APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2001, p. 4358-4360

0099-2240/01/$04.00+0 DOI: 10.1128/AEM.67.9.4358-4360.2001

Vol. 67, No. 9

Biotransformation of Malachite Green by the Fungus

Cunninghamella elegans

CHANG-JUN CHA,' DANIEL R. DOERGE,? axp CARL E. CERNIGLIA'*

Division of Microbiology" and Division of Biochemical Toxicology,? National Center for Toxicological Research,
U.S. Food and Drug Administration, Jefferson, Arkansas 72079

Received 27 March 2001/Accepted 28 June 2001

The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized the triphenylmethane dye mala-
chite green with a first-order rate constant of 0.029 pmol h™' (mg of cells) ~'. Malachite green was enzymat-
ically reduced to leucomalachite green and also converted to N-demethylated and N-oxidized metabolites,
including primary and secondary arylamines. Inhibition studies suggested that the cytochrome P450 system
mediated both the reduction and the N-demethylation reactions.

Malachite green, an N-methylated diaminotriphenylmeth-
ane dye, has been widely used as the most efficacious antifun-
gal agent in the fish farming industry (26). It is also used
extensively in textile industries for dyeing nylon, wool, silk,
leather, and cotton (10). Although malachite green is not ap-
proved by the U.S. Food and Drug Administration, its world-
wide use in aquaculture will probably continue due to its rel-
atively low cost, ready availability, and efficacy (26); therefore,
potential human exposure to malachite green could result from
the consumption of treated fish (2) and from working in the
dye and aquaculture industries. Malachite green is highly toxic
to mammalian cells; it promotes hepatic tumor formation in
rodents and also causes reproductive abnormalities in rabbits
and fish (13, 24). The structural similarity of malachite green to
other carcinogenic triphenylmethane dyes also raises suspicion
of carcinogenicity; gentian violet (crystal violet) is a thyroid
and liver carcinogen in rodents (17), and pararosaniline is a
bladder carcinogen in humans (7). Based on the potential for
adverse human health effects, the U.S. Food and Drug Admin-
istration nominated malachite green as a priority chemical for
carcinogenicity testing by the National Toxicology Program in
1993 (10). These studies are presently being conducted at the
National Center for Toxicological Research, Jefferson, Ark.

From an environmental standpoint, there is concern about
the fate of malachite green and its reduced form, leucomala-
chite green, in aquatic and terrestrial ecosystems, since they
occur as contaminants (6, 21) and are potential human health
hazards. Studies on the biodegradation of triphenylmethane
dyes have focused primarily on the decolorization of dyes via
reduction reactions (4, 19, 22, 23, 25). Intestinal microflora
were shown to reduce crystal violet (18) and malachite green
(16) to their respective leuco derivatives. The fungal metabo-
lism of these compounds was first reported by Bumpus and
Brock (5). The white rot fungus Phanerochaete chrysosporium,
grown under ligninolytic conditions, was shown to metabolize
crystal violet to three metabolites by sequential N demethyl-
ation of the parent compound, which was catalyzed by lignin
peroxidase. They also reported (5) that nonligninolytic cultures
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of P. chrysosporium could also degrade crystal violet, although
the N-demethylation products were not found under nonligni-
nolytic conditions, suggesting that another mechanism for de-
grading crystal violet existed in this fungus. The present study
was conducted to determine whether the filamentous fungus
Cunninghamella elegans, which has been used as a microbial
model for mammalian xenobiotic metabolism (1) as well as for
the biodegradation of environmentally relevant chemicals (8),
had a mechanism in triphenylmethane dye metabolism differ-
ent from that of P. chrysosporium. C. elegans is capable of
metabolizing a wide range of compounds, especially by N de-
methylation and N oxidation (14, 20, 27, 28). Little is known
about the potential of nonligninolytic fungi to metabolize tri-
phenylmethane dyes. This paper describes the metabolic fate
of malachite green by cultures of C. elegans.
Biotransformation experiments were performed by the ad-
dition of malachite green (97% dye content; Aldrich Chemi-
cal Co., Milwaukee, Wis.) or leucomalachite green (Aldrich
Chemical Co.) to 48-h-old cultures of C. elegans. Culture con-
ditions were as described previously (20). Leucomalachite
green was dissolved in dimethylformamide before addition.
The data are averages based on three separate experiments
performed with duplicates. After 5 days of incubation, fungal
mycelia were removed by filtration and extracted with ethyl
acetate (five times, each time with 100 ml). The supernatant
was also extracted with ethyl acetate. The ethyl acetate extracts
were then dried over anhydrous MgSO, and evaporated in
vacuo. The dried sample was dissolved in 10 ml of solution
containing acetonitrile (60%) and 50 mM ammonium acetate
(pH 4.5) (40%) for analysis by high-performance liquid chro-
matography (HPLC) and HPLC-mass spectrometry (MS).
Reverse-phase HPLC was performed with a Hewlett-Pack-
ard (Palo Alto, Calif.) 1050 series component system equipped
with a photodiode array detector. Samples were resolved on a
Spherisorb S5 nitrile column (4.6 by 250 mm; particle size,
5 wm) with a PbO, post-column (4.6 by 10 mm) to detect
nonchromatic leucomalachite green and its derivatives at 618
nm following oxidation to chromatic forms (3). The metabo-
lites were eluted at a flow rate of 1.0 ml/min with a linear gra-
dient running from 30% to 90% B (solvent A, 50 mM ammo-
nium acetate, pH 4.5; solvent B, acetonitrile) for 30 min. An
isocratic solvent system (solvent A/solvent B ratio = 40:60) was
also used when the disappearance of malachite green was moni-
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tored. Conditions for liquid chromatography-atmospheric pres-
sure chemical ionization-MS analysis were as described previ-
ously (12).

Cultures of C. elegans transformed malachite green, up to 54
M, with a first-order rate constant of 0.029 pmol h™' (mg of
cells) "', Apparently 85% of malachite green in culture flasks
(81 wM) had disappeared after 24 h. A concentration of 108
pwM malachite green inhibited fungal growth, and biotransfor-
mation did not occur. The absorption spectra of samples re-
moved during biotransformation indicated that the wavelength
(618 nm) at which malachite green exhibits its chromatic fea-
ture shifted to 608 nm after 8 h of incubation. These results
suggested that malachite green might be undergoing N de-
methylation, since the N-demethylation products have absorp-
tion maxima at wavelengths lower than that of malachite green
(B. P. Cho, personal communication). The loss of color was
observed during incubation, suggesting that malachite green
was reduced to its leuco- form (16). To confirm this observa-
tion, the metabolites from ethyl acetate extracts of C. elegans
cultures incubated with malachite green and leucomalachite
green were analyzed by HPLC in combination with atmo-
spheric pressure chemical ionization-mass spectrometry. Fig-
ure 1 shows reconstructed molecular ion chromatograms from
the samples extracted from the fungal cells after 5 days of
incubation. Under these conditions, the mass spectra consisted
primarily of molecular ions (protonated molecules for leuco-
malachite green and the demethylated derivatives and cationic
molecules for malachite green and its derivatives). Based on
previous reports (11, 12), these peaks correspond to malachite
green (m/z 329) and its mono-, di-, and tri-desmethyl deriva-
tives (m/z 315, 301, and 287, respectively) and leucomalachite
green (mj/z 331) and its mono-, di-, tri-, and tetra-desmethyl
derivatives (m/z 317, 303, 289, and 275, respectively). The me-
tabolites extracted from the culture supernatants were similar
to those obtained from mycelium-extracted samples, except for
malachite green N-oxide (m/z 345; retention time, 9.21 min),
which was detected only in the mycelia. Control experiments
with autoclaved cells did not produce a significant amount of
metabolites. Only leuco- derivatives were observed as the final
products of biotransformation after a prolonged incubation
time (10 days), suggesting that the N-demethylated malachite
green metabolites were also reduced to their corresponding
leuco- derivatives. When leucomalachite green was used as the
initial substrate, identical patterns of metabolites (mono-, di-,
tri-, and tetra-desmethyl leucomalachite green) were observed.

The microsomal fraction from C. elegans, which was pre-
pared as described previously (9), also appeared to mediate the
transformation of malachite green. The incubation mixtures
contained the following components in a total volume of 2 ml:
0.1 mg of malachite green, 1 mM NADPH, and 2.5 mg of
microsomal protein in 50 mM sodium phosphate buffer, pH
7.0. Desmethyl and di-desmethyl malachite green and leuco-
malachite green were detected by HPLC. Boiled microsomal
protein did not produce any demethylated metabolites. Leu-
comalachite green and its demethylated metabolites were not
formed in the absence of NADPH, although demethylated
metabolites of malachite green were still produced.

Cytochrome P450 inhibitors, such as 1-aminobenzotriazole
(2 mM), metyrapone (2 mM), and SKF 525-A (1.5 mM), re-
tarded biotransformation of malachite green. Metyrapone
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FIG. 1. LC-atmospheric pressure chemical ionization-mass spec-
trometry molecular ion chromatograms obtained at 20 V from an ethyl
acetate extract of C. elegans incubated with 32 uM malachite green for
5 days. (A) m/z 329, malachite green (retention time, 6.27 min); (B)
m/z 315, desmethyl malachite green (retention time, 5.55 min); (C) m/z
301, didesmethyl malachite green (retention time, 4.94 min); (D) m/z
287, tridesmethyl malachite green (retention time, 4.16 min); (E) m/z
331, leucomalachite green (retention time, 13.31 min); (F) m/z 317,
desmethyl leucomalachite green (retention time, 11.85 min); (G) m/z
303, didesmethyl leucomalachite green (retention time, 10.13 min);
(H) m/z 289, tridesmethyl leucomalachite green (retention time, 8.35
min); (I) m/z 275, tetradesmethyl leucomalachite green (retention
time, 6.57 min)

completely inhibited the reactions; 1-aminobenzotriazole in-
hibited the reactions by 67%, and SKF 525-A inhibited them
by 70%. This suggested that the cytochrome P450 system of
C. elegans mediated the N-demethylation reaction as well as
the reduction of malachite green to leucomalachite green.
Previous studies (5, 22) demonstrated that the white rot
fungus P. chrysosporium employed extracellular lignin peroxi-
dases under ligninolytic conditions to decolorize crystal violet
by sequential N demethylation. However, the present study
shows that the nonligninolytic fungus C. elegans has multiple
pathways to transform triphenylmethane dyes by intracellular
cytochrome P450(s) which mediate(s) both the reduction and
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FIG. 2. Proposed mechanism for the metabolism of malachite
green (MG) and leucomalachite green (LMG) by C. elegans. The
asterisk indicates that unsymmetrical didesmethyl MG and LMG are
not shown.

the N demethylation (Fig. 2). This study demonstrated that the
decolorization of malachite green by C. elegans could be at-
tributed mainly to its reduction to leucomalachite green since
the demethylated metabolites of malachite green still exhibit
absorption at 618 nm. The reduction of crystal violet by rat
liver microsomes was shown to be catalyzed by a cytochrome
P450 monooxygenase system via a one-electron reaction (15).
The present study also suggested that C. elegans employs cy-
tochrome P450 for the reduction of malachite green, because
the cytochrome P450 inhibitors used in this study, especially
metapyrone, clearly inhibited the reduction. Our study also
demonstrated that this fungal system produced metabolite pro-
files similar to those observed in rat liver (11). Thus, C. elegans
is a suitable microbial model for triphenylmethane dye metab-
olism and will be used to produce significant quantities of
metabolites for toxicological evaluation.
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