Skip to main content
. 2022 Jul 9;19(14):8411. doi: 10.3390/ijerph19148411

Table 2.

Binary logit and heteroscedastic logit model results for single motorcycle crashes.

Variable Binary Logit Model Mixed Logit Model
Coefficient Estimate p-Value Coefficient Estimate (Standard Deviation) p-Value
Intercept −7.453 0.0000 −7.620 <0.001
Crash and environment characteristics
Midnight (00–06) 0.742 <0.001 0.774 <0.001
Rural 0.139 0.0191 0.130 0.0395
Speed limit > 50 km/h 0.479 <0.001 0.514 <0.001
Horizontal or vertical curve 0.554 <0.001 0.591 <0.001
Lane separation-markings 0.251 <0.001 0.266 <0.001
Lane separation-traffic Island 0.473 <0.001 0.489 <0.001
Pavement surface-dry 0.188 0.0249 0.183 0.0368
Crash type
Run off 1.630 <0.001 1.698 <0.001
Hit tree/pole 2.389 <0.001 2.508 <0.001
Hit traffic device 2.156 <0.001 1.897
(1.106)
<0.001
(0.0392)
Hit island/barrier 1.684 <0.001 1.759 <0.001
Motorcyclist characteristics
Male 0.607 <0.001 0.624 <0.001
Young (<25 years old) 0.310 <0.001 0.321 <0.001
Aged (55 years old+) 0.877 <0.001 0.623
(0.902)
<0.001
(<0.001)
Without wearing a helmet 1.534 <0.001 1.719 <0.001
Without a valid driving license 0.445 <0.001 0.487 <0.001
Distracted 0.214 <0.001 0.220 <0.001
Speed violation 0.868 <0.001 0.900 <0.001
LHM (250 cc+) 0.732 <0.001 0.019
(1.554)
0.9695 (n.s.)
(0.0021)
Motorcyclist’s BAC (+<0.3%) 1.827 <0.001 1.105
(1.696)
0.0148
(<0.001)
Motorcyclist’s BAC (≥0.3%) 0.828 <0.001 0.288
(1.228)
0.2640 (n.s.)
(<0.001)
Motorcyclist’s BAC unknown 3.152 <0.001 3.252 0.0392
Model statistics
LL0 −8472.6 −8472.6
LL −6052.7 −6041.1
R2 0.286 0.287
AIC 12,151 12,138

Note: n.s.: not significant at the 95% confidence interval.