Skip to main content
. 2022 Jul 13;22(14):5244. doi: 10.3390/s22145244
Algorithm 1 Sampling from Uncertainty Indicator
Input: DL: labeled data pool, DU: unlabeled pool, T: random initialized task model, C: number of cycles in active learning, N: number of samplings;
Output: Final learned parameters of T;
  • 1:

    for i = 1 to C do

  • 2:

       train T with DL

  • 3:

       for xi in DU do

  • 4:

         V = T(xi)

  • 5:

         indicatori = UIG(V)

  • 6:

         if (indicatori is top-N) then

  • 7:

            yi = ORACLE(xi)

  • 8:

            DL = DL + (xi,yi)

  • 9:

            DU = DU  xi

  • 10:

         end if

  • 11:

       end for

  • 12:

    end for