Skip to main content
. 2022 Jul 25;23:300. doi: 10.1186/s12859-022-04850-4

Table 4.

Parameter settings of six supervised learning models

ID Model Parameters
1 RF n_estimators = 1000
2 LR C = 1.0
3 KNN n_neighbors = 5
4 XGBoost booster = gbtree, learning_rate = 0.3, max_depth = 6, min_child_weight = 1
5 AdaBoost base_estimator = DecisionTreeClassifier, algorithm = SAMME, n_estimators = 350, learning_rate = 0.4
6 GBDT learning_rate = 0.1, n_estimators = 100, max_depth = 2, min_samples_split = 1.0, min_samples_leaf = 2