.845 0.953 0.891 0.924 0.942 0.946
LGBM c 285 0.881 0.762 0.891 0.871 0.882 0.951 0.947 0.938 0.875 0.922 0.953 0.937 0.969 0.969
RF c 192 0.863 0.727 0.859 0.867 0.863 0.932 0.932 0.922 0.844 0.906 0.937 0.921 0.970 0.967

a Best performance values are in bold and are underlined. b SSA: soft symmetric alignment; UniRep: unified representation; BiLSTM: bidirectional long short-term memory. SSA + UniRep: SSA features combined with UniRep features; SSA + BiLSTM: SSA features combined with BiLSTM features; UniRep + BiLSTM: UniRep features combined with BiLSTM features; SSA + UniRep + BiLSTM: all the above features are combined. c SVM: support vector machine; LGBM: light gradient boosting machine; RF: random forest.