Skip to main content
. 2022 Jul 19;14(14):3498. doi: 10.3390/cancers14143498

Table 3.

Summary of papers on AI for stratification of PDAC patients. The performance for the validation and test sets is reported with respective 95% Confidence Interval or standard deviation when it was provided.

Authors (Year) Ground Truth Data Approach Model Metric Validation Performance Test Performance Dev.
Cohort
Test Cohort
An et al. (2021) [63] LNM CT + clinical DL Resnet-18 AUC 0.90
(0.88–0.92)
* 0.92
(0.91–0.92)
113 * 35
Chaddad et al. (2020) [64] Short term vs. long-term survival CT DL + ML CNN + RF AUC 0.72 .. 159 ..
Song et al.
(2013) [67]
Grading
1 vs. 2
WSI ML SVM AUC 0.79 .. 240 ..
Bianet al. (2022) [68] LNM MR Radiomics LR AUC 0.75
(0.68–0.82)
* 0.81
(0.69–0.94)
180 * 45
Shi et al. (2022) [65] LNM MR + clinical Radiomics LR AUC 0.909
(0.854–0.964)
* 0.835
(0.751–0.919)
** 0.805
(0.720–0.890)
199 ** 52
Bian et al.
(2021) [69]
TIL MR Radiomics XGBoost AUC 0.86
(0.79–0.93)
* 0.79
(0.64–0.93)
116 * 40
Cen et al. (2021) [70] Stage I–II vs.
Stage III–IV
CT Radiomics LR AUC 0.940
(0.871–0.979)
* 0.912
(0.781–0.978)
94 * 41
Zhang et al. (2021) [71] Liver metastasis vs. other metastasis CT Radiomics RF AUC 0.81 .. 77 ..
Xing et al. (2021) [72] Grading
1 vs. 2/3
18FDG PET-CT Radiomics XGBoost AUC .. * 0.921
(0.846–0.996)
99 * 50
Kaissis et al. (2020) [73] QMS CT Radiomics RF AUC 0.93 ± 0.01 .. 181 ..
Chen et al. (2020) [74] PV-SMV invasion CT Radiomics ElasticNet AUC 0.871
(0.795–0.946)
* 0.848
(0.724–0.971)
88 58
Liu et al.
(2020) [75]
LNM CT Radiomics LR AUC 0.841
(0.768–0.925)
.. 85 ..
Li et al.
(2020) [76]
LNM CT + clinical Radiomics LR AUC .. * 0.912
(0.778–1)
118 *41
Chang et al. (2020) [66] Grading
1/2 vs. 3
CT Radiomics LASSO AUC 0.961
(0.935–0.987)
* 0.91
(0.864–0.956)
** 0.77
(0.661–0.878)
151 * 150
** 100
Longlong
et al. (2020) [77]
Grading
1 vs. 2 vs. 3
CT Radiomics RF AUC 0.77
(0.64–0.87)
* 0.70
(0.47–0.86)
58 * 25
Qiu et al.
(2019) [78]
Grading
1/2 vs. 3
CT Radiomics SVM SEN,
SPE,
ACC
78
95
86
.. 56 ..

** external test set, * internal test set. Abbreviations are: LNM—lymph node metastasis, TIL—tumour infiltrating lymphocytes, Grading—grade comparison (low vs. high), QMS—quasi mesenchymal subtype, PV-SMV—portal vein superior mesenteric vein, DL—deep learning, ML—machine learning, SVM—supported vector machine, RF—random forest, LR—logistic regression, CNN—convolutional neural network, XGBoost—extreme gradient boost, AUC—area under the receiver operating characteristic curve, SEN—sensitivity, SPE—specificity, ACC—accuracy, Dev. Cohort—development cohort (training + validation).