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Abstract: Craniosynostosis are a heterogeneous group of genetic conditions characterized by the
premature fusion of the skull bones. The most common forms of craniosynostosis are Crouzon, Apert
and Pfeiffer syndromes. They differ from each other in various additional clinical manifestations,
e.g., syndactyly is typical of Apert and rare in Pfeiffer syndrome. Their inheritance is autosomal
dominant with incomplete penetrance and one of the main genes responsible for these syndromes
is FGFR2, mapped on chromosome 10, encoding fibroblast growth factor receptor 2. We report an
FGFR2 gene variant in a mother and daughter who present with different clinical features of Crouzon
syndrome. The daughter is more severely affected than her mother, as also verified by a careful study
of the face and oral cavity. The c.1032G>A transition in exon 8, already reported as a synonymous
p.Ala344 = variant in Crouzon patients, also activates a new donor splice site leading to the loss of
51 nucleotides and the in-frame removal of 17 amino acids. We observed lower FGFR2 transcriptional
and translational levels in the daughter compared to the mother and healthy controls. A preliminary
functional assay and a molecular modeling added further details to explain the discordant phenotype
of the two patients.

Keywords: FGFR2; craniosynostosis; synonymous variant; clinical phenotype; genetic medicine;
neurosurgery

1. Introduction

Craniosynostosis is the consequence of the premature closure of one or more cranial
sutures. It is associated with distortion of the skull shape due to the lack of growth perpen-
dicular to the fused suture and compensatory overgrowth at non-fused sites. Its overall
prevalence has been estimated at 1:2100–2500 live births, affecting males slightly more often
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than females [1,2]. Environmental, such as intrauterine fetal head constraint, and genetic
factors, including single gene variants, chromosome anomalies and polygenic background,
may predispose to craniosynostosis. The condition is more often sporadic, although it can
recur in some families due to Mendelian inheritance. Additionally, it can be classified into
non-syndromic or syndromic forms, the latter ones being combined with other anomalies
of bone differentiation, notably of the hands and feet. Importantly, regardless of the clinical
presentation, involvement of a major genetic contribution should be assessed to define
recurrence risk in the families [3]. The first description of a genetic origin of syndromic
craniosynostosis dates to 1993 by Jabs et al. [4], who identified a variant in the MSX2 gene in
a patient with Boston type craniosynostosis. To date, around 80 genes have been identified
as causative of craniosynostosis. Among these, FGFR2, FGFR3, TWIST1 and EFNB1 are the
most frequently involved [5,6]. Most genetic forms of craniosynostosis are transmitted as
autosomal dominant traits with reduced penetrance. FGFR2 and FGFR3 are subject to the
paternal age effect: variants in both genes present the gain-of-function effect, positively
correlate with elevated paternal age and are positively selected during spermatogenesis [7].
The FGFR2 gene maps to chromosome 10q26 and is a member of the FGFR family with
several isoforms due to alternative splicing [8]. It encodes a tyrosine kinase receptor, which
has an extracellular ligand-binding portion composed of three immunoglobulin-like do-
mains (IgI, IgII and IgIII), a transmembrane region, and an intracellular tyrosine kinase
domain [9]. Pathogenic variants, mostly recurrent missense substitutions causing gain-of-
function, are mainly localized in exon 7 (IgIIIa) and exon 8 (IgIIIc) of the gene [3,10]. The
cellular consequences of such variants include enhancement of proliferation, differenti-
ation and apoptosis of osteoblasts bordering the cranial suture mesenchyme; premature
differentiation is presumably the most important factor leading to craniosynostosis [11,12].
Monoallelic FGFR2 variants are associated with three syndromic forms of craniosynostosis,
namely Apert (OMIM #101200), Crouzon (OMIM #123500) and Pfeiffer (OMIM #101600)
syndromes. All of these syndromes exhibit a distinctive facial appearance, with orbital
proptosis, hypertelorism and midface hypoplasia [13,14]. Syndactyly is generally absent in
Crouzon syndrome, while it is a distinguishable finding in Apert syndrome [13,14]. The
phenotype of Pfeiffer syndrome is characterized by broad thumbs and toes [14]. Affected
patients usually do not have intellectual disability. Less frequently, FGFR2 pathogenic vari-
ants may cause other craniosynostosis forms. Jackson–Weiss syndrome (OMIM #123150)
presents with foot anomalies, such as broad great toes with medial deviation, broad short
metatarsals broad proximal phalanges, and partial syndactyly of the second and third
toes [9,15,16]. Beare–Stevenson cutis gyrata syndrome (OMIM #123790) is characterized
by a classical crouzonoid face, choanal stenosis or atresia, cutis gyrata and developmental
delay [17,18]. Additional findings include umbilical stump, acanthosis nigricans, hirsutism,
palatal and genitourinary anomalies (anteriorly placed anus, hypospadias); a high rate of
sudden unexplained death was reported [19,20]. Bent-bone dysplasia (OMIM #614592) is a
perinatal lethal skeletal dysplasia that exhibits low-set ears, micrognathia and premature
eruption of fetal teeth. Bent long bones, osteopenia, irregular periosteal surfaces, low skull
ossification and hypoplastic clavicles and pubis are frequently reported by radiographic
examinations [21]. According to their monogenic inheritance, some authors propose to
group these syndromes in a single spectrum of conditions termed “FGFR2-associated
craniosynostosis syndromes”, including also clinically intermediate forms [14].

Here we describe a mother and her daughter with a clinical phenotype compatible
with Crouzon syndrome, showing different severity, as documented by their clinical history
and by a thorough imaging study of the oral cavity and facial measurements. Both patients
were heterozygous for the variant c.1032G>A in exon 8 (also called exon 10) of the FGFR2
gene. The variant, which does not cause coding changes, has already been reported
several times in the literature [3,9,13–15,22–24]. Our results demonstrate an alternative
splicing due to this variant, through which a new donor splice site (-GT) is activated with a
consequent deletion of 51 nucleotides at the 3′ of exon 8. To address the difference in the
clinical phenotype of our patients, relative quantification of FGFR2 mRNA and Western
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blot analysis of the FGFR2 protein were performed. Lower levels of FGFR2 transcription
and translation were found in the daughter compared to her mother and healthy controls.
To better clarify the effect of this variant in both patients, an osteoinduction assay and a
molecular modeling with the mutated and wild-type protein were performed. These results
are discussed in light of previous findings reported in the literature.

2. Materials and Methods
2.1. Patients and Samples

Written informed consent was provided by both mother and daughter to perform
molecular analysis as well as for sampling and sharing of clinical information, including
pictures. The study protocol was approved by the Ethics Committee of the Catholic
University of Rome (prot. N. 9917/15 and prot.cm 10/15). Skin biopsies were performed
on both patients to undertake expression studies.

DNA was extracted from peripheral blood leukocytes using the standard salting-out
protocol. RNA was extracted from skin fibroblasts using Trizol protocols (Thermo scientific,
Waltham, MA, USA). RNA was analyzed to gauge expression levels of FGFR2 in both
patients and four neurotypical controls’ fibroblasts (two females aged 45 and two females
aged 20) and of RUNX2 in patients and two control age-matched fibroblasts.

2.2. Cell Cultures and Osteogenic Differentiation Assay

Skin fibroblasts were grown at 37 ◦C with 5% CO2 in DMEM High Glucose (Biowest,
Nuaillé, France) supplemented with 10% fetal bovine serum (Biowest, Nuaillé, France), 2.5%
L-glutamine (Biowest, Nuaillé, France) and 1% penicillin-streptomycin (Biowest, Nuaillé,
France) (complete DMEM medium) and early passages (up to 5th–6th) were employed for
the following studies.

For the osteoinduction assay, cells were first grown in complete DMEM medium
until reaching confluence. Then, the osteogenic medium composed of DMEM with low
glucose (1 g/L) (Aurogene, Rome, Italy) supplemented with 1% L-glutamine, 1% antibiotics
(penicillin 100 IU/mL, streptomycin 100 mg/mL) (Euroclone, Milan, Italy), 10% fetal bovine
serum (GIBCO by ThermoFisher Scientific, Waltham, MA, USA), dexamethasone (0.1 µM),
ascorbic acid (10 µM) and β-glycerophosphate (50 µM) (Sigma Aldrich, Saint Louis, MO,
USA) was added. Every 3 days, medium was changed, and cells were detached by trypsin
at different time points (24 h, 48 h and 6 days). Cells cultured in complete DMEM medium
were used as negative controls for the osteoinduction assay.

2.3. Molecular Diagnosis on Genomic DNA

Massive parallel sequencing was performed on the Ion Torrent PGM platform (Thermo
scientific, Waltham, MA, USA). A Custom Panel Ion Ampliseq On-Demand IAD208907
was employed that includes 620 amplicons, spanning the exon–intron junctions near the
splice sites. Genes included in the panel are listed in Table 1. Data were analyzed through
Ion Reporter program version 5.12 (Thermo scientific, Waltham, MA, USA).

The FGFR2 variant c.1032G>A, located in exon 8, was detected in a heterozygous state
and confirmed by Sanger sequencing (access number NM_000141.4 corresponding to t1
transcript); apparently it should not cause an amino acid change p.(Ala344=). The genomic
DNA of both patients was amplified by PCR using specific primers (IDT, Leuven, Belgium),
as reported in Table 2. The PCR products were purified with exonuclease and alkaline
phosphatase (Biotechrabbit GmbH, Berlin, Germany) and sequenced in both directions
using BigDye terminator v3.1 (Thermo scientific, Waltham, MA, USA) on a 3130xl Genetic
Analyzer (Thermo scientific, Waltham, MA, USA).
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Table 1. List of genes analyzed by massive parallel sequencing with their access number and
percentage of coverage.

Gene Access Number % Coverage

SKI NG_013084.1/NM_003036.3 55.00%
WDR35 NG_021212.1/NM_001006657.2 97.50%
IFT122 NG_023392.1/NM_052989.2 100.00%
ZIC1 NG_015886.1/NM_003412.4 100.00%

FGFR3 LRG_1021-t1 and t2/NM_000142.5 and NM_022965.4 95.00%
WDR19 NG_031813.1/NM_025132.4 100.00%
SPRY4 NG_034148.1/NM_030964.5 100.00%
MSX2 NG_008124.1/NM_002449.5 100.00%
RAB23 NG_012170.1/NM_016277.5 100.00%
RUNX2 NG_008020.2/NM_001024630.4 79.50%

GLI3 NG_008434.1/NM_000168.6 100.00%
POR NG_008930.1/NM_000941.3 95.00%

FGFR1 LRG_993-t1/NM_023110.3 100.00%
RECQL4 LRG_277-t1/NM_004260.4 95.50%
FREM1 NG_017005.2/NM_144966.7 100.00%
IL11RA NG_028966.1/NM_001142784.3 100.00%
FGFR2 LRG_994-t1 and t2/NM_000141.5 and NM_022970.3 100.00%
ALX4 LRG_1256-t1/NM_021926.4 100.00%
TCF12 NG_033851.2/NM_207036.2 100.00%
SOX9 NG_012490.1/NM_000346.4 83.50%
COMP NG_007070.1/NM_000095.3 100.00%

ERF NG_042802.1/NM_006494.4 98.50%
MEGF8 NG_033030.1/NM_001271938.2 99.00%
BMP7 NG_032771.1/NM_001719.3 100.00%
EFNB1 NG_008887.1/NM_004429.5 100.00%

Table 2. Sequence of primers used to amplify the FGFR2 gene in genomic and complementary DNA.

Primer Sequence

Genomic F 5′-CCTCCACAATCATTCCTGTGTC
Genomic R 5′-ATAGCAGTCAACCAAGAAAAGGG

Coding FL-F 5′-ACGTGGAAAAGAACGGCAG
Coding FL-R 5′-CACCATACAGGCGATTAAGAAG

Coding T1_var-F 5′-CTTTCACTCTGCATGGTTGA
Coding T1_var-R 5′-CTCAATCTCTTTGTCCGTGG

2.4. RNA Analysis

A total of 700 ng of total RNA extracted from fibroblasts was reverse-transcribed into
cDNA with a SensiFASTA cDNA Synthesis Kit (Meridian bioscience, Memphis, TN, USA).
The cDNA of the patients was PCR amplified with FGFR2 coding primers, as displayed in
Table 2.

Ten different amplifications for both patients were pooled before gel extraction, while
a single PCR was sufficient for the control sample. After checking the PCR products on 2%
agarose gel, the amplicons were extracted using a StrataPrep DNA Gel Extraction Kit (code
400766, Agilent Technologies, Santa Clara, CA, USA) and cloned using the StrataClone PCR
Cloning Kit (code 240205, Agilent Technologies, Santa Clara, CA, USA). White colonies
were selected and sequenced using specific plasmid primers T3 and T7.

For relative quantification of the FGFR2 transcript using the ABI7900HT machine (Thermo
scientific, Waltham, MA, USA), the following pre-developed TaqMan® assays were employed:
FGFR2 (Hs.PT.58.1565679, location exons 6-7; IDT, Leuven, Belgium) and GAPDH (glyceraldehyde-
3-phosphate-dehydrogenase) (Hs.PT.39a.22214836; IDT, Leuven, Belgium), the latter of which
was used for normalization. The cycle parameters were 2 min at 50 ◦C and 10 min at 95 ◦C,
followed by 40 cycles of 15 s at 95 ◦C (denaturation) and 1 min at 60 ◦C (annealing/extension).
The relative quantification of the target transcript (FGFR2) vs. normalizer (GAPDH) was calcu-
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lated as follows: 2−(Ct(FGFR2))−Ct(GAPDH))controls vs. patients = 2−∆∆Ct, where ∆Ct is the difference
(Ct(FGFR2)−Ct(GAPDH)) and Ct is the cycle at which the detected fluorescence overcomes the
threshold. Each sample was evaluated in triplicate and three independent technical replicates
were performed. The expression of the RUNX2 (Runt-related transcription factor 2) gene was
analyzed at each time point (24 h, 48 h and 6 days), using semi-quantitative real-time PCR,
as already described [25]. Briefly, qPCR was performed using the GoTaq(R) qPCR Master
Mix (Promega) and expression levels were normalized using ACTB (β-actin) as a reference
housekeeping gene. The sequences of oligonucleotide primers were the following: forward
5′-TCGTGCGTGACATTAAGGAG and reverse 5′-CCATCTCTTGCTCGAAGTCC for ACTB;
forward 5′-GAACCCAGAAGGCACAGACA and reverse 5′-GGATGAGGAATGCGCCCTAA
for RUNX2. The relative quantification of target transcript (RUNX2) vs. normalizer (ACTB)
was calculated as follows: 2−(Ct(RUNX2))−Ct(ACTB))controls vs. patients = 2−∆∆Ct, where ∆Ct is the
difference (Ct(RUNX2)−Ct(ACTB)) and Ct is the cycle at which the detected fluorescence
overcomes the threshold. Each sample was evaluated in triplicate and two independent
age-matched controls were included. All variables were analyzed by means of descrip-
tive statistics (mean, median, standard deviation, and standard error of mean) using the
GraphPad Prism 7 software (Dotmatics, La Jolla, CA, USA).

2.5. Western Blot

Proteins were extracted from skin fibroblasts of an unaffected control and both
probands using RIPA buffer with protease inhibitors and two independent WB were
performed. Primary antibodies were used at the following concentrations: 1:1000 against-
FGFR2 rabbit monoclonal antibody (#11835, Cell Signaling Technology, Danvers, MA, USA)
and 1:25,000 against-GAPDH rabbit antibody (Abcam, Cambridge, UK).

2.6. Imaging Study

3D stereophotogrammetry and 3D scanning of the oral cavity were used in order to
obtain an accurate evaluation without exposing patients to radiation [26]. The .stl files of
the face were acquired with stereophotogrammetry (3dMDtrio System; 3dMD, Atlanta,
GE, USA), considered the gold standard for stereophotogrammetry [27], and were then
processed using the Geomagic 2014 (64 bit) software. To delineate the most peculiar facial
signs of Crouzon syndrome, the following linear and surface measurements were carried
out: surface measurement of eyeball protrusion (EBP) and linear measurement of inner
intercanthal distance (ICD). Patients with craniosynostosis have a narrow and high palatine
vault. There are no specific reference parameters in the literature, so we compared the
measurements taken on the two patients with values reported for the normal population
and for oral breathing patients, who have a similar palate shape [28]. Linear, surface and
volumetric measurements of the palatine vault (PV) were calculated by using the intraoral
scans of the dental arches and palate (Trios, Model T12P, 3Shape, Copenhagen, Denmark).
After obtaining the linear measurement of the palates, the surface of the PV was selected
and cut out following the dento-gingival junction of the erupted teeth; the surface areas of
the two patients were thus obtained. In addition to the area, an axial and a coronal plane
were designed. The axial plane was created passing through the landmarks corresponding
to the dento-gingival junction of the erupted teeth, while the coronal plane was designed
perpendicular to the first and passing through the most distal part of the palatine vault,
corresponding to the distal portion of the second molars. After building the floors, the
volume of the PV up to the floor was calculated.

2.7. Model Building and Steered Molecular Dynamics (SMD)

The model structure for the FGFR2-FGF1 complex was retrieved from the Protein Data
Bank (PDB code: 1DJS) [29] and was designed with Maestro Protein Preparation Wizard [30],
using default parameters. The mutated complex FGFR2 p.Ala344 = −FGF1, was prepared
by homology modeling using Prime [31], deleting in silico the 17 amino acids after Ala344
within the FGFR2 structure and adding the aminoacidic sequence (APGRE) at the C-
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terminus of the extracellular domain. Thereafter, the wild type and mutated FGFR2-FGF7
complexes were obtained by superimposing the FGF7 structure (PDB code: 1QQK [32])
to FGF1 in the previously described complexes. The resulting systems, FGFR2 WT–FGF7
and FGFR2 p.Ala344 = −FGF7, were minimized using the Macromodel application of the
Schrödinger suite [30].

All of the SMD simulations were performed using GROMACS 2021.4 [33] with the
CHARMM36m [34] force-field at the full atomistic level and TIP3 water solvent. The protein-
ligand systems were solvated in a cubic water box with a separation margin from the solute of
2.5 nm in each dimension (box size (14.5× 11.4× 9) nm) under periodic boundary conditions.
The total charge of the system was neutralized by randomly substituting water molecules
with Na+ ions and Cl– ions, to obtain neutrality with 0.15 M salt concentration. Following a
steepest descent minimization algorithm, the system was equilibrated in canonical ensemble
(NVT) conditions for 125 ps, using a Nose–Hoover thermostat with position restraints for the
protein–protein complexes. Then, all positional restraints were removed except for the receptor
α-carbon atoms (CA), which were used as immobile references. SMD runs were performed
under NPT conditions at 303.15 K, using a Nose–Hoover thermostat, with a T-coupling
constant of 1 ps, and a Parrinello–Raman barostat at 1 atm. Van der Waals interactions were
modelled using a 6–12 Lennard–Jones potential with a 1.2 nm cut-off. Long-range electrostatic
interactions were calculated, with a cut-off for the real space term of 1.2 nm. All H-bonds were
constrained using the LINCS algorithm. The timestep employed was 2 fs, and the coordinates
were saved every ps. The pulling force to unbind FGFs from the receptor was applied along
the vector connecting the two protein domains. In particular, the spring constant was set to
1000 KJ mol−1 nm−2 and the pulling velocity to 0.01 nm/ps.

3. Results
3.1. Clinical Evaluations

The two probands are a mother and her daughter (Figure 1). The mother was 52 years
old, and no information was available on her original family since she was adopted. Her past
medical history records that, at the age of 11 years, she wore a brace for 6 months due to scoliosis.
An MRI of the vertebral column detected a lumbar hernia. Clinical evaluation showed short
stature (155 cm, 10th centile), hypertelorism, and a widened and curved nasal dorsum.

Her daughter is now 20 years old and was born at 38 weeks after an uneventful
pregnancy. At birth she weighed 2380 g (3rd–10th centile), length was 45 cm (3rd centile)
and head circumference was 33.5 cm (25th–50th centile). No other problems were reported
during the neonatal period. At 6 months, following clinical suspicion of craniosynostosis,
a skull CT scan was performed. This showed prevalence of the antero-posterior over the
biparietal diameter, narrow occipital scale, bilateral lacunar planks in the parietal-occipital
area, stenosis of the cranial sutures except for the coronal, dilation of the pericerebral
liquor spaces in the frontal convexity and in the medial part of the hemispheres. She
therefore underwent a first cranioplasty surgery, followed by two additional interventions
at 3 and half and at 13 years of age. She acquired autonomous walking at the age of
14 months and language development was normal. At the age of 5 she had the first genetic
consultation at our clinic and on that occasion, following clinical suspicion of Crouzon
syndrome, mutation screening of the FGFR1 and FGFR2 genes was performed through
the dHPLC technique, with normal results. She underwent a second genetic evaluation at
the age of 17 years. Currently, her measurements are: height 155 cm (10th–25th centile),
weight 52 kg (25th–50th centile) and head circumference 53.5 cm (25th centile). The girl
presented with slightly upslanting eyelids, proptosis, straight nose with widened tip,
receding forehead, relative hypoplasia of the mandible, reverse bite, high and narrow
palate, mid-facial hypoplasia, low-set ears, mild pectus excavatum, proximally implanted
thumbs, bilateral valgus hallux, and partial bilateral cutaneous syndactyly of the II–III
toes. The overall facial and skull phenotype has greatly benefited from the various surgical
interventions, including mid-facial advancement at 12 years old. The clinical hypothesis
of craniosynostosis remained convincing and thus, molecular investigation of the FGFR3
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and TWIST1 genes and array-CGH analysis to search for microdeletions/duplications
were performed, all with negative results. Eventually, a custom gene panel specific for
craniosynostosis was employed for both patients (see Section 2.3).
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In the middle and bottom panels: the daughter after four corrective surgeries at the age of 20 years, 
and the 52 years old mother in a front and side image, respectively. Note, particularly in the girl, 
the straight nose with widened tip, receding and square forehead, reverse bite, and low-set ears (in 
both). 

Figure 1. Pictures of the two patients reported in this paper. In the upper panels the daughter was
13 months (left) and 5 years (on the right) old. The crouzonoid face was already evident as a child.
In the middle and bottom panels: the daughter after four corrective surgeries at the age of 20 years,
and the 52 years old mother in a front and side image, respectively. Note, particularly in the girl, the
straight nose with widened tip, receding and square forehead, reverse bite, and low-set ears (in both).
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3.2. Imaging Study

Through comparative analysis between the three-dimensional images of the faces and
oral cavities of the two patients, linear, surface and volumetric measurements were taken
at the age of 20 (daughter) and 52 years (mother) (Figure 2). The surface measurement of
the EBP was almost identical: 35,438 mm in the daughter and 35,939 mm in her mother. A
greater ICD of the daughter (35,438 mm) than her mother (30,853 mm) was evident. The
mean value of the ICD in women is 28.15 ± 2.75 mm [35,36]. Hypertelorism was noted in
the daughter upon physical examination, and a wider PV (surface and volumetric measure-
ments) has been observed in the daughter (1716 and 4661.93 mm3, respectively) compared
with her mother (1360 and 3619.28 mm3, respectively). In patients with nasal breathing
and normal transverse values of the palate, the palate area and volume corresponded to
923 and to 3756 mm3, respectively [28]. These values, compared with those of our patients,
highlight how the daughter’s palate, although narrow, results in larger volumes and surface
areas, unlike the mother who has a normal volume of the palate and an area of surface
close to the norm.
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certain whether the variant could have an effect on RNA processing, we performed splic-
ing analysis. While cDNA amplification of a control sample yielded a single band of 300 
bp, both patients showed an additional band of approximately 250 bp. The lower band 
was less prominent on agarose gel in the daughter sample compared to the mother, while 
the upper normal band appeared more evident in the daughter than her mother, although 
it was weaker than the control in both probands (Figure 3C). Sequencing after cloning of 
the two bands demonstrated that the upper band corresponded to the wild-type full 
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Figure 2. Three-dimensional images of the faces and oral cavities of the daughter at 20 years of age
(upper panels) and her mother at 52 years of age (bottom panels). The surface measurement of the
EBP (dashed red line) and the linear measurement of the ICD (dashed black line) were obtained by
the left images. The right panels represent the 3D images of the volume of oral cavity of the daughter
(top) and of the mother (bottom).

3.3. Molecular Investigations

Using a specific custom panel, the single nucleotide variant c.1032G>A (rs121918491) in
the FGFR2 gene was eventually identified in a heterozygous state in both probands, and sub-
sequently confirmed by Sanger sequencing (Figure 3A,B). This genomic change corresponds
to the synonymous variant p.(Ala344=), but it was found in just 1 out of 251,454 alleles
of the gnomAD database v.2.1.1 (https://gnomad.broadinstitute.org, 1 June 2022) with a
minor allele frequency of 3.97 × 10−6. It is reported by ClinVar as “pathogenic” (https:
//www.ncbi.nlm.nih.gov/clinvar/variation/13268, 1 June 2022) [37]. In order to ascer-
tain whether the variant could have an effect on RNA processing, we performed splicing
analysis. While cDNA amplification of a control sample yielded a single band of 300 bp,
both patients showed an additional band of approximately 250 bp. The lower band was
less prominent on agarose gel in the daughter sample compared to the mother, while the
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upper normal band appeared more evident in the daughter than her mother, although it
was weaker than the control in both probands (Figure 3C). Sequencing after cloning of the
two bands demonstrated that the upper band corresponded to the wild-type full length
allele, while the smaller band lacked 51 nucleotides (Figure 3D). The smaller fragment
derived from the activation of a new donor GT splice site as a consequence of the G to A
change, leading to skipping of 51 nucleotides at the 3′ end of exon 8 and resuming in frame
with the following exon. Though not quantitative, amplifications performed with specific
oligo pairs for both alleles (deleted and not; amplicon of 98 bp) and for the non-deleted
one (amplicon of 124 bp) showed lower transcript intensity in the two patients for both
amplifications, particularly in the daughter compared with two controls (Figure 4A). We
quantified the FGFR2 transcript in the two patients and healthy controls using relative
qPCR (Figure 4B). Using a probe that amplifies all isoforms, significantly lower levels
of the FGFR2 transcript were observed in the daughter compared with both her mother
and healthy controls. Western blot analysis revealed low FGFR2 levels in both patients
compared with a healthy control cell line (Figure 4C). Though protein data are preliminary,
they are similar to those observed at the transcriptional level. To further explain how
p.(Ala344=) may cause discordant phenotypes in the mother and her daughter, an osteoin-
duction assay was performed on skin fibroblasts. Fibroblasts derived from both patients
and two age-matched controls were cultured in an osteoinductive medium. The expression
of the master bone transcription factor RUNX2, selected as a key downstream effector
of FGFR2 activation, has been quantified at different time points. RUNX2 expression in
the daughter’s fibroblasts were strongly upregulated during in vitro osteogenic induction
compared to her mother’s and controls’ cells, after 24 and 48 h (Figure 4D). Conversely,
6 days after bone induction, RUNX2 expression levels were similar in patients and controls,
as before osteoinductive treatment.

3.4. Molecular Modeling

To better clarify the pathogenic effect of this variant, a molecular modeling was under-
taken. The mutant FGFR2 p.(Ala344=) shows a reduced affinity toward FGF1 compared
to the wild type receptor, as its force peak value (orange curve) is 1363 ± 63 KJ mol−1 nm−1,
lower than the FGFR2 WT–FGF1 force peak value (blue curve) that corresponds to
1507 ± 5 KJ mol−1 nm−1 (Figure 5A). This effect is a consequence of a repositioning of
the shortened mutated receptor that reduces its contact surface with its preferred ligand
FGF1. Conversely, the mutated receptor increases its affinity for FGF7, an alternative
partner that exhibits lower affinity to the wild type receptor, as indicated by the following
force peak values: FGFR2 p.(Ala344=)−FGF7 = 1196± 32 KJ mol−1 nm−1 and FGFR2_WT–
FGF7 = 1019 ± 16 KJ mol−1 nm−1 (Figure 5B). This result is due to the formation of a
novel strong interaction between the Arg347 of the mutated receptor with Glu141 of FGF7
(Figure 5C,D). In the same topological position, the wild type receptor has a Serine residue
that is unable to form this salt bridge. Accordingly, we speculate that the gain of function
effect of the mutation is not a direct consequence of the higher affinity for a specific FGF
ligand, but rather of an increased affinity for a wider range of FGF ligands [29]. This would
allow the receptor to interact more efficiently with a larger set of protein ligands, leading to
overall increased activation of the downstream signaling.
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Figure 3. Genomic and coding sequence of the variant. (A) Schematic representation of the FGFR2
gene with exon 8 in the two alternative isoforms (t1 and t2). The yellow boxes represent common exons
(number 7 and 9) to the t1 and t2 isoforms of FGFR2. The upper lines display the splicing of the t2
isoform, which includes the first exon 8 (in blue). The lower lines depict the splicing of the t1 isoform
with the inclusion of the second exon 8 (in light blue). Red arrows represent the position of the genomic
primers, while blue arrows those of coding oligos employed in cloning. (B) Sanger sequencing of the
FGFR2 exon 8 (t1 isoform) confirms the presence of the heterozygous variant c.1032G>A in both patients
(box). This sequence corresponds to the daughter’s Sanger sequence, which is identical to her mother’s.
(C) Visualization on 2% agarose gel of cDNA amplification products obtained using primers located within
the coding sequence (blue arrows in A, coding FL-F and R) on cDNA of a control sample (single PCR) and
of both patients (10 PCRs were loaded together into a wider well to better visualize their cDNA products).
Note the two bands in both patients. The upper band of 300 bp corresponds to the full-length allele, while
the lower band of approximately 250 bp is found only in the two patients. The lower band is weaker in
intensity in the daughter compared to her mother. (D) Sanger sequencing after cloning of the two bands
found in the patients. The coding sequence of the normal allele displayed the presence of G (box) and a
normal splicing that entirely included exon 8, continuing to exon 9 (yellow box) (upper panel). The allele
carrying the G>A variant was alternatively spliced, lacks the 3′ end of exon 8 (grey box) and is directly
spliced to the next exon (bottom panel), skipping 51 nucleotides. Coding and non-coding nucleotides are
indicated in upper- and lowercase, respectively.
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Figure 4. Quantification of the FGFR2 transcript and protein and of the RUNX2 transcript after osteoin-
duction. (A) Visualization on 2% agarose gel of PCR amplification of cDNA performed in two control
samples and in the patients. On the left of the molecular weight marker, an amplification product of
124 bp obtained using the coding T1_var-F (red arrow on the upper panel) combined to a coding FL-R
primer (blue arrow on the upper panel) is visible; this includes only the non-deleted isoforms because the
forward primer (red arrow) is located within the deleted portion of exon 8. On the right of the marker, the
98 bp-amplicon obtained with coding FL-F (blue arrow) combined with a coding T1_var-R (red arrow)
primer is shown; this encompasses all isoforms (deleted and not) of the FGFR2 transcript because both
primers are placed in the non-deleted mRNA portions. Note the lower intensity of amplification in the
patients (more pronounced in the daughter) compared with two normal control samples. Blk = blank
(no cDNA). (B) Relative quantification of FGFR2 transcript by real-time RT-PCR on skin fibroblasts of the
patients (mother and daughter) and four normal controls. Levels of FGFR2 RNA were reduced in both
probands (particularly in the daughter) compared to controls. Values reported on the y-axis represent
relative transcriptional levels normalized to the endogenous transcript GAPDH (2−∆ct) in the patients vs.
controls (2−∆∆ct). The quantification was repeated three independent times (n = 3). One-way ANOVA was
applied to determine statistical significance. ** p < 0.05. (C) Representative Western blot with antibodies
against FGFR2 (92 kDa) and GAPDH (37 kDa) on the protein lysates extracted from a healthy control
and fibroblasts from the two patients (on the left). The graph represents relative protein quantification
expressed as the ratio between FGFR2 and GAPDH levels. FGFR2 level appears lower in both females
compared to an unaffected control, with lower levels in the mother. (D) Relative quantification of the
RUNX2 transcript by real time RT-PCR on skin fibroblasts of the patients (mother and daughter) and
two normal controls before and after osteoinduction. Levels of RUNX2 RNA were high in the daughter
compared to controls and her mother 24 and 48 h after induction. Values reported on the y-axis represent
relative transcriptional levels normalized to the endogenous transcript β-actin of patients vs. controls
(2−∆∆ct). The quantification was performed in triplicate on one experiment of induction.
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4. Discussion 
The c.1032G>A FGFR2 synonymous variant detected in this small family has been 

previously reported in several Crouzon patients [3,9,13–15,22–24], although its pathoge-
netic mechanism has never been thoroughly investigated. Extreme phenotypic variability 
was observed across Crouzon families and in members of the same family in whom it was 
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Figure 5. Potential of mean force (PMF) dispersion profiles obtained by 3 SMD replicas for each
system. (A) Complexes FGFR2 (WT and mutant)—FGF1, blue and orange curves, respectively.
(B) FGFR2 (WT and mutant)—FGF7, blue and orange curves, respectively. (C) Superimposition of
FGFR2_WT (blue) and FGFR2_p.(Ala344=) (orange) binding FGF7 (green). (D) Magnification of
protein–protein interaction: FGFR2 p.Ala344= has an Arginine at topological position 347 (where the
WT protein has a Serine) enabling the formation of a salt-bridge interaction with FGF7 Glu141.

4. Discussion

The c.1032G>A FGFR2 synonymous variant detected in this small family has been pre-
viously reported in several Crouzon patients [3,9,13–15,22–24], although its pathogenetic
mechanism has never been thoroughly investigated. Extreme phenotypic variability was
observed across Crouzon families and in members of the same family in whom it was
identified [14,24,38]. The phenotypic effect of this variant varies greatly ranging from minor
anomalies (slight hypertelorism and maxillary hypoplasia) to severe findings (dolicho-
cephaly and brachycephaly) [14]. Similar clinical variability was observed in the mother
and daughter described here. The mother presented very mild findings, such as hyper-
telorism and high arched palate, compared to her daughter, who underwent four corrective
surgeries due to craniosynostosis. Unfortunately, no further clinical information could be
obtained on the mother’s family, nor segregation analysis could be undertaken, since she
was adopted.

Two previous studies showed that the c.1032G>A variant can cause alternative splic-
ing [22,23]. In both papers the authors demonstrated the presence of an alternative splicing
due to the G to A transition in position 1032 with consequent activation of a new donor
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splice site immediately after the variant, although they did not show any nucleotide se-
quence in their papers. Conversely, we cloned and sequenced the shorter PCR product
of our patients and proved that the alternatively spliced transcript loses 51 nucleotides,
potentially resulting in the production of a shorter protein lacking 17 aminoacids. A sim-
ilar effect on splicing was demonstrated for other synonymous FGFR2 variants, such as
p.(Pro361=), that is associated with mild Crouzon phenotype and reduced penetrance of
craniosynostosis [39]. Though our variant affects the immunoglobulin-like (Ig) IIIc do-
main of the FGFR2 protein, where most pathogenic FGFR2 variants are located, little is
known about its effects on transcription and translation. When amplifying with different
oligo pairs specific to the coding sequence, the intensity of amplicons in both probands
was weaker than in controls. One pair, which included a forward primer located within
the deleted coding portion of exon 8, yielded a 124 bp amplicon that was specific to the
full-length wild-type product. The other pair amplified a 98 bp fragment that included
both the deleted and the non-deleted alleles, because the reverse primer was designed
in the 5′ end of exon 8 prior to the G>A transition. Interestingly, for both amplification
products, the intensity of the daughter’s bands was very faint, suggesting an overall lower
quantity of the FGFR2 transcript. Though these experiments were semiquantitative, they
were confirmed by qPCR (Figure 4B) that showed significantly lower levels of transcription
in the daughter compared to her mother and unaffected controls, using a probe specific
to all FGFR2 isoforms. These results were preliminarily confirmed at the translational
level, showing lower FGFR2 protein in the more severely affected daughter. These obser-
vations seem to suggest a loss-of-function mechanism, while most FGFR2 variants have a
gain-of-function effect. Therefore, we performed an osteoinductive treatment on patients’
fibroblasts and found that, despite the lower FGFR2 levels, RUNX2 expression levels were
upregulated in the more severely affected daughter after stimulation of the FGFR2 pathway.
RUNX2 is a downstream target of activated FGFR2 and it encodes a key transcription factor
associated with osteoblast differentiation. This apparently paradoxical effect (lower protein
levels with overactive FGFR2 pathway) may be explained supposing that the aberrant
protein, lacking 17 amino acids (from 345 to 361) in the immunoglobulin-like IIIc domain,
has a dominant gain-of-function effect on protein function and leads to overactivation of
the downstream FGFR2 pathway. We hypothesize that the severe phenotype observed in
the daughter may be due to variability in splicing. Furthermore, we cannot exclude that
other modifier factors, i.e., other genes and proteins involved in the FGFR2 pathway (or
influencing it), may modulate the clinical phenotype. Finally, it is worth remembering that
our experiments were conducted on skin fibroblasts; these cells are easy to obtain, but they
differ from mesenchymal stem cells of the membranous neurocranium.

Further molecular studies, particularly on the FGFR2 pathway, are warranted to
better understand the multiple effects of the c.1032G>A variant, which is definitely not an
innocent synonymous change [40].
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