|
Algorithm 1 Proposed information topology SLU estimation algorithm |
-
1:
procedureInfTopSentenceBounds() ▹ Estimate contextual SLU bounds
-
2:
for all do ▹ Do for all contextual data
-
3:
▹ Read new set of symbols
-
4:
▹ Obtain topological set of new unique symbols
-
5:
▹ Functional spline match distributions
-
6:
▹ Normalized relative difference entropy
-
7:
▹ Incremental information
-
8:
▹ Cumulative incremental information
-
9:
▹ Incr. norm. Wasserstein-1 distance
-
10:
▹ Cumulative W-1 distance
-
11:
▹ Curvature of the W-1 distance tangent
-
12:
end for
-
13:
▹ Mean cumulative information
-
14:
▹ Mean incremental W-1 distance
-
15:
▹ Covariance of incr. info and W-1 distance
-
16:
-
17:
-
18:
-
19:
-
20:
▹ Compute decision bounds over
-
21:
end procedure
-
22:
procedureInfTopSentence() ▹ Estimate SLU for current data
-
23:
for all do ▹ Do for all local data
-
24:
▹ Read new set of symbols
-
25:
▹ Obtain topological set of new unique symbols
-
26:
▹ Functional spline match distributions
-
27:
▹ Norm. relative difference entropy
-
28:
▹ Incremental information
-
29:
▹ Cumulative incremental information
-
30:
▹ Incr. norm. W-1 distance
-
31:
▹ Cumulative W-1 distance
-
32:
▹ Curvature of W-1 distance tangent
-
33:
▹ Apply SLU decision bounds
-
34:
if then ▹ SLU decision test
-
35:
▹ End of SLU detected
-
36:
end if
-
37:
end for
-
38:
end procedure
|