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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers world-
wide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years.
Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current
clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-
based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical
workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in
pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints
in each stage. The available PDAC imaging AI literature addressing each pathway stage is then
rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview.
Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.

Abstract: Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause
of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European
Commission and the United States Congress. Due to lack of investment in research and development,
combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly
improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout
the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification,
treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus.
Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI
research is too scattered and lacking in quality to be incorporated into clinical workflows. This review
describes the patient pathway and derives touchpoints for image-based AI research in collaboration
with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these
touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps.
The results show absence of multi-institutional, well-curated datasets, an essential building block
for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI
techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically
relevant, image-driven AI in PDAC is proposed.

Keywords: pancreatic cancer; artificial intelligence; imaging; radiology; pathology

1. Introduction

Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival
rate of less than 5% [1]. Pancreatic ductal adenocarcinoma (PDAC), the most common and
aggressive type of pancreatic cancer, has become a medical emergency in the past decades.
PDAC tumours present highly aggressive behavior, leading to 98% life expectancy loss
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and a 30% increase in disability-adjusted life years [2,3]. Recently, there have been some
improvements in the survival rates of early-stage, resected patients following neo-adjuvant
chemotherapy [4]. However, this translates into negligible increase in survival for the
whole PDAC patient population as in the absence of effective prevention and screening
protocols, most patients are diagnosed with advanced disease [4]. Still, research funding for
PDAC remains significantly lower than for other cancer types, leading it to be flagged as a
neglected cancer by both the European Commission and the United States Congress [2].

Cross-sectional imaging, namely computed tomography (CT), magnetic resonance
(MR), 18fluoro-2-deoxy-d-glucose positron emission tomography/computed tomogra-
phy (18FDG PET/CT), and endoscopic ultrasound (EUS), play a crucial role in PDAC
management. Nevertheless, current international guidelines for image-based stratifica-
tion, treatment response prediction, and evaluation are heterogeneous and ineffective [5].
Histopathology analysis is considered the gold standard for PDAC diagnosis and character-
ization. Still, it remains challenging even for experienced pathologists due to marked mor-
phological tumour heterogeneity and the limited amount of tumour tissue in biopsy [6–8].
Moreover, histopathology evaluation of treatment response is imprecise, of limited clinical
relevance, and affected by interobserver variation [9].

Artificial intelligence (AI) has gained considerable interest in oncology, as it has the
potential to leverage high amounts of data to produce individualised recommendations
based on each patient’s clinical picture [10]. As the volume of multi-modal data acquired in
routine clinical practice increases, AI can support clinicians and ultimately guide decision
making at each step of the patient pathway by focusing on well-validated applications at
meaningful clinical touchpoints [10]. Commercial clinical AI is already a reality for diseases
such breast, colon, and lung cancer, with multiple FDA-approved products on the market
for applications such as disease screening, diagnosis, and tumour characterization [11].
Currently, there are two main approaches for image-based AI: radiomics and convolutional
neural networks (CNNs). Radiomics predicts an outcome by feeding manually defined
texture and shape features extracted from a region of interest to machine learning models.
Deep learning-based CNNs, on the other hand, automatically compute the relevant features
directly from the imaging during training, in a neural network comprising a sequence of
convolutional and pooling operations. Since the introduction of AlexNet in 2012, CNNs
have evolved enormously and are now dominating image analysis, but the transition
from hand-crafted radiomic features to deep learning in the medical domain has been
gradual [12,13].

The number of publications on AI for clinical decision-making in oncology has in-
creased exponentially in the past few years [12]. However, AI research in PDAC is still
at a preliminary stage compared to other cancer diseases, with limited private and pub-
lic datasets and a lack of independent, external model validation. As a result, no AI
applications have been implemented in clinical practice for PDAC.

The contributions of this review are threefold. First, an international, multi-disciplinary,
multi-institutional expert panel breaks down the PDAC patient clinical pathway and iden-
tifies the most relevant clinical questions for image-based AI research. Second, we analyse
the available literature addressing these clinical questions and identify current trends and
knowledge gaps. Finally, we define the research agenda for clinical AI research in PDAC
imaging, along with the necessary steps towards clinically relevant AI applications that
can improve patient outcomes.

2. PDAC Patient Pathway

The typical cancer patient pathway is generally subdivided into five steps: detection,
diagnosis, staging, treatment, and monitoring. In each step of the patient pathway there are
critical patient and clinician decision-oriented touchpoints that could benefit from AI [10].
These touchpoints are specific for each cancer subtype and regard clinical decisions that are
suboptimal with currently implemented workflows and guidelines [10]. The specific steps
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of the PDAC patient pathway are illustrated in Figure 1, and the clinical touchpoints for
potential AI development in each step are explored in the following sections.
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Figure 1. PDAC patient pathway. The steps of the general cancer patient pathway are shown in the
top part of the figure. Below, the vertical boxes show the actions/guidelines for PDAC used in each
step. The width of the streams represents the proportion of patients that go through each branch of
the pathway, and the colours of the streams represent the number of AI publications found on that
topic. Rx: resection; nCTx: neoadjuvant chemo(radio)therapy; aCTx: adjuvant/induction therapy;
Px: palliative care.

2.1. Detection

Timely detection is crucial to improve PDAC patients’ outcomes, as the 5-year survival
increases from only 3% in metastatic patients to 42% when the tumour is still confined to
the primary site [14]. According to the Japan Pancreatic Cancer Registry, patients in the
earliest disease stage show a survival rate as high as 80.4% but account for only 0.8% of
cases [15]. Due to the low incidence of PDAC, defining and screening groups at risk is a
vital step to improve patient outcome. Research on risk factors, new screening protocols,
and non-invasive tumour biomarkers is on the rise, but so far there are no validated
biomarkers or tools for early detection. Therefore, screening is still not part of the PDAC
patient pathway as it is cost-prohibitive with current technology. The most used modality
for PDAC detection is multi-phase contrast-enhanced CT (CECT). However, early PDAC
detection on CECT remains challenging, as lesions are small (size <2 cm), present poorly
defined margins, and are more often iso-attenuating [5,16]. Radiologists’ sensitivity at
detecting lesions with size smaller than 2 cm on CECT has been reported to be as low
as 58% [5,16]. Contrast-enhanced MRI is highly effective at detecting tumours that are
poorly visible on CECT, but is not yet routinely implemented in the clinic [17]. EUS is a
widely accepted modality for the diagnosis of PDAC.

Early detection can be facilitated by the timely identification of secondary imaging
signs predictive of PDAC, such as main pancreatic duct cut-off or dilation, parenchymal
atrophy, and irregular pancreatic contour [5,18]. These signs are often visible on CECT
scans 18 to 12 months prior to clinical diagnosis, but the reported radiologists’ sensitivity
for their timely detection is only 44%, limiting the chances of early action [18].

2.2. Diagnosis

PDAC symptoms are mostly unspecific in early disease stages, and as lesional appear-
ances are heterogeneous on CECT, patients are often initially misdiagnosed with other,
more common abdominal diseases with similar symptomatology (e.g., gallbladder diseases,
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acute or chronic pancreatitis, duodenum cancer) [18,19]. Initially misdiagnosed patients
are reported to present higher rates of abdominal pain, weight loss, and acute pancreati-
tis than correctly diagnosed patients, and are at a higher risk of advanced disease [19].
EUS is also a widely accepted imaging modality for the diagnosis of PDAC, especially
for lesions less than 2–3 cm in size in which it reaches superior sensitivity compared to
CT [20]. Furthermore, EUS has a high negative predictive value and can be used to reliably
exclude pancreatic cancer [20]. Histopathology assessment is the current gold standard for
PDAC diagnosis confirmation and is usually based on EUS fine-needle cytology or biopsy.
Nevertheless, the morphological distinction of PDAC from other lesions on small biopsies
or cytology samples can be challenging, especially given the minimal amount of lesional
material that is often contained in these samples [21].

2.3. Staging

Following histopathology diagnosis, the most used method for PDAC staging is
the TNM classification by the American Joint Committee on Cancer (AJCC). The local
tumour extent (T stage), the dissemination to the regional lymph nodes (N stage), and
the metastatic spread to distant sites (M stage) are used to stratify patients, determine
their prognosis, and indicate treatment and monitoring strategy [19]. Nevertheless, the
TNM classification’s predictiveness for overall survival (OS) is not reliable [21]. A 2018
multicentre study aiming to validate the AJCC TNM 8th edition in a cohort of 1525 patients
receiving pancreatoduodenectomy reported a concordance index of 0.57 (95% CI, 0.55–0.60)
for OS prediction [22].

2.4. Treatment

The most common treatment options for PDAC are resection and chemo(radio)therapy,
in particular using FOLFIRINOX and gemcitabine–abraxane [2]. Surgical resection (Rx)
is the only option for potential long-term survival, but as can be seen in Figure 1 is only
suitable for a minority (10–15%) of patients (stages I, II). Most patients are diagnosed in later
disease stages (III, IV) where Rx is no longer possible due to metastasis or extensive vessel
involvement [23]. Imaging assessment of tumour-vascular contact primarily determines
eligibility for Rx, but there are no widely accepted, evidence-based guidelines for the
appropriate tumour resectability criteria [5,24]. As a result, the 5-year survival rate of
resected PDAC patients is only 30–58%, with 69–75% of patients relapsing within two
years [1,25].

As illustrated in Figure 1, most patients receive chemo(radio)therapy at some point
during treatment [4]. Neo-adjuvant chemo(radio)therapy (nCTx) intends to optimise
surgical outcome in patients with resectable disease, while adjuvant chemo(radio)therapy
(aCTx) is used to downstage unresectable patients. After aCTx, patients may become
resectable and undergo Rx or be referred to palliative care (Px), which is intended to
suppress disease-related pain and lengthen the patient’s life. Although most patients
experience chemotherapy-induced toxicity, often with limited efficacy due to biological
resistance, a priori prediction of chemotherapy response is still not possible in current
clinical work-up [26,27].

2.5. Treatment Monitoring

Following curative resection, histopathology analysis of the resected specimen is
performed to confirm the diagnosis of PDAC and to map the extent of disease. This
includes the assessment of lymph node metastases (LNM), tumour permeation along
lymphatics/blood vessels, and the clearance to the resection margins (resection margin
status) [28]. Nevertheless, the prognostic value of these parameters is still controversial,
with several studies reporting no significant relationship to survival [28–30]. The main
reasons for the low predictive power of histopathology findings are the lack of standardised
evaluation, consensus definitions, and reporting approaches [31,32].
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In patients undergoing chemo(radio)therapy, imaging is critical for determining thera-
peutic response and selection of the next treatment approach, as acquiring a biopsy could
lead to an increase of inflammation [32]. The Response Evaluation Criteria in Solid Tu-
mours (RECIST) 1.1 (2009) is the current standard to evaluate chemo(radio)therapy. This is
a purely morphological criteria that quantitatively tracks tumour burden changes based
on alterations to the lesions’ size. Although RECIST shows some success in monitoring
response based on metastases assessment, it is ineffective when considering the primary
tumour, as PDAC lesions present poorly defined borders and significant heterogeneity in
regression/progression patterns [32]. Furthermore, chemo(radio)therapy often results in
necrotic, fibrous, or inflammatory changes, which translate into an apparent enlargement
of the lesion in CT/MRI scans that can be misinterpreted as tumour progression [32].

Current histopathological tumour regression grade (TRG) systems for PDAC are based
on a semiquantitative evaluation of the destruction of cancer cells, the amount of residual
viable cancer, or the extent of fibrosis induced by treatment. However, current TRG systems
are based on imprecise, difficult-to-apply criteria, and a standardised and widely accepted
grading system for the histological evaluation of TRG in pancreatic cancer has not yet been
established [9,33,34]. These factors make RECIST and histopathology TRG insufficient for
predicting local oncological response in PDAC patients [31,32].

3. Materials and Methods

Searches were conducted on PubMed, Web of Science, Cochrane, and Embase on 14
September 2021 and updated on 25 January 2022. Additional information about the search
strategy can be found in Appendix A and Table A1. Articles were included for evaluation if
patient information was available, cohort size was larger than 20 patients, AI was developed
to predict a given outcome related to PDAC, and the proposed AI model used imaging
(CT, MRI, EUS, PET-CT, whole-slide images (WSI)) as input. Articles were excluded if the
research used non-human subjects, did not show any performance, did not report how
results were validated.,or used the same cohort for training and reporting of the results.

4. Results

A total of 2322 records were retrieved from the electronic databases, and 1076 articles
remained after duplicate removal. Titles and abstracts were reviewed on the basis of
the inclusion criteria, and 95 articles were eligible for full-text screening. Finally, a total
of 69 studies fulfilled the inclusion criteria and were considered for analysis. The flowchart
for the inclusion of studies is shown in Figure 2.

4.1. Detection

Eleven articles addressed AI for automated PDAC detection (Table 1). Only three
articles stratified the results based on tumour size, reporting model performance for the
subgroup of lesions with sizes smaller than 2 cm [35–37]. Two papers (Alves et al. (2022)
and Wang et al. (2021)) reported the results for both lesion detection and localization, and
only one paper proposed a fully automatic approach (Alves et al. (2022)) [35,38]. The study
by Liu et al. (2020) was the only one comparing AI performance to radiologists based on
the analysis of radiology reports, but no reader study was conducted [37]. As is shown in
Table 1, only three studies externally tested the proposed models, and four articles used
internal cross-validation without separate testing set [35–41].
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Table 1. Summary of papers on AI for PDAC detection. The performance for the validation and test
sets is reported with respective 95% Confidence Interval or standard deviation when it was provided.

Authors
(Year) Data Approach Model Metric Validation

Performance
Test

Performance
Dev.

Cohort
Test

Cohort

Alves et al.
(2022) [35] CT DL 3D

nnU-Net AUC 0.991
(0.970–1.0)

** 0.889
(0.833–0.946) 242 ** 361

Wang et al.
(2021) [38] CT DL 2D U-Net SEN, SPE 0.998, 0.965 .. 800 ..

Liu et al.
(2020) [37] CT DL 2D VGG AUC 1.000

(0.999–1.000)

* 0.997
(0.992–1.000)

* 0.999
(0.998–1.000)

** 0.920
(0.891–0.948)

412
* 139
* 189
** 363

Ma et al.
(2020) [39] CT DL 2D 4-layer

CNN AUC 0.9652 .. 412 ..

Tonozuka
et al. (2020)

[42]
EUS DL 2D 7-layer

CNN AUC 0.924 * 0.940 93 * 47

Qiu et al.
(2021) [43] CT Radiomics SVM AUC 0.88

(0.84–0.92)
* 0.79

(0.71–0.87) 312 * 93

Chen et al.
(2021) [36] CT Radiomics XGBoost AUC ..

* 0.98
(0.96–0.99)

** 0.76
(0.71–0.82)

944 * 383
** 212
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Table 1. Cont.

Authors
(Year) Data Approach Model Metric Validation

Performance
Test

Performance
Dev.

Cohort
Test

Cohort

Chu et al.
(2020) [40] CT Radiomics RF SEN, SPE,

ACC
0.950, 0.923,

0.936 .. 380 ..

Chu et al.
(2019) [44] CT Radiomics RF AUC .. * 0.999 255 * 125

Li et al.
(2018) [41]

18FDG
PET-CT

Radiomics SVM-RF SEN, SPE,
ACC

0.952 ± 0.009,
0.975 ± 0.004,
0.965 ± 0.007

.. 80 ..

Ozkan et al.
(2015) [45] EUS Radiomics ANN SEN, SPE,

ACC ..
* 0.833 ± 0.112,
0.933 ± 0.075,
0.875 ± 0.047

172 * 72 images

** external test set, * internal test set. Abbreviations are: DL—deep learning, XGBoost—extreme gradient boost,
SVM—support vector machine, VGG—visual geometry group, RF—random forest, ANN—artificial neural
network, CNN—convolutional neural network, AUC—area under the receiver operating characteristic curve,
SEN—sensitivity, SPE—specificity, ACC—accuracy, Dev. Cohort—development cohort (training + validation).

4.2. Diagnosis

Eighteen papers explored AI for differential PDAC diagnosis (Table 2). The majority
of papers (14/18) focused on radiology imaging, mostly (13/14) regarding binary classifica-
tion between PDAC and another type of lesion, with only one paper tackling multiclass
classification [46]. Three publications focused on AI for the histopathological diagnosis of
PDAC. Fu et al. (2021) and Naito et al. (2021) proposed DL approaches for PDAC diagnosis
and segmentation in WSI, while Kriegsmann et al. (2021) were the first to utilise DL to
automatically identify different anatomical tissue structures and diseases on WSI [8,47,48].
AI validation is limited. Only three studies externally tested the proposed models, while
nine papers had internal cross-validation, without a separate testing set [8,46,49].

Table 2. Summary of papers on AI for PDAC differential diagnosis. The performance for the
validation and test sets is reported with respective 95% Confidence Interval or standard deviation
when it was provided.

Authors (Year) Tissues of
Interest Data Approach Model Metric Validation

Results
Test

Results
Dev.

Cohort
Test

Cohort

Si et al.
(2021) [46]

PDAC,
IPMN, SCN,

other
CT DL ResNet +

U-Net ACC .. ** 0.827 319 ** 347

Naito et al.
(2021) [47] PDAC WSI DL EfficientNet-

B1 AUC .. * 0.984
(0.960–0.998) 413 * 120

Fu et al.
(2021) [8] PDAC WSI DL Inception +

U-Net ACC .. * 1.0
** 0.904 90 * 47

** 52

Kriegsmann
et al. (2021) [48] PDAC WSI DL EfficientNet BACC .. * 0.921 201 ..

Ziegelmayer
et al. (2020) [50] PDAC, AIP CT DL RF AUC 0.90 ± 0.02 .. 86 ..

Liu et al.
(2019) [51] PDAC CT DL Faster

R-CNN AUC .. * 0.9632 238 * 100

Saftoiu et al.
(2015) [52] PDAC, MFP EUS ML 2-layer

ANN SEN, SPE ..

* 0.946
(0.882–0.978),

0.944
(0.839–0.986)

142 * 25

Ebrahimian
et al. (2021) [53]

Benign vs
Malignant CT Radiomics RF AUC .. * 0.76 59 * 44
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Table 2. Cont.

Authors (Year) Tissues of
Interest Data Approach Model Metric Validation

Results
Test

Results
Dev.

Cohort
Test

Cohort

Deng et al.
(2021) [49] PDAC, MFP MR Radiomics SVM AUC 0.997

(0.990–1.0)
** 0.962

(0.907–1.0) 64 ** 55

Ma et al.
(2021) [54] PDAC, CP CT +

clinical Radiomics LASSO AUC
0.980

(0.961–
1.000)

.. 175 ..

Liu et al.
(2021) [55] PDAC, AIP

18FDG
PET-CT

Radiomics SVM AUC 0.966 ±
0.008 .. 112 ..

Ren et al.
(2020) [56] PDAC, PAC CT Radiomics RF AUC 0.82 .. 112 ..

Ren et al.
(2020) [57] PDAC, MFP CT Radiomics RF AUC 0.98

(0.97–1.0) .. 109 ..

Park et al.
(2020) [58] PDAC, AIP CT Radiomics RF AUC .. * 0.975

(0.936–1.0) 120 * 62

He et al.
(2019) [59]

PDAC,
PNEN CT Radiomics LASSO AUC

0.960
(0.942–
0.979)

* 0.884
(0.831–0.927) 100 * 47

Ren et al. (2019)
[60] PDAC, MFP CT Radiomics LR AUC .. * 0.9 109 * 40

Zhang et al.
(2019) [61] PDAC, AIP

18FDG
PET-CT

Radiomics SVM- RF AUC 0.93 .. 111 ..

Saftoiu et al.
(2012) [62] PDAC, CP EUS Radiomics 2-layer

ANN AUC 0.94
(0.91–0.97) .. 258 ..

** external test set, * internal test set. Abbreviations are: MFP—mass-forming pancreatitis, CP—chronic pancreatitis,
AIP—autoimmune pancreatitis, IPMN—intraductal papillary mucinous neoplasm, SCN—serous cystic neoplasm,
PNEN—pancreatic neuroendocrine neoplasms, PAC—pancreatic adenosquamous carcinoma, DL—deep learning,
ML—machine learning, SVM—supported vector machine, RF—random forest, LASSO—least absolute shrinkage
and selection operator, LR—logistic regression, ANN—artificial neural network, AUC—area under the receiver
operating characteristic curve, SEN—sensitivity, SPE—specificity, BACC—balanced accuracy, Dev. Cohort—
development cohort (training + validation).

4.3. Staging

Thirteen AI papers covered staging (Table 3). Only one publication considered
histopathological data. Two articles (An et al., (2021) and Chaddad et al., (2020)) used DL,
with the remaining majority using radiomics [63,64]. Most papers considered surrogate
end points (histological grade of differentiation, presence of LNM, etc.) as ground truth for
model development, with only one considering OS. The study from Chaddad et al., (2021)
divided patients into short- and long-term survivors with a set threshold [64]. Only two
papers used an external dataset to validate their performance [65,66].

Table 3. Summary of papers on AI for stratification of PDAC patients. The performance for the
validation and test sets is reported with respective 95% Confidence Interval or standard deviation
when it was provided.

Authors (Year) Ground
Truth Data Approach Model Metric Validation

Performance
Test

Performance
Dev.

Cohort
Test

Cohort

An et al.
(2021) [63] LNM CT +

clinical DL Resnet-18 AUC 0.90
(0.88–0.92)

* 0.92
(0.91–0.92) 113 * 35

Chaddad et al.
(2020) [64]

Short term vs.
long-term
survival

CT DL + ML CNN + RF AUC 0.72 .. 159 ..

Song et al.
(2013) [67]

Grading
1 vs. 2 WSI ML SVM AUC 0.79 .. 240 ..

Bianet al.
(2022) [68] LNM MR Radiomics LR AUC 0.75

(0.68–0.82)
* 0.81

(0.69–0.94) 180 * 45
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Table 3. Cont.

Authors (Year) Ground
Truth Data Approach Model Metric Validation

Performance
Test

Performance
Dev.

Cohort
Test

Cohort

Shi et al.
(2022) [65] LNM MR +

clinical Radiomics LR AUC 0.909
(0.854–0.964)

* 0.835
(0.751–0.919)

** 0.805
(0.720–0.890)

199 ** 52

Bian et al.
(2021) [69] TIL MR Radiomics XGBoost AUC 0.86

(0.79–0.93)
* 0.79

(0.64–0.93) 116 * 40

Cen et al.
(2021) [70]

Stage I–II vs.
Stage III–IV CT Radiomics LR AUC 0.940

(0.871–0.979)
* 0.912

(0.781–0.978) 94 * 41

Zhang et al.
(2021) [71]

Liver
metastasis vs.

other
metastasis

CT Radiomics RF AUC 0.81 .. 77 ..

Xing et al.
(2021) [72]

Grading
1 vs. 2/3

18FDG
PET-CT

Radiomics XGBoost AUC .. * 0.921
(0.846–0.996) 99 * 50

Kaissis et al.
(2020) [73] QMS CT Radiomics RF AUC 0.93 ± 0.01 .. 181 ..

Chen et al.
(2020) [74]

PV-SMV
invasion CT Radiomics ElasticNet AUC 0.871

(0.795–0.946)
* 0.848

(0.724–0.971) 88 58

Liu et al.
(2020) [75] LNM CT Radiomics LR AUC 0.841

(0.768–0.925) .. 85 ..

Li et al.
(2020) [76] LNM CT +

clinical Radiomics LR AUC .. * 0.912
(0.778–1) 118 *41

Chang et al.
(2020) [66]

Grading
1/2 vs. 3 CT Radiomics LASSO AUC 0.961

(0.935–0.987)

* 0.91
(0.864–0.956)

** 0.77
(0.661–0.878)

151 * 150
** 100

Longlong
et al. (2020) [77]

Grading
1 vs. 2 vs. 3 CT Radiomics RF AUC 0.77

(0.64–0.87)
* 0.70

(0.47–0.86) 58 * 25

Qiu et al.
(2019) [78]

Grading
1/2 vs. 3 CT Radiomics SVM

SEN,
SPE,
ACC

78
95
86

.. 56 ..

** external test set, * internal test set. Abbreviations are: LNM—lymph node metastasis, TIL—tumour infiltrating
lymphocytes, Grading—grade comparison (low vs. high), QMS—quasi mesenchymal subtype, PV-SMV—portal
vein superior mesenteric vein, DL—deep learning, ML—machine learning, SVM—supported vector machine, RF—
random forest, LR—logistic regression, CNN—convolutional neural network, XGBoost—extreme gradient boost,
AUC—area under the receiver operating characteristic curve, SEN—sensitivity, SPE—specificity, ACC—accuracy,
Dev. Cohort—development cohort (training + validation).

4.4. Treatment

Twenty-two studies use pre-treatment imaging to predict treatment response, with the
majority of studies (17/22) focusing on patients diagnosed with resectable disease (Table 4).
Eleven studies expressed treatment response by predicting OS, of which two (Healy et al.,
and Zhang et al.) validated the performance in an external cohort [79,80]. Six articles used
deep learning (three with the same cohort), with the remaining 16 using radiomics.

Table 4. Summary of papers on AI for PDAC treatment response prediction. The performance for the
validation and test sets is reported with respective 95% Confidence Interval or standard deviation
when it was provided.

Authors
(Year) Treatment Predict Data Approach Model Metric Validation

Results
Test

Results
Dev.

Cohort
Test

Cohort

Yao et al.
(2021) [81] Resection OS CT DL Conv-

LSTM CI 0.667 .. 296 ..

Zhang et al.
(2020) [80] Resection OS CT DL CNN CI .. ** 0.651 68 ** 30
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Table 4. Cont.

Authors
(Year) Treatment Predict Data Approach Model Metric Validation

Results
Test

Results
Dev.

Cohort
Test

Cohort

Watson
et al. (2020)

[82]
Chemotherapy PR vs. NR CT +

clinical DL LeNet AUC .. * 0.785 .. * 65

Zhang et al.
(2021) [83] Resection 2-year survival CT DL + ML RF AUC .. * 0.84

(0.70–0.98) 68 * 30

Li et al.
(2021) [84] Resection

1-year and
2-year

recurrence risk

CT +
clinical DL + ML ANN AUC

0.916
(0.860–0.955)

0.872
(0.809–0.921)

** 0.764
(0.644–0.859)

** 0.773
(0.654–0.866)

153 ** 47

Zhang et al.
(2020) [83] Resection Death risk CT DL + ML RF AUC 0.72

(0.58–0.86)
** 0.81

(0.64–0.98) 68 ** 30

Healy et al.
(2021) [79] Resection OS CT Radiomics CPH CI 0.626

(0.625–0.627)
** 0.545

(0.543–0.546) 352 ** 215

Shi et al.
(2021) [85] Resection OS CT Radiomics CPH CI 0.74

(0.70–0.78)
* 0.73

(0.66–0.79) 210 * 89

Wei et al.
(2021) [86] Resection 1-year RFS

18FDG
PET-CT Radiomics CPH CI 0.890

(0.835–0.945)
* 0.865

(0.778–0.952) 109 * 47

Xie et al.
(2020) [87] Resection OS CT Radiomics CPH CI .. * 0.726

(0.646–0.806) 147 * 73

Park et al.
(2020) [88] Resection OS CT Radiomics RF CI 0.74 .. 153 ..

Parr et al.
(2020) [89] Radiotherapy OS CT Radiomics CPH CI 0.68 .. 74 ..

Kaissis
et al. (2020)

[90]
Resection OS

CT +
clinical +
genomics

Radiomics LPCA CI 0.65
(0.60–0.69) .. 103

Hui et al.
(2020) [91]

Resection
margin R0 vs. R1 CT Radiomics SVM AUC 0.8641 .. 86 ..

Bian et al.
(2020) [92]

Resection
margin R0 vs. R1 CT Radiomics LR AUC 0.750

(0.672–0.824) .. 181 ..

Tang et al.
(2019) [93] Resection

NER (>12
months) vs.

ER (<12
months)

MR Radiomics LR AUC 0.802
(0.721–0.868)

* 0.807
(0.677–0.902)

** 0.781
(0.699–0.850)

177 * 74
** 126

Zhou et al.
(2019) [94]

Irradiation
stent RSFS CT Radiomics CPH CI 0.791

(0.614–0.967)
* 0.779

(0.504–1.000) 74 * 32

Cozzi et al.
(2019) [95] Radiotherapy OS CT Radiomics CPH CI .. * 0.75 ± 0.03 60 * 40

Kaissis
et al. (2019)

[96]
Chemotherapy OS MR Radiomics GBDT CI 0.71

(0.60–0.80) .. 55 ..

Kaissis
et al. (2019)

[97]
Resection

Above vs.
below average

OS
MR Radiomics RF AUC 0.93 ± 0.07 * 0.9 102 * 30

Chakraborty
et al. (2017)

[98]
Resection

Survival < 2
years vs.

survival > 2
years

CT Radiomics Bayes AUC 0.9 .. 35 ..

Cui et al.
(2016) [99] Radiotherapy OS

18FDG
PET-CT Radiomics CPH CI 0.623 * 0.661

(0.418–0.841) 90 * 49

** external test set, * internal test set. Abbreviations are: PR—pathological response, NR—no response, NER—non-
early recurrence, ER—early recurrence, RFS—recurrence-free survival, RSFS—restenosis-free survival, DL—deep
learning, ML—machine learning, SVM—supported vector machine, RF—random forest, CPH—Cox propor-
tional hazard, GBDT—gradient-boosted decision tree, LPCA—linear principle component analysis, LR—logistic
regression, ANN—artificial neural network, AUC—area under the receiver operating characteristic curve, CI—
concordance index, Dev. Cohort—development cohort (training + validation).

4.5. Treatment Monitoring

We found two publications regarding treatment evaluation and no publications for
follow-up. The study by Janssen et al. (2021) takes a step in the direction of more ob-
jective and reproducible TRG systems for patients undergoing nCTx by automatically
segmenting relevant structures on WSI of resection specimens [100]. The authors used a
cohort of 64 specimens and achieved F1-scores of 0.86 ± 0.09, 0.74 ± 0.12, and 0.86 ± 0.07
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for the segmentation of tumour, normal ducts, and remaining non-tumour epithelium,
respectively. Nasief et al. (2019) proposed an AI model based on delta radiomics from daily
longitudinal scans to predict response to neoadjuvant chemoradiation therapy [101]. This
study included 90 patients, divided into good and poor responders based on a modified
Ryan Scheme for histopathology-based TRG, and the model achieved an AUC of 0.98 in
the independent test set (40 patients) [101].

5. Discussion

Clinically relevant AI is developed to assist, replace, or go beyond clinicians’ knowl-
edge on solving problems that affect patient outcomes. AI can significantly impact health-
care by leveraging big data, especially in neglected diseases such as PDAC, but it is essential
that research is performed at high-quality standards and focuses on clinical validity, utility,
and usability [10].

There are critical steps in the PDAC patient pathway where clinical guidelines are
still lacking. In this review, such moments and subsequent opportunities for AI research
are identified in consensus by a consortium of radiologists, pathologists, and AI experts
from multiple international institutions. We propose that for radiology and pathology
AI to advance PDAC care, future research should focus on early diagnosis, data-driven
tumour characterisation, survival-based patient staging, treatment response prediction,
and monitoring.

Early detection, arguably the most pressing issue in PDAC management, is closely
linked to identifying small lesions and secondary anatomical signs [102]. However, our
results show this is still not considered in AI-based detection research, as there are no studies
on pre-diagnostic detection of secondary signs, and most studies do not disaggregate
performance based on tumour size/stage. Additionally, there is a lack of research on lesion
localization and a general absence of well-curated datasets, with positive and negative
cases being retrieved from completely different populations, which does not reflect the
clinical landscape and can introduce bias. For AI to improve PDAC detection, it is crucial
to acquire and make publicly available well-curated, multimodal datasets that contain a
significant proportion of small (<2 cm or even <1 cm) tumours, which should be treated as
a subgroup of interest when reporting model performance.

Current research separates detection, which is defined as distinction between PDAC
patients and healthy controls, from differential diagnosis, defined as distinction between
PDAC and other types of pancreatic lesions. Only one study developed AI for simultaneous
detection and characterisation of pancreatic lesions on CECT [46]. The remaining publi-
cations focused on binary distinction between PDAC and one other malignancy, limiting
the proposed models’ clinical use. Furthermore, it is important to consider that PDAC
diagnosis currently relies on high-quality, adequate imaging with multi-phasic scanning
protocols, which may not be widely available due to resource limitations. In the future,
research should strive towards a single-use case for radiology-based AI in PDAC diagnosis
that includes both the detection of a lesion and its correct classification among a variety
of pancreatic diseases in accessible, standard-of-care imaging. The current priority is the
curation of large datasets with representative percentages of each lesion type and the
integration of different imaging modalities that offer complementary information regarding
lesion characterisation.

Research in AI for histopathological PDAC diagnosis is scarce. Only three publications
were found to address this topic. While histopathology is considered the gold standard for
confirming PDAC diagnosis, it is a time-consuming process that suffers from non-uniform
implementation in clinical practice and interobserver variability. Developing powerful
AI models for histopathological PDAC diagnosis is fundamental to advance AI research
at all steps of the patient pathway. Such models would optimise clinical workflows and
empower the generation of reliable ground truth, which could be employed to develop AI
with other (non-invasive) modalities, in a timely and cost-effective manner.
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AI for PDAC staging lacks a solid reference standard. TNM staging and histopatho-
logical grade do not correlate sufficiently with OS and suffer from inter-reader variability.
Yet, most AI publications (12/13) focused on grade differentiation and LNM prediction.
Only one study considered OS as the outcome, dividing patients into short- and long-term
survival based on a threshold derived from the development cohort [64]. In the absence
of an international consensus that relates surrogate endpoints to survival, AI research
using clinically obtained low- and high-grade differentiation and predicting LNM is not
clinically relevant. Future AI research should focus on discovering new data-driven staging
biomarkers that relate histopathology and imaging to OS.

AI research for treatment response prediction disproportionally focuses on post-
surgery patient outcome, with most included papers considering only resectable patients.
Given that 80–85% of patients are diagnosed with unresectable disease, AI research on
prediction of response to resection will have a minor impact on improving overall PDAC
patients’ outcomes [103]. Instead, research efforts should focus on later disease stages,
predicting response to (neo-)adjuvant/palliative chemo(radio)therapy. While most papers
addressing treatment response considered survival as the outcome measure, there were
also publications that aimed at predicting resection margin status and histopathology-
based treatment effect. AI should not focus on these endpoints as they do not accurately
reflect whether a patient responds to treatment. There were no publications considering
multiple treatment options, with all studies focusing on the prediction of response to a
single treatment regime. Future AI research should consider multiple treatment options
for a given patient, providing the most favourable suggestion based on survival as the
outcome measure.

AI research for treatment monitoring is lagging behind, as to date only two publica-
tions considered post-treatment imaging to evaluate response. The results from a segmen-
tation network approach (Janssen et al. (2021)) are promising, but they were not validated
externally, and further research is necessary to integrate this AI tool into a reliable TRS
system for neoadjuvant chemotherapy [100]. Nasief et al. (2019) used longitudinal scans to
monitor chemoradiotherapy response, but the authors considered the histopathology-based
treatment response as ground truth [101]. Clinically relevant AI applications should di-
rectly predict OS and recurrence from large, well-curated radiology and pathology datasets.
Additionally, AI algorithms for treatment monitoring should strive to assist clinicians by
indicating the best action at a given time-point, such as timely termination of treatment to
prevent unnecessary comorbidities, selecting re-staging time points, adjusting the treatment
regime, or choosing the optimal schedule for long-term patient follow-up.

Overall, four main research agenda topics emerge from this comprehensive literature
review for clinical image-based AI in PDAC (Table 5). First, there is an urgent need
for more and good quality data. Large, well-curated, multi-institutional private and
public PDAC datasets are essential for AI development and testing. This allows deep
neural networks to extract powerful predictive and diagnostic biomarkers that generalise
well in multiple cohorts. Second, easily accessible radiomics AI still dominates the field,
with comparatively little work on much more powerful deep learning CNNs. As data
availability and quality increases, research should focus on developing models that are
entirely and exclusively data-driven. Third, the entire research field needs to globally shift
to using better-quality ground truths that represent actual clinical endpoints (such as OS
and disease-free survival) as the gold standard for model development. Clinical guideline
parameters such as TNM staging, histopathology-based tumour response scores, margin
status, and RECIST are hardly predictive of patient outcomes and should not be considered
a valid outcome for AI model development. AI in PDAC should improve current clinical
workflow rather than replicate/automate existing ineffective practices. Finally, the realm of
multimodal AI for PDAC remains unexplored. In a complex and heterogeneous disease
such as PDAC, combining information from imaging, histopathology, genetics, and clinical
records is crucial to discovering meaningful patterns in the data and building robust
prediction models. AI-based imaging biomarkers that stratify PDAC phenotypes predictive
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of outcome can support individualised care, for instance through the development of
pharmacogenomic treatment regimes.

Table 5. Overview of the main topics for future clinical AI research in PDAC imaging.

Research Agenda for Clinical AI in PDAC Imaging

- To acquire more, good quality data coming from large, well-curated, multi-institutional
private and public PDAC datasets

- To switch focus towards state-of-the-art, entirely data-driven deep learning models
- To use better quality ground truths that represent actual clinical endpoints such as overall

survival and disease-free survival as the gold standard for model development
- To investigate the use of multimodal AI, combining information from imaging,

histopathology, genetics and clinical records

6. Conclusions

In conclusion, the future of AI in PDAC lies in addressing the relevant clinical ques-
tions, establishing multi-institutional collaborations for the curation of large-scale datasets,
and integrating multiple data modalities. By putting forward these issues in the context of
current image-based AI literature for PDAC, we hope to help advance meaningful research
that will ultimately translate into the improvement of PDAC outcomes, by helping to select
the best treatments, for the right patients, at the right time.
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Appendix A

This scoping review adhered to the PRISMA guidelines. Searches were conducted
on PubMed, Web of Science, Cochrane, and Embase on 14 September 2021, and updated
on 25 January 2022. The used search string was the following.

Table A1. Search strategy. MeSH terms and keywords for the included databases.

Database Search Strategy

PubMed

(“Pancreatic Neoplasms”(Mesh:NoExp) OR “Carcinoma, Pancreatic
Ductal”(Mesh) OR “Pancreatic Intraductal Neoplasms”(Mesh) OR
(Pancrea*(tiab) AND (Neoplasm*[tiab] OR cancer*[tiab] OR Carcinoma*[tiab]
OR Adenocarcinoma*[tiab])) OR PDAC(tiab)) AND (“Artificial
Intelligence”(Mesh) OR AI(tiab) OR Artificial Intelligence(tiab) OR
CNN(tiab) OR Convnet(tiab) OR Deep Learning(tiab) OR Machine learning
(tiab) OR Neural network*(tiab) OR pathomic*(tiab) OR radiomic*(tiab) OR
supervised Learning(tiab) OR Transfer Learning(tiab) OR Unet(tiab) OR
unsupervised Learning(tiab))
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Table A1. Cont.

Database Search Strategy

Embase

(“Pancreatic Neoplasms” or “Carcinoma, Pancreatic Ductal” or “Pancreatic
Intraductal Neoplasms” or (Pancrea* and (Neoplasm* or cancer* or
Carcinoma* or Adenocarcinoma*)) or PDAC).mp. and (“Artificial
IntelligenceOR AI” or CNN or Convnet or “Deep Learning” or “Machine
learning” or “Neural network*” or pathomic* or radiomic* or “supervised
Learning” or “Transfer Learning” or Unet or “unsupervised Learning”).

Web of Science

(TS = ((“Pancreatic Neoplasms” OR “Carcinoma, Pancreatic Ductal” OR
“Pancreatic Intraductal Neoplasms” OR (Pancrea* AND (Neoplasm* OR
cancer* OR Carcinoma* OR Adenocarcinoma*)) OR PDAC))) AND TS =
((“Artificial Intelligence”OR AI OR CNN OR Convnet OR “Deep Learning”
OR “Machine learning” OR “Neural network*” OR pathomic* OR radiomic*
OR “supervised Learning” OR “Transfer Learning” OR Unet OR
“unsupervised Learning”))

Cochrane

(“Pancreatic Neoplasms”(Mesh:NoExp) OR “Carcinoma, Pancreatic
Ductal”(Mesh) OR (Pancrea*[tiab] AND (Neoplasm*[tiab] OR cancer*[tiab]
OR Carcinoma*[tiab] OR Adenocarcinoma*[tiab])) OR PDA*(tiab)) AND
(“Artificial Intelligence”(Mesh) OR AI(tiab) OR Artificial Intelligence(tiab)
OR CNN(tiab) OR Convnet(tiab) OR Deep Learning(tiab) OR Machine
learning (tiab) OR Neural network*(tiab) OR pathomic*(tiab) OR
radiomic*(tiab) OR supervised Learning(tiab) OR Transfer Learning(tiab) OR
Unet(tiab) OR unsupervised Learning(tiab))

Two independent reviewers (M.S. and N.A.) screened the titles and subsequently
reviewed all full-text articles based on preselected variables to compare results. A third
independent expert reviewer (P.V.) reviewed the full-text articles for digital pathology
imaging. Conflicting evaluations were resolved by discussions between the three reviewers.

Inclusion criteria and corresponding number of records excluded at each step (n) were
the following:

Full-read criteria:

(1) Study was published in a peer-reviewed journal and was not an abstract, review
paper, conference paper, commentary, editorial, or not available. (n = 293)

(2) Study considered patients clinically diagnosed with pancreatic cancer (pancreatic
ductal adenocarcinoma or non-specified type of pancreatic cancer). (n = 343)

(3) Study used AI to predict an outcome related to one of the following tasks (n = 289):

◦ Detection: determine the presence or absence of PDAC in an input image with
or without localization of the tumours.

◦ Diagnosis: differentiate between PDAC and other benign and/or malignant
pancreatic lesions.

◦ Staging: stratify PDAC patients into different subgroups based on clinical/
histopathological outcomes or survival.

◦ Treatment indication: predict treatment response based on pre-treatment data.
◦ Treatment response prediction: monitor treatment response based on follow-up

data.

(4) Study used medical images as input. Included modalities were computed tomogra-
phy (CT), magnetic resonance (MR), ultrasound (EUS), 18fluoro-2-deoxy-d-glucose
positron emission tomography/computed tomography (18FDG PET/CT), and whole-
slide images (WSI). (n = 56)

Qualitative synthesis criteria:

(5) Study included a population larger than 20 patients. (n = 3)
(6) Clinical information regarding patients in the used cohorts was available. Minimum

required fields were: number of patients, age distribution, and sex distribution.
(n = 14)
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(7) Study reports results in at least one patient cohort not used to train the model. (n = 3)
(8) Study reports how the results were obtained. (n = 6)

A data selection template was designed to evaluate research characteristics and per-
formance. All variables are evaluated independently by the three reviewers (M.S., N.A.,
and P.V.).

The template included the following fields:

• Modality (CT, MR, EUS, 8FDG PET/CT, WSI)
• Task (detection, diagnosis, staging, treatment, monitoring)
• Tissue of interest (PDAC, pancreatic cancer)
• Tumour location (head, neck, body, tail)
• Disease stage (I, II, III, IV)
• Therapy
• Type of AI (Radiomics, Deep Learning, other)
• Model
• Ground truth
• Performance metric
• Type of internal validation (single split, cross-validation)
• Performance on training set
• Performance on internal validation set
• Performance on internal test set
• Performance on external test set
• Cohort size for development set (train/validation)
• Patient distribution for development set with regard to considered ground truth
• Cohort size for internal test set
• Patient distribution for internal test set with regard to considered ground truth
• Cohort size for external test set
• Patient distribution for external test set with regard to considered ground truth
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