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Abstract: Skin cancer is the most commonly diagnosed and reported malignancy worldwide. To
reduce the death rate from cancer, it is essential to diagnose skin cancer at a benign stage as soon
as possible. To save lives, an automated system that can detect skin cancer in its earliest stages is
necessary. For the diagnosis of skin cancer, various researchers have performed tasks using deep
learning and transfer learning models. However, the existing literature is limited in terms of its
accuracy and its troublesome and time-consuming process. As a result, it is critical to design an
automatic system that can deliver a fast judgment and considerably reduce mistakes in diagnosis.
In this work, a deep learning-based model has been designed for the identification of skin cancer at
benign and malignant stages using the concept of transfer learning approach. For this, a pre-trained
VGG16 model is improved by adding one flatten layer, two dense layers with activation function
(LeakyReLU) and another dense layer with activation function (sigmoid) to enhance the accuracy of
this model. This proposed model is evaluated on a dataset obtained from Kaggle. The techniques
of data augmentation are applied in order to enhance the random-ness among the input dataset
for model stability. The proposed model has been validated by considering several useful hyper
parameters such as different batch sizes of 8, 16, 32, 64, and 128; different epochs and optimizers.
The proposed model is working best with an overall accuracy of 89.09% on 128 batch size with the
Adam optimizer and 10 epochs and outperforms state-of-the-art techniques. This model will help
dermatologists in the early diagnosis of skin cancers.

Keywords: skin cancer; Kaggle; convolutional neural network; benign; malignant; data augmentation;
VGG16; classification

1. Introduction

Cells are the basic building blocks in the human body and are used for building tissues.
The skin acts as the outer layer of human beings and shields the human body against
infections and harmful radiation. The three different layers of skin are the inner-most
dermis, middle hypodermis, and outer epidermis. Skin cancer is the most frequently
diagnosed cancer, and the occurrence of skin cancer is growing. Skin cancer is caused
by the unusual development of cells. People having fair skin are prone to skin cancer.
The two types of skin cancer are malignant and benign [1]. Cancerous cells that grow
without any control leads to malignant tumors. Metastasis is a process in which the
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cancer cells travel through the lymph nodes or circulation and extend to further parts
of the human body. According to the report of the American Cancer Society (ACS), in
2018, 13,460 skin cancer death cases were noted [2,3]. Throughout the years, detecting
melanomas via image analysis has shown progression. Most studies of melanomas were
based on machine learning algorithms. However, deep learning algorithms have helped in
skin lesion classification studies [4].

Haenssle et al. [5] utilized a CNN for classification of dermatoscopy melanocytic
images and obtained a value of sensitivity and a specificity as 86.6%. Dorj et al. [6]
used an approach of ECOC SVM with an AlexNet pre-trained model for multi-class skin
disease classification. They obtained an accuracy of 95.1%. Han et al. [7] used a deep
convolutional neural network on 12 different skin diseases. They obtained an accuracy of
96.0%. Khan et al. [8] used various pre-trained architectures like VGG16, DenseNet169,
DenseNet161, and ResNet50. In this, they pushed the boundary of neural networks by
using low resolution pixels such as 80 × 80, 64 × 64, and 32 × 32. They achieved the
highest performance values of 80.46%, 78.56%, and 74.15% for 80 × 80, 64 × 64, and
32 × 32 pixels, respectively. Mohakud et al. [9] has proposed an encoder decoder network
for segmentation of image. The authors obtained the value of the Jaccard coefficient as
96.41% and 86.85% respectively, and the Dice coefficient as 98.48% and 87.23%, accuracy as
98.32% and 95.25% respectively for ISIC 2016 and ISIC 2017 dataset.

Agrahari et al. [10] used a pre-trained MobileNet model for building the model
and worked using HAM10000 dataset. They obtained categorical accuracy as high as
80.81%. Although Chaturvedi et al. [11] had achieved an overall accuracy of 83.1% us-
ing MobileNet architecture with HAM10000 dataset. Hosny et al. [12] used AlexNet
model by replacing the last layer by softmax for classification of three skin diseases. They
worked on Ph2 dataset and obtained values of accuracy, sensitivity, specificity, and pre-
cision as 98.61%, 98.33%, 98.93%, and 97.73%, respectively. Abdar et al. [13] used three
uncertainty quantification methods. The accuracy obtained by the model was 88.95%.
Fujisawa et al. [14] used 4867 clinical images including benign and malignant conditions.
The overall accuracy of the model was 76.5% with sensitivity of 96.3% and specificity of
89.5%. Garcia Arroyo et al. [15] presented an algorithm based on machine learning and
used 875 dermoscopic images. The images were collected from the Interactive Atlas of
Dermoscopy dataset. Total achieved accuracy was 88.00%, sensitivity was 83.44% and
specificity was 90.71%. Iyatomi et al. [16] took 213 dermoscopic images and used a linear
classifier. They achieved specificity of 95.90%, and the value of the area under the curve
was 0.993. In 2018, Chatterjee et al. [17] used classifiers and took 4094 skin cancer images
and accomplished an accuracy of 98.28% and a sensitivity of 97.63%. In 2019, these authors
had taken dermoscopic images from the internet and performed GLCM and FRTA feature
extraction. They attained 97.54% accuracy [18]. Gonzalez et al. [19] applied the DermaKNet
technique on a total of 2750 skin cancer images and achieved an area under the curve value
of 91.7%. In 2018, Ka-wahara et al. [20] applied Multi-task multi-modal neural nets on 1011
dermoscopic images. The architecture was able to localize discriminate information and
also produce feature vectors.

Koohbanani et al. [21] in 2018 used transfer learning based model and used a total of
2594 dermoscopic images from the internet. This framework incorporates a variant of UNet
architecture. Filali et al. [22] presented a network based on CNN by using 1000 images
from the internet and realized 93.50% accuracy. Kadampur et al. [23] applied a technique
based on machine learning with 104 images of skin from the internet. They realized 86.00%
value of sensitivity and 73.00% specificity. For increasing deep learning performance for
melanoma screening, Menegola et al. [24] presented a transfer method. A pre-trained
model for detecting Diabetic Retinopathy was proposed in this study which was based on
Kaggle Challenge [25].

The deep learning revolution has played a great role, with the suggestion of better
architectures of the convolutional neural network [26–31]. In the following paper, a model
is presented to classify skin cancer with the help of dermoscopy images. The presented
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model is evaluated on ten and twenty epochs using the Adam optimizer and batch size
values of 8, 16, 32, 64, and 128. The proposed model has presented favorable results that
will work as another estimation tool for dermatologists. The major contributions of this
study include:

1. A paradigm based on transfer learning has been presented using VGG16 architecture
for classification of skin cancer into benign and malignant [32];

2. The VGG16 model has been improved by the addition of one flatten layer, two dense
layers with activation function (LeakyReLU) and another dense layer with activation
function (sigmoid) to improve the accuracy of the model;

3. The data augmentation techniques have been performed in the pre-processing stage for
increasing randomness and dataset count in order to provide stability to the proposed
model;

4. The efficacy of the proposed model is achieved by analyzing various hyper parameters
such as batch size, epochs, and optimizer.

The rest of the paper is arranged as follows: Section 2 shows the proposed framework
model followed by results and discussions in Section 3 and conclusion in Section 4.

2. Proposed Framework Model

A paradigm based on transfer learning has been improved and changed for classifica-
tion of skin cancer into benign and malignant class. The training and testing of the model
is performed on the Kaggle dataset [25] that consists of 3297 skin cancer images. The block
diagram of the proposed framework model is shown in Figure 1.
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Figure 1. Proposed Framework Model.

2.1. Input Dataset

The database which is used in the study consists of 3297 skin cancer images that are
collected from the Kaggle database [25]. It is comprised of RGB images of 1800 benign and
1497 malignant images of dimensions (224 × 224 × 3) pixels. Figure 2 shows a sample of
benign and malignant skin cancer images from the database.

Table 1 shows the dataset description in which the number of training images, testing
images and validation images are shown for both skin cancer classes. Total images in the
dataset are 3297 out of which 1800 are benign and 1497 are malignant. The dataset is split
into testing, training and validation. For the testing purpose, almost 10% of benign and
malignant images are used. From the remaining images, 5% of the images are used for
validation purposes. The remaining dataset is used for training the model.
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Figure 2. (a) Benign, (b) Malignant.

Table 1. Dataset Description.

Total Training Test Validation

Benign 1800 1534 186 80
Malignant 1497 1284 144 69

Total 3297 2818 330 149

2.2. Data Augmentation

A huge quantity of dataset is essential to attain the best accuracy in the DL. The
augmentation of data is done with various transformation techniques [33–35] like rotation,
flipping, and brightening in sequence as shown in Figure 3. For this, the input image
is rotated 90 degrees in a clockwise direction. After that, the rotated image is flipped
horizontally as well as vertically. At the end, the brightness level of the flipped image is
changed by 0.8. The augmentation process is applied only on training images to train the
model more precisely. In this way, the number of training images is doubled from 2818
to 5636.
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Figure 3. Data Augmentation Techniques in Sequence (a) Input Image, (b) Rotated Image, (c) Flipped
Image, (d) Brightened Image.

Table 2 shows the total images of training, testing and validation data after augmen-
tation. The augmentation is applied only on the training images. Previously, the training
images of benign and malignant are 1534 and 1284, respectively. After the augmentation,
there was a total of 5636 training images.

Table 2. Dataset Description of training images.

Before Augmentation After Augmentation

Benign 1534 3068
Malignant 1284 2568

Total 2818 5636
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2.3. Feature Extraction Using VGG16

We found that the majority of biomedical imaging transfer learning methods used VGG
approaches to achieve the highest levels of prediction accuracy after thoroughly analyzing
the methodologies. The authors of this work are inspired to implement VGG16 [32] by
hyper-tuning the parameters in order to achieve the maximum possible accuracy. This is a
deep Convolutional Neural Network (CNN) architecture with several16 layers, known as
VGG16. In ImageNet, the VGG16 model performs about 92.7 percent of the top-five tests
correctly. There are more than 14 million photos in ImageNet [36], which can be divided
into more than 1000 categories. It was also one of the most popular models submitted to
the 2014 International Laser Sintering and Research Conference. In the VGG16 architecture,
an input image with 224 * 224 size is applied as shown in Figure 4. The VGG16 architecture
consists of five blocks. In the first and second block, two convolution layers (3 * 3), and
one max pooling layer (2 * 2) are applied with 64 and 128 filters, respectively. In the
third, fourth, and fifth blocks, three convolution layers with 256, 512, and 512 filters are
used, respectively, followed by a max pool layer (2 * 2). Therefore, in the proposed work,
the VGG16 model is further modified by adding one flatten layer, two dense layers with
LeakyReLU activation function, and another dense layer with activation function (sigmoid)
to enhance the accuracy of this model.
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Table 3 shows the images after filtration with each block after every conv layer and
max-pool layer. Block 1 and block 2 consist of two conv layers and one max-pool layer.
Hence the images of the 3rd convolution layer are not shown in block 1 and block 2. For
each layer only a single filtered image is shown in the table. For example, in convolution
layer 1 of block 1, 64 filters are used, so 64 filtered images will be received after that
convolution layer.
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Table 3. Filtered Images after Convolution and Maxpool Layer.

Conv-1 Conv-2 Conv-3 Max Pool

Block 1
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2.4. Fine Tuning of VGG16 Model

Figure 5 displays the fine tuning of the VGG16 model. Extracted features from the
VGG16 model are provided as input to the flatten layer. After that, it is transferred to the
two dense layers having 32 and 16 neurons, respectively, with LeakyReLU as the activation
function. The third dense layer consists of two neurons and a sigmoid activation function.
After that, the image is classified into one of two different classes of cancer (i.e., benign
and malignant).
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Table 4 shows the parameters of the proposed model. The output image size after
the VGG16 model is 7 * 7 and the number of parameters is 1,471,468. After VGG16, the
flatten layer is added whose output shape is 25,088 * 1. After that, different layers like
Dense_1, Dense_2 and Dense_3 are added having 802, 848, 528, and 17 layers, respectively.
LeakyReLU and Sigmoid activation functions are used for these dense layers.

Table 4. Parameters of Proposed Model.

Layer Shape of Output Parameters

VGG16 7, 7, 512 1,471,468
Flatten 25,088 0

Dense_1 32 802,848
LeakyReLU_1 32 0

Dense_2 16 528
LeakyReLU_2 16 0

Dense_3 1 17
Total Parameters 15,518,081

Trainable Parameters 803,393
Non-trainable Parameters 14,714,688

3. Results and Discussion

This contains all of the outcomes obtained using the proposed model. On the Kaggle
dataset, the model is tested. Various performance criteria such as precision, sensitivity, F1
Score, and accuracy are taken into account when analyzing the suggested model. An ex-
ploratory investigation is carried out using various hyper parameters, which are described
in detail below.

3.1. Hyper Parameters Tuning

Different parameters such as optimizer [37], batch size and epochs are used for hyper
parameters tuning on dermoscopy images. The Adam optimizer is a frequently used
optimizer that has replaced the Stochastic Gradient Descent optimizer in terms of training
the deep learning algorithms. Adam combines the various characteristics of RMSProp and
AdaGrad optimizers. The expression of Adam optimizer is given in Equations (1) and (2):

pt = α1 pt−1 + (1 − α1)

[
δL

δ wt

]
(1)

qt = α2qt−1 + (1 − α2)

[
δL

δ wt

]2
(2)
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α1 and α2 are the decay rates, δL is loss function derivative, δwt is weights derivative
at t, wt signifies the weights, pt is gradients collection, and qt is past gradients sum of
squares. Batch size is the most significant hyper parameter that is used for tuning any deep
learning system. A large batch size causes the computational speedups during training of a
deep learning model because of parallelism of GPUs but it may cause poor generalization.
A small batch size causes faster convergence to good solutions. Hence there is always
a competition between large and small batch size. In this paper, the proposed model is
simulated with different batch sizes like 8, 16, 32, 64, and 128 to analyze which batch size
will be suitable for better accuracy.

Epoch is the overall amount of times the whole dataset is received by neural network.
When a model is trained for one epoch, it means that training dataset had one chance to
update the internal parameters of the model. Therefore, the number of epochs should
be more so that error can be minimized during learning of the model. But more epochs
increase the computational time period. Hence, there should be a trade-off between a high
and a small number of epochs. In this paper, the presented model is simulated using 10
and 20 epochs. Table 5 shows the name of hyper tuning parameters and their values.

Table 5. Hyper Tuning Parameters.

S. No. Parameter Value

1. Batch size 8, 16, 32, 64, 128
2. Optimizer Adam
3. Epochs 20

3.2. Model Accuracy and Model Loss Analysis

Training accuracy, validation accuracy for VGG16 and modified VGG16 is performed
on the basis of model accuracy and model loss Figure 6 displays the graphs of training
accuracy, validation accuracy for VGG16, and modified VGG16.

Figure 6a–e displays the accuracy for VGG16 and Figure 6f–j displays the training,
validation accuracy of modified VGG16. The model is evaluated on 20 epochs. Figure 6a,f
shows the graph of training and validation accuracy on 8 batch size for VGG16 and the
modified VGG16 model, respectively.

It is observed that, for modified VGG16, the values of validation accuracy are more in
comparison to the VGG16 model. The highest value is on the 11th epoch that is approxi-
mately 87% for the modified VGG16 model.

Figure 6b,g shows the graph of validation and training accuracy on 16 batch size for
VGG16 and the modified VGG16 model, respectively. It is observed that, for modified
VGG16, the values of validation accuracy are more in comparison to VGG16 model. The
highest value is on the 6th epoch that is approximately 87% for the modified VGG16 model.

Figure 6c,h shows the graph of validation and training accuracy on 32 batch size for
VGG16 and the modified VGG16 model, respectively. It is observed that, for modified
VGG16, the values of validation accuracy are more in comparison to the VGG16 model.
The highest value is on the 3rd and 18th epoch that is approximately 86% for the modified
VGG16 model.

Figure 6d,i shows the graph of validation and training accuracy on 64 batch size for
VGG16 and the modified VGG16 model, respectively. It is observed that, for modified
VGG16, the values of validation accuracy are more in comparison to the VGG16 model.
The highest value is on the 11th epoch that is 86% for the modified VGG16 model.

Figure 6e,j shows the graph of validation and training accuracy on 128 batch size for
VGG16 and the modified VGG16 model, respectively. It is observed that, for modified
VGG16, the values of validation accuracy are more in comparison to the VGG16 model.
The highest value is on the 18th epoch that is approximately 87.5% for the modified VGG16
model. It can be analyzed from Figure 6 that, for all the batch sizes as well as each epoch,
validation accuracy is better for modified VGG16 as compared to VGG16. In any deep
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learning model, training and validation loss reduces as the number of epochs increases.
Starting from 0 to 20 epoch values, peak points are shown in all the figures.

Figure 7 shows the graphs of loss for VGG16 and modified VGG16. Figure 7a–e shows
the training loss for VGG16, and Figure 7f–j shows the training loss, validation loss for
modified VGG16. The values of training loss are compared to validation loss. The model
is evaluated on 20 epochs. Figure 7a,f shows the graph of training and validation loss on
8 batch size for VGG16 and the modified VGG16 model, respectively. It is observed that, for
modified VGG16, the values of validation loss are less in comparison to the VGG16 model.
Similarly, for all the batch sizes modified VGG16 is showing better results as compared
to VGG16 in terms of validation loss. Starting from 0 to 20 epoch values, peak points are
shown in all the figures.
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Table 6 shows the loss and accuracy for training and validation of the modified VGG16
model for two different epoch values, 10 and 20. The model is simulated with the Adam
optimizer at five different batch sizes (i.e., 8, 16, 32, 64, and 128). It can be seen that, on the
10th epoch, the training accuracy is maximum at batch size 32, which is 0.9255 whereas
training loss is minimum (i.e., 0.1736). Whereas, on the same epoch value, validation
accuracy is maximum (i.e., 84.56%), and the validation loss is less (i.e., 0.3514) for batch size
32. From Table 6, it is also analyzed that, on 20th epoch, the value of training accuracy is
maximum at batch size 32, which is 0.9698, whereas training loss is minimum (i.e., 0.0801).
Whereas, on the same epoch, value validation accuracy is maximum (i.e., 82.55%) at batch
size 8, and the validation loss is minimum (i.e., 0.6468) at batch size 128.

Overall, it can be concluded from this table that, on the 10th and 20th epoch, the
training results are best at batch size 32, whereas, validation results are best on the 10th
epoch at batch size 128.
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Table 6. Training Performance of Modified Vgg16 Model with Adam Optimizer.

Epoch Value Batch Size Train Loss Train Accuracy Validation Loss Val Accuracy (%)

10

8 0.1912 0.9150 0.4346 83.22
16 0.1705 0.9246 0.4664 83.89
32 0.1736 0.9255 0.4310 81.88
64 0.1957 0.9168 0.4034 83.22

128 0.2293 0.8971 0.3514 84.56

20

8 0.1077 0.9510 1.0940 82.55
16 0.0876 0.9645 0.7804 81.88
32 0.0801 0.9698 0.7754 81.88
64 0.0944 0.9634 0.6499 80.54

128 0.1133 0.9546 0.6468 79.87

3.3. Confusion Matrix

The confusion matrix provided predictions of true and false values as shown in
Figure 8. True labels are indicated vertically, and predicted labels are indicated horizon-
tally from which False Negatives (FN), False Positives (FP), True Positives (TP), and True
Negatives (TN) can be calculated. The parameter accuracy is calculated using TP, TN, FP,
and FN as given in Equation (3)

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Figure 8a–e shows the confusion matrix for VGG16, and Figure 8f–j shows the confu-
sion matrix for modified VGG16. In the case of modified VGG16, the values of accuracy are
higher in comparison to the VGG16 model. On batch size 8, the accuracy on the modified
VGG16 model is 86.67%, whereas, on the VGG16 model, it is 85.45%. On batch size 16, the
accuracy is approximately similar to the VGG16 model and the modified VGG16 model
as shown in Figure 8b,g. with batch size 32, the accuracy on the modified VGG16 model
is better (i.e., 88.18%), whereas, on the VGG16 model, it is 84.24%. On batch size 64, the
accuracy on the modified VGG16 model is 87.58%, whereas, on the VGG16 model, it is
86.67%. On batch size 128, the accuracy on the modified VGG16 model is 89.09%, whereas,
on the VGG16 model, it is 82.42%. From Figure 8, it can be concluded that the modified
VGG16 model is showing better accuracy as compared to VGG16 for each batch size (i.e., 8,
16, 32, 64, and 128).

3.4. Confusion Matrix Parameter Analysis

The confusion matrix parameter values are calculated by using Equations (4), (5), and
(6), respectively.

Precision =
TP

TP + FP
(4)

Sensitivity =
TP

TP + FN
(5)

F1 Score =
2 × TP

2 × (TP + FP + FN)
(6)

Figure 9 displays the values of confusion matrix parameter analysis for the benign
and malignant class. Figure 9a displays precision for benign and malignant disease class
on the VGG16 model and the modified VGG16 model. From the figure, it can be seen that
the values of precision are higher in case of the modified VGG16 model at each batch size
for benign as well as malignant class. For benign class, modified VGG16 is working best
for batch size 8, whereas, for malignant class, it is working best for batch size 8 and 128.
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Figure 9b shows the values of sensitivity for the benign and malignant disease classes
on the VGG16 model and the modified VGG16 model. From the figure, it can be seen that
the values of sensitivity are higher in the case of the modified VGG16 model at each batch
size for benign as well as malignant class. For benign class, modified VGG16 is working
best for batch size 8 and 128 whereas, for malignant class, it is working best for batch size 8
and 16.

Figure 9c shows the values of F1 score for VGG16 and the modified VGG16 model.
The values of F1 Score are higher in the case of the modified VGG16 model at each batch
size for benign as well as malignant class as compared to the VGG16 model. For benign
class, modified VGG16 is working best for batch size 16, 64 and 128 whereas; for malignant
class, it is working best for batch size 128.

Figure 9d shows the accuracy values of benign and malignant disease class on VGG16
and the modified VGG16 model. From the figure, it is detected that the overall ac-curacy is
high in the case of the modified VGG16 model at each batch size as compared to the VGG16
model. Modified VGG16 is working best for batch size 128 in terms of overall accuracy,
and the value is 89.09%.
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Figure 9. Confusion Matrix Parameters (a) Precision, (b) Sensitivity, (c) F1 Score, (d) Accuracy.

3.5. Comparison with the State-of-the-Art

A comparison with other state-of-the-art methods has been performed using skin
dermoscopy images in terms of accuracy and is presented in Table 7. The result analysis
shows that the presented model has achieved good accuracy as compared to other state-of-
the-art models. The accuracy is different in all studies, as different datasets (HAM10000,
Kaggle and clinical images) are used. With HAM10000 dataset, Khan et al. [8] achieved
an accuracy of 80.46% using VGG16 model architecture, and Agrahari et al. [10] and
Chaturvedi et al. [11] had achieved accuracy rates of 80.81% and 83.10%, respectively on
MobileNet model architecture.
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Table 7. Comparison of the Proposed Model with State-of-the-Art Techniques.

Ref Technique Used Dataset Accuracy (%)

Khan et al. [8] VGG16 HAM10000 80.46
Agrahari et al. [10] MobileNet HAM10000 80.81

Chaturvedi et al. [11] MobileNet HAM10000 83.10
Abdar et al. [13] Bayesian Deep Learning Method Kaggle 88.95

Fjisawa et al. [14] Deep Convolutional Neural Network Clinical Images 76.50
Garcia et al. [15] Machine Learning Interactive Atlas of Dermoscopy 88.00
Hasan et al. [38] CNN Kaggle 89.5
Singh et al. [39] ResNet50 Kaggle 80.3

Proposed Modified VGG16 architecture Kaggle 89.09

4. Conclusions

The modified VGG16 model is trained using transfer learning. The training and testing
of the model is performed on the Kaggle dataset. The presented model has been analyzed
with various batch sizes of 8, 16, 32, 64, and 128 using the Adam optimizer and 10 Epochs.
The proposed model is working best with overall accuracy of 89.09% on 128 batch size with
Adam optimizer and 10 epochs. There is still a scope in improving the overall accuracy of
the presented model. It can be enhanced by increasing both true positives as well as true
negatives simultaneously. There is always a possibility to build a more suitable model for
detection of skin cancer.
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