Skip to main content
. 2022 Jul 19;14(14):3498. doi: 10.3390/cancers14143498

Table 1.

Summary of papers on AI for PDAC detection. The performance for the validation and test sets is reported with respective 95% Confidence Interval or standard deviation when it was provided.

Authors (Year) Data Approach Model Metric Validation Performance Test Performance Dev. Cohort Test Cohort
Alves et al. (2022) [35] CT DL 3D
nnU-Net
AUC 0.991
(0.970–1.0)
** 0.889
(0.833–0.946)
242 ** 361
Wang et al. (2021) [38] CT DL 2D U-Net SEN, SPE 0.998, 0.965 .. 800 ..
Liu et al. (2020) [37] CT DL 2D VGG AUC 1.000
(0.999–1.000)
* 0.997
(0.992–1.000)
* 0.999
(0.998–1.000)
** 0.920
(0.891–0.948)
412 * 139
* 189
** 363
Ma et al. (2020) [39] CT DL 2D 4-layer CNN AUC 0.9652 .. 412 ..
Tonozuka et al. (2020) [42] EUS DL 2D 7-layer CNN AUC 0.924 * 0.940 93 * 47
Qiu et al. (2021) [43] CT Radiomics SVM AUC 0.88
(0.84–0.92)
* 0.79
(0.71–0.87)
312 * 93
Chen et al. (2021) [36] CT Radiomics XGBoost AUC .. * 0.98
(0.96–0.99)
** 0.76
(0.71–0.82)
944 * 383
** 212
Chu et al. (2020) [40] CT Radiomics RF SEN, SPE, ACC 0.950, 0.923, 0.936 .. 380 ..
Chu et al. (2019) [44] CT Radiomics RF AUC .. * 0.999 255 * 125
Li et al. (2018) [41] 18FDG PET-CT Radiomics SVM-RF SEN, SPE, ACC 0.952 ± 0.009, 0.975 ± 0.004, 0.965 ± 0.007 .. 80 ..
Ozkan et al. (2015) [45] EUS Radiomics ANN SEN, SPE, ACC .. * 0.833 ± 0.112, 0.933 ± 0.075, 0.875 ± 0.047 172 * 72 images

** external test set, * internal test set. Abbreviations are: DL—deep learning, XGBoost—extreme gradient boost, SVM—support vector machine, VGG—visual geometry group, RF—random forest, ANN—artificial neural network, CNN—convolutional neural network, AUC—area under the receiver operating characteristic curve, SEN—sensitivity, SPE—specificity, ACC—accuracy, Dev. Cohort—development cohort (training + validation).