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Abstract: Commercial load is an essential demand-side resource. Monitoring commercial loads helps
not only commercial customers understand their energy usage to improve energy efficiency but
also helps electric utilities develop demand-side management strategies to ensure stable operation
of the power system. However, existing non-intrusive methods cannot monitor multiple commer-
cial loads simultaneously and do not consider the high correlation and severe imbalance among
commercial loads. Therefore, this paper proposes a deep learning-based non-intrusive commercial
load monitoring method to solve these problems. The method takes the total power signal of the
commercial building as input and directly determines the state and power consumption of several
specific appliances. The key elements of the method are a new neural network structure called
TTRNet and a new loss function called MLFL. TTRNet is a multi-label classification model that can
autonomously learn correlation information through its unique network structure. MLFL is a loss
function specifically designed for multi-label classification tasks, which solves the imbalance problem
and improves the monitoring accuracy for challenging loads. To validate the proposed method,
experiments are performed separately in seen and unseen scenarios using a public dataset. In the
seen scenario, the method achieves an average F1 score of 0.957, which is 7.77% better than existing
multi-label classification methods. In the unseen scenario, the average F1 score is 0.904, which is
1.92% better than existing methods. The experimental results show that the method proposed in this
paper is both effective and practical.

Keywords: non-intrusive load monitoring; commercial load; deep learning; multi-label classification;
correlation; imbalance

1. Introduction

As the energy crisis worsens, more and more renewable energy resources are being
connected to the power system [1]. Due to the intermittency and uncertainty of renewable
energy resources such as wind and solar energy, this will pose significant challenges to the
stable operation of the power system [2]. The primary current solution is demand response,
which regulates electricity load by providing appropriate incentives in response to the
supply of electricity from renewable energy sources [3]. Commercial load is regarded as an
essential demand-side resource due to its flexibility and controllability [4]. How to reason-
ably and efficiently monitor the commercial load has become the focus of researchers [5]. In
the past, commercial users would install electricity meters on electrical equipment in order
to know their own electricity consumption information. However, with the advancement
of technology, there are more and more electrical equipment in commercial buildings,
and the traditional intrusive load monitoring method of installing measuring equipment
on each piece of equipment is no longer applicable. To this end, researchers have proposed
non-intrusive load monitoring (NILM) [6]. This technology can obtain the power con-
sumption information of the equipment by using the total power consumption information.
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Compared with intrusive load monitoring, it has the advantages of low cost and easy
implementation, and is more cost-effective for commercial users [7]. Therefore, proposing
an effective method to realize non-intrusive commercial load monitoring is crucial.

Existing NILM methods are mainly used for residential loads [7]. Commercial loads
differ from residential loads in terms of energy consumption and load characteristics, which
is the main reason why existing NILM solutions are not directly applicable to commercial
loads [8]. The earliest NILM study specifically for commercial loads was proposed by
Norford et al. [9]. They do this by matching steady-state and transient changes to known
patterns. Their work sparked interest in high-power loads such as heating, ventilation and
air conditioning (HVAC) in commercial buildings. Subsequently, Ji et al. [10] proposed a
NILM method based on a Fourier series model to determine the hourly end-use of HVAC
in commercial buildings. In recent years, there have been attempts to use machine learning
algorithms for NILM of commercial loads. Ling et al. [11] and Xiao et al. [12] simultaneously
proposed an approach based on random forest, one for disaggregating out the energy
consumption of building subsystems and one for disaggregating out the cooling load of
buildings. In addition, generative models are also applied to NILM, such as EnerGAN [13]
and EnerGAN++ [14]. Henriet et al. [15] were the first to apply generative models to
non-intrusive commercial load monitoring. The input signal can also be processed using a
graph-based method [16]. While paying attention to models or algorithms, the practicality
of the NILM method has also attracted more and more attention. In practical applications,
NILM is usually performed at a lower sampling frequency [17]. Rafsanjani et al. [18] uses
density-based spatial clustering of applications with noise and quadratic discriminant
analysis to perform non-intrusive commercial load monitoring at the occupant level rather
than on specific HVAC equipment or systems. Modern commercial buildings generally
have building automation systems (BAS), so Zaeri et al. [19] proposed a disaggregation
method for the end-use of commercial buildings based on BAS data and multiple linear
regression models.

To sum up, traditional classification and regression algorithms still dominate non-
intrusive commercial load monitoring. These methods typically require manual feature
extraction using domain expert knowledge and are less transferable [20]. Additionally, non-
intrusive commercial load monitoring has the following problems: 1. Multiple electrical
devices cannot be identified at the same time. Demand response often requires acquiring
multiple loads simultaneously. However, due to the large number and variety of devices
used by commercial customers, the approach of training a separate model for each load
is no longer applicable [21]. 2. The potential correlation between electrical equipment
cannot be considered. For example, a high correlation between commercial air conditioning
units may lead to simultaneous startup or shutdown events, violating the one-at-a-time
assumption [8]. 3. The unbalanced phenomenon of the state of electrical equipment cannot
be considered. Under different power consumption scenarios, different types of devices
have different startup or shutdown times. For example, some devices are turned off for a
long time and only turned on for a short time, which affects the monitoring accuracy [21].

In response to the above challenges, this paper proposes a deep learning method for
non-intrusive commercial load monitoring, which can directly obtain the operating status
and power consumption of multiple internal electrical devices from the overall power
consumption of commercial buildings without a complex features project. The method in-
cludes a novel deep learning framework called Transformer-Temporal Pooling-RethinkNet
(TTRNet) and a novel loss function called Multi-Label Focal Loss (MLFL). Considering the
need for commercial loads to participate in demand response and the power consumption
logic of commercial customers, two different NILM evaluation scenarios, called “seen” and
“unseen”, were created and tested to demonstrate that the proposed method can achieve
high performance with good transferability in terms of equipment state identification and
energy decomposition. The following are the main contributions of this work:

1. The proposed deep learning method for non-intrusive commercial load monitoring
is based on a multi-label classification task, which can simultaneously identify the
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operating status of multiple commercial electrical devices and decompose the power
consumption of multiple devices, reducing the time cost of existing commercial
NILM methods. Moreover, the label correlation and class imbalance problems are
solved from the model framework and training method, respectively, to improve
monitoring accuracy.

2. Compared with the existing models, the encoder part of TTRNet designs the structure
of stacking multiple identical blocks, and each block is composed of a transformer
encoder and max-pooling to automatically extract the characteristics of the total
input power sequence. A Temporal Pooling block is added between the encoder and
decoder to provide more detailed features by adding contextual information when
identifying the activation state. Finally, RethinkNet is introduced in the decoder part
to enhance the learning of interrelationships between each power-consuming device
and improve the accuracy of multi-label classification.

3. By improving the existing single-label Focal Loss for multi-label classification tasks,
not only the load imbalance problem in NILM is solved, but also the accuracy of
hard-to-identify loads is improved.

The rest of this paper is organized as follows: Section 2 presents and compares the
related work. Section 3 describes the proposed deep learning method in detail. Section 4
describes the experimental steps in the public dataset. Section 5 presents the experimental
results, and Section 6 presents the analysis. Section 7 concludes and proposes some possible
further work.

2. Related Work

Recurrent Neural Networks (RNN) and their variants have been the dominant method
for solving problems with sequence data. However, the structure of RNN leads to weak-
nesses in parallel computing. In addition, one of the biggest drawbacks of RNN is the
problem of vanishing gradients and exploding gradients when the sequence is too long.
To overcome these limitations, the attention mechanism is introduced as a solution [22].
On this basis, Vaswani et al. [23] proposed a new simple network architecture, namely a
Transformer. Transformers currently have success in field such as natural language pro-
cessing, computer vision, and time series forecasting, sparking great interest in the NILM
community. Lin et al. [24] were the first to apply a Transformer to NILM and simultane-
ously proposed two different networks, one containing only multiple encoder blocks and
the other keeping the original encoder-decoder structure. Experiments demonstrate that a
Transformer improves NILM accuracy, robustness, and training cost compared to existing
RNNs and Convolutional Neural Networks (CNN). Yue et al. [25] proposed an improved
objective function specially designed for NILM learning and a Transformer representation
architecture based on bidirectional encoders and also achieved better results than the exist-
ing methods. In addition to using off-the-shelf Transformers, the architecture and training
methods can be improved to better fit the NILM task. Yue et al. [26] further replaced the
original self-attention with local attention to improve the poor performance of capturing
local signal patterns, while Sykiotis et al. [27] proposed the use of unsupervised pre-training
and downstream task fine-tuning to improve prediction accuracy and reduce training time,
both with better results. Several NILM methods mentioned above are compared in Table 1.
The comparison shows that existing Transformer-based methods either use encoders or
improve them. These methods have only been tested for residential loads and have not
been evaluated for commercial loads. Furthermore, these methods are mainly used for
regression or single-label classification tasks rather than multi-label classification tasks.
Therefore, this paper pioneers the use of Transformers for non-intrusive commercial load
monitoring and multi-label classification tasks.
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Table 1. Comparison of Transformer-based NILM methods.

Reference Name Publication Date Dataset
Framework

Task Main Components Loss

Lin et al. [24] MA-net and
MAED-net

August 2020 REDD r and c Encoders and Decoders MSE

Yue et al. [25] BERT4NILM November 2020 REDD and UK-DALE r and c Encoders MSE +KL divergence
+soft-margin

Yue et al. [26] ELTransformer March 2022 REDD and UK-DALE r and c Encoders MSE
Sykiotis et al. [27] ELECTRIcity April 2022 REDD and

UK-DALE and Refit
r and c Encoders MSE +KL divergence

In recent years, multi-label classification methods have become increasingly popular
in NILM. Instead of obtaining the power consumption of individual electrical devices
for training purposes, the multi-label classification-based NILM approach requires only
the operational status of individual devices, making the load monitoring process truly
non-intrusive. In addition, device status can be easily obtained from automated smart
building records or from commercial building managers. Moreover, this method can
output multiple loads simultaneously, which can reduce the time cost and facilitate the
practical application of NILM disaggregated data. Massidda et al. [28] proposed Temporal
Pooling NILM (TP-NILM), a CNN-based network architecture for multi-label classification
tasks, which uses the Temporal Pooling module to collect contextual information, which
is an adaptation and simplification of the pyramidal scene parsing network for image
semantic segmentation proposed by Zhao et al. [29]. In addition to this, there are some
ways to use context awareness for NILM [30]. Nolasco et al. [31] proposed DeepDFML-
NILM, a complete NILM deep learning method that includes a high-frequency signal
detection part and a feature extraction part, in addition to the most important multi-label
classification part. Verma et al. [32] proposed a multi-label LSTM autoencoder (LSTM-AE)
for NILM. All the above multi-label classification methods are directly implemented by
CNN or RNN without considering the correlation of labels and the imbalance of categories,
i.e., correlation and imbalance between loads in NILM tasks. This approach may be feasible
for residential loads but not for commercial loads with strong correlations and severe state
imbalances, so it is considered in this paper.

Label correlation and category imbalance are two major problems in multi-label
classification research. Usually, one expects to improve the correct rate of multi-label
classification by learning the correlation between labels or solving the category imbalance.
Yang et al. [33] envisioned to model the correlation between labels by treating the multi-label
classification task as a sequence generation problem. Yang et al. [34] proposed a new cost-
sensitive multi-label classification (CSMLC) algorithm, called RethinkNet, by mimicking
the human rethinking process. They use the structure of RNN as the main part of the model.
In addressing imbalances, Lin et al. [35] proposed a new loss function Focal Loss and
applied it to dense object detection. In the field of NILM, Zhou et al. [36] proposed a method
that considers both label relevance and class imbalance. The method is implemented by a
CNN-LSTM-RF model, where the class imbalance problem is mainly solved by a compound
reweighting approach, while the label relevance problem is solved by the method proposed
by [33]. However, the model was tested only in the seen scenario of residential load,
and thus the generalization ability of the model could not be tested. In contrast, this paper
conducted experiments on unseen scenarios.

3. Methodology

The method proposed in this paper has two main parts: a neural network architecture,
TTRNet, and a loss function, MLFL. Where TTRNet consists of four components: Input
Embedding, Transformer, Temporal Pooling, and RethinkNet, the overall structure is shown
in Figure 1. Each part is described separately below.
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Figure 1. The TTRNet model architecture.

3.1. Input Embedding

First, perform input embedding on the aggregated loads. Because the Transformer
cannot learn the order of the input information, the loading sequence cannot be passed
directly to the Transformer part. Input embedding consists of two parts: value embedding
and positional encoding.

The value embedding transforms the input sequence into a 256-dimensional vector
using a 1D convolution with a kernel width of 3 and a stride of 1.

Ev(x) = Conv(x) (1)

The positional encoding is used to generate the relative and absolute position informa-
tion for the input sequence.

Ep(p, 2i) = sin
( p

100002i/d

)
Ep(p, 2i + 1) = cos

( p
100002i/d

) (2)

Finally, the feature vector of the value embedding transformation is added to the
position vector generated by the positional encoding to add position information to the
input sequence.

Ei(x) = αEv(x) + Ep(p, ) (3)

where α is a factor that balances the value embedding and the positional encoding. The in-
put sequence will be normalized during data preprocessing later, so here α = 1.

3.2. Transformer

The Transformer part of TTRNet, i.e., the encoder part of TTRNet, is used to extract
input features. This part uses the Transformer’s encoder structure. It consists of a stack of
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N identical modified encoder blocks, each of which includes a Transformer encoder layer
and a max-pooling layer, whose structure is shown in Figure 2.

Figure 2. A Transformer block of the TTRNet.

Each Transformer encoder layer consists of two sublayers. The first layer is multi-head
attention, and the second layer is a feedforward network. Each sublayer performs skip
connections followed by layer normalization. Multi-head attention consists of several
parallel self-attentions. Self-attention operates on the input Q, K, and V matrices. First, Q
and K are multiplied, then divided by the square root of the hidden size; softmax is used to
generate soft attention and multiplied by V to get the final weighted value matrix.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (5)

where each multi-head attention uses h = 8 self-attention heads.
The effect of each max-pooling layer is to halve the temporal resolution of the output

of the previous Transformer encoder layer. In this study, 3 Transformer blocks were used,
so the temporal resolution of the input sequence was eventually reduced to one-eighth of
its original value.

3.3. Temporal Pooling

TTRNet adds a Temporal Pooling between the traditional encoder-decoder structure
for introducing more contextual information, which is shown in Figure 3.
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Figure 3. The Temporal Pooling module.

As shown in the figure above, the Temporal Pooling module has five channels, one
of which does nothing and keeps the original features unchanged. The remaining four
channels perform Temporal Pooling operations. In these four channels, feature vectors are
first passed through average pooling layers with kernel sizes of 5, 10, 20, and 30 to reduce
the temporal resolution. Then, each channel performs a 1D convolution to reduce the
feature dimension to a quarter of the original dimension. The Temporal Pooling operation
for each channel can be expressed as:

TP(x) = BN(ReLU(Conv(pool(x)))) (6)

At the end of each of the four channels, linear upsampling is performed so that the
output of the Temporal Pooling block has the same precise time resolution as the encoder
output. Finally, the five channels are concatenated to form a new feature vector. The total
number of features with contextual information is doubled compared to the number of
features fed into the Temporal Pooling module.

3.4. RethinkNet

The main role of the RethinkNet module is to decode the previously extracted feature
vector into an output sequence with multiple labels. Figure 4 illustrates the design scheme
of this part, which consists mainly of a transposed convolution, multiple recurrent network
layers, and finally a fully connected layer.

The output of the Temporal Pooling module is the input to the transposed convolution,
which uses a kernel size and stride of 8 to increase the temporal resolution of features while
reducing the number of features. After layer normalization, these features are fed into
multiple recurrent networks. Multiple recurrent network layers are arranged in parallel,
the input of each layer is from the transposed convolution, and the hidden state of each
layer is from the previous recurrent network layer.

RethinkNet is a memory label correlation model across recursive network layers.
RethinkNet forms initial guesses in the first recursive grid layer stores them in memory
and iteratively corrects them using label correlation. Each layer of the recursive network is
an iterative process that “rethinking” through multiple iterations.

ŷ(t) = σ
(

W1x + W2ŷ(t−1)
)

(7)

where W1x is the feature term, which comes from transposed convolution, and W2ŷ(t−1) is
the memory term that converts the previous predictions into the current label vector space.
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The label correlation information is stored in global memory, so the order of the labels does
not affect classification results.

Figure 4. The RethinkNet module.

In this study, a long short-term memory network (LSTM) was selected as the recurrent
network layer. This is because LSTMs can guarantee good results when dealing with long
sequences of data no matter how many iterations are made. In this study, four LSTM
layers were used. The output of LSTM is linearly transformed by the fully connected layer,
and finally activated by the sigmoid function to realize multi-label classification.

3.5. MLFL

In practical applications, existing methods often perform poorly in practice due to
the different proportions of different operating states of different electrical equipment of
commercial customers. This can be solved by changing the loss function. Larger weights
are assigned to smaller proportions of samples, and smaller weights are assigned to larger
proportions of samples. Increasing the proportion of small-scale samples in the overall
loss function guides network training to favor small-scale samples, thereby improving the
classification accuracy of small-scale samples.

In addition to this, in the later stages of training, the most identifiable loads are
correctly classified, while only a few challenging loads are misclassified. Likewise, the clas-
sification accuracy of hard-to-identify loads can be improved by weighting.

Focal Loss is an excellent solution to this problem, but the original Focal Loss was
applied to single-label classification tasks. In this study, Focal Loss is improved by designing
weights for each label separately, making it usable for multi-label classification tasks.
The improved MLFL is shown below:

LMLFL = − 1
N

N

∑
n=1

L

∑
l=1

αl ∗ ynl ∗ (1− pnl)
γ ∗ log(pnl) + (1− ynl) ∗ pγ

nl ∗ log(1− pnl) (8)

where αl represents the proportion of negative to positive samples for the lth label. γ is the
weight in the loss function for challenging loads that can take on values between 0 and 5.
In this work, γ is set to 2.

4. Experiment

This section focuses on the experiments performed to verify the effectiveness of the
proposed method. Section 4.1 describes the dataset used. Section 4.2 describes the data
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preprocessing process. Section 4.3 details the experiments conducted in this paper for two
different evaluation scenarios (seen and unseen). Section 4.4 presents evaluation metrics
describing the experimental results.

4.1. Dataset

In this study, the above methods are experimented with using the Commercial Building
Energy Dataset (COMBED) [8]. This dataset includes real-world data collected from smart
meters deployed in different buildings and subsystems of IIITD. These real-world figures
include total electricity consumption per building, high energy loads, and total electricity
consumption per floor. The Academic Block can be thought of as a commercial building
similar to an IT office. Like other commercial buildings, it mainly includes air conditioning
load, lighting load, elevator load, etc. Since the air conditioning load is often used for
demand response, this paper takes the air handling unit (AHU) of the Academic Block as
the research object. AHU0, AHU1, AHU2, and AHU5 are four loads in different power
consumption scenarios. The smart meter installation location of the Academic Block is
shown in Figure 5, and the collected data information is shown in Table 2.

Figure 5. Academic Block’s smart meter installation location instructions.

Table 2. Attribute information for electrical load data collected from the Academic Block.

Dataset Properties Value

Number of main meters 1
Number of sub-meters 8

Sampling frequency 30 s
Sampling range 1 June 2014–1 July 2014

In the field of NILM, it is common to use not only real data but also synthetic data
in order to improve the generalization performance of the model [37]. Here, data such as
lighting and elevator loads collected from sub-meters are used as noise. The main meter
data for the new commercial building is formed by subtracting this noise from the actual
main meter data. This synthetic data retains the original characteristics of the AHU load in
it, with some noise and other factors only found in real data, so it can be experimented with
as a regular commercial building. Compared to training with real data only, a mixture of
real and synthetic data can improve the transferability of the above methods to applications
in different types of commercial buildings. The ratio of synthetic data to generated real data
is 4:1, and the total measurement properties of the resulting dataset are shown in Table 3.
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Table 3. The main meter data information of commercial buildings in the synthetic dataset.

Actual Location Main Meter Load
Composition

Main Meter Measurement
Composition

Building1 Academic Block Total Load SM1
Building2 Academic Block Total load-Lifts load SM1-SM6
Building3 Academic Block Total load-Light load SM1-SM7
Building4 Academic Block Total load-Socket1 load SM1-SM8
Building5 Academic Block Total load-Socket2 load SM1-SM9

4.2. Data Preprocessing

Data for each commercial air conditioning unit and each commercial building in the
dataset were preprocessed before the experiments were performed. The first step filters
measurement errors by removing outliers from the active power measurement data for
each air conditioning unit, limiting the maximum power to the values provided in Table 4.
The second step obtains the activation status of each air conditioning unit. In general,
a device can be considered operating when the power it absorbs exceeds a certain threshold
λ [37]. However, due to the complexity of the commercial air conditioning equipment,
the absorbed power may drop below the threshold for short periods of time without
actually shutting down the equipment. Therefore, we specify a minimum shutdown time
of µ0. During this time frame, a commercial air conditioning unit is considered to be truly
off if its power remains below a threshold. Finally, to filter false activations caused by
metering issues, we specify a minimum on-time µ1. During this period, if the power of the
commercial air conditioner is above the threshold, it is considered to be truly on. Table 4
shows the activation thresholds λ for the above commercial air conditioning equipment,
as well as the values for the minimum on time µ0 and the minimum time µ1. In the third
step, the master meter data for each building is divided into multiple input time windows
of size 480, i.e., 4 h, which can contain at least one activation state change. Finally, in the
fourth step, the main meter data for each building is normalized by dividing the total load
by the maximum power value of 60,000 W.

Table 4. Parameter information for obtaining the activation state of the AHU device.

AHU0 AHU1 AHU2 AHU5

Max. power limit (W) 5000 4500 4500 12,000
Active power threshold λ (W) 500 450 450 1200
Min. OFF duration µ0 (min) 15 15 15 15
Min. ON duration µ1 (min) 15 15 15 15

4.3. Training and Testing

This study was conducted under the following two different NILM assessment sce-
narios.(1) Seen. The composition of the commercial load is known; that is, trained on
multiple loads in multiple commercial buildings, tested on multiple loads in one of the
commercial buildings; (2) Unseen. The composition of the commercial load is unknown;
that is, trained on multiple loads in multiple commercial buildings and tested on multiple
loads in another commercial building which is not trained. This scenario is more in line
with practical applications.

Therefore, each commercial building in the dataset described earlier was divided into
three consecutive time periods containing 70%, 15%, and 15% of the measurements; 70% is
used for training, and the remaining 30% is used for validation and testing. It is important
to note that the tests in the unseen scenario were performed on the 100% value of the
building. The specific division of the dataset in this study is shown in Table 5.
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Table 5. Dataset partitioning for the seen and unseen scenarios.

Building 1 Building 2 Building 3 Building 4 Building 5

seen
Training (%) 70 70 70 70 70
Validation (%) 15 - - - -
Testing (%) 15 - - - -

unseen
Training (%) 70 - - - 70
Validation (%) 15 - - - 15
Testing (%) - 100 - - -

In the seen scenario, we train the first part of building 1 using real data and the first
part of buildings 2, 3, 4, and 5 using synthetic data. We verify the second part of Building 1.
During the validation phase, the network parameters are saved when a new minimum
value is reached throughout the training period. Finally, we test the third part of Building 1.
Training and testing the model in this context enables the evaluation of the model’s ability
to identify and decompose the load when the composition of the commercial load is known.

In the unseen scenario, we train the first part of buildings 1 and 5, validate the second
part of buildings 1 and 5, and also save the network weights when the loss function reaches
a new minimum. Building 2 is used to simulate an unknown building and test all of its data.
Training and testing the model, in this case, enables the evaluation of the generalization
performance of the model. Since the original purpose of NILM research is to apply to
unknown buildings in real life, the results in this scenario have greater application value.

All experiments are performed on a Linux host with the following specifications, CPU:
15-core AMD EPYC 7543 32-core processor 30 GB; Graphics: RTX A5000*1 24 GB. In these
two different evaluation scenarios, the network parameters are optimized using the Adam
optimization method, which uses the gradient descent technique with a learning rate of
10–5 and a batch size of 32. The above hyperparameter combinations do not reflect the
maximum accuracy of the test case, as the purpose of this experiment is mainly to verify
the effectiveness of the proposed technique.

4.4. Evaluation Metrics

In this paper, five event detection (ED) metrics and two energy estimation (EE) metrics
are used to comprehensively evaluate the performance of the NILM method.

The ED indicator measures the performance of the algorithm in detecting device
activation. True Positives (TP) are the number of moments when AHU is correctly identified
as active. True Negative (TN) is the number of moments when the AHU is correctly
assessed to be closed. False Positives (FP) represent the number of moments when the AHU
was not working but was reported as working. False Negatives (FN) are the number of
moments when the AHU actually worked but was incorrectly evaluated as off. Precision (9)
represents the ratio of TP to the number of all moments evaluated as active. Recall (10)
represents the ratio of TP to the actual activation moment. Accuracy (11) represents the ratio
of all correctly evaluated moments to the total number of moments. F1 Score (12) combines
precision and recall, with a maximum value of 1 and a minimum value of 0. The closer to 1,
the better the recognition of the load state. The Mathews Correlation Coefficient (MCC) (13)
represents the performance of the classification method in the range [−1, 1], where 1 means
accurate classification, 0 means random classification and −1 means misclassification.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

F1 = 2
Precision × Recall
Precision + Recall

(12)
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MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(13)

The EE metric estimates the precise amount of energy consumed by the device. This
paper uses mean absolute error (MAE) (14) and signal aggregation error (SAE) (15) to
measure the accuracy of active power estimates for individual devices. MAE measures
the average deviation of estimated power relative to actual power at each instant. At the
same time, SAE measures the relative error of the power estimates used throughout the
evaluation period.

MAE =
1
N ∑ |ŷ(t)− y(t)| (14)

SAE =
∑ ŷ(t)−∑ y(t)

∑ y(t)
(15)

where y(t) denotes the true value of the power and ŷ(t) denotes the estimated value of
the power.

5. Results

This section describes and explains the experimental results for two different NILM
evaluation scenarios, the seen and unseen scenarios, respectively.

5.1. Seen

A total of twenty experiments were performed, and the results were averaged. The 90%
interval for multiple results is also reported to show the stability of the method. Table 6
shows the performance of the method for identifying states, estimating instantaneous
power consumption and total power consumption in the scenarios seen. As can be seen
from the table, all five ED indicators except individual were above 0.9, indicating that the
method effectively identified the activation states of the four AHUs. The average F1 score
is 0.957, the average precision is 0.988, the average recall is 0.931, the average precision is
0.976, and the average MCC is 0.943, all with good stability. For the estimated instantaneous
power consumption, the average MAE of the four AHUs is 197.13. Among them, AHU5
has the worst result because AHU5 has the highest operating power. For the estimated
total power consumption, the average SAE of the four AHUs is −0.049.

Table 6. Performance of the method in the seen scenario, including the average and 90% interval of
each load over twenty experiments and the average of all loads.

AHU0 AHU1 AHU2 AHU5 Avg
Avg 90% Interval Avg 90% Interval Avg 90% Interval Avg 90% Interval

F1 0.892 (0.817,0.944) 0.951 (0.865,0.996) 0.992 (0.991,0.993) 0.991 (0.983,0.994) 0.957
Precision 0.986 (0.964,1.000) 0.978 (0.884,1.000) 0.998 (0.997,0.999) 0.990 (0.973,0.995) 0.988
Recall 0.819 (0.691,0.912) 0.928 (0.836,0.996) 0.986 (0.983,0.989) 0.992 (0.987,0.994) 0.931
Accuracy 0.938 (0.901,0.965) 0.979 (0.948,0.998) 0.994 (0.993,0.995) 0.994 (0.988,0.996) 0.976
MCC 0.859 (0.777,0.920) 0.940 (0.845,0.995) 0.988 (0.985,0.990) 0.986 (0.974,0.991) 0.943
MAE 185.19 (121.69,270.67) 142.76 (108.08,220.30) 80.41 (77.92,83.34) 380.09 (365.31,438.53) 197.13
SAE −0.148 (−0.292,−0.037) −0.059 (−0.174,0.071) −0.057 (−0.061,−0.053) 0.070 (0.060,0.090) −0.049

Then, the output states are compared with the real states, respectively. Figure 6
shows the identification of the states of the four AHUs in this scenario. It can be seen that
there are errors in the identification of several activations of AHU0 and AHU1, while the
identification of both AHU0 and AHU1 is perfect, which may be due to the large differences
in the operation of AHU0 and AHU1. Overall, the method is effective in capturing the
changes in the operating state of each AHU.
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Figure 6. Comparison of the output state and the real state in the seen scenario.

5.2. Unseen

Twenty experiments were also conducted in the unseen scenario. Table 7 shows the
method’s performance in identifying the state and estimating the instantaneous and total
power consumption in this scenario. The average F1 score is 0.904, the average accuracy
is 0.932, the average recall is 0.878, the average accuracy is 0.919, and the average MCC
is 0.834. For estimating the transient power consumption, the average MAE of the four
AHUs is 433.24. For estimating the total power consumption, the average SAE of the four
AHUs is −0.058. With a guaranteed average F1 score of 0.904, the accuracy of AHU2 and
AHU5 remain at 0.940 and 0.983, respectively, indicating that the method is still effective in
identifying unseen scenarios.

Table 7. Performance of the method in the unseen scenario, including the average and 90% interval
of each load over twenty experiments and the average of all loads.

AHU0 AHU0 AHU0 AHU0 Avg
Avg 90% Interval Avg 90% Interval Avg 90% Interval Avg 90% Interval

F1 0.864 (0.854,0.874) 0.827 (0.812,0.843) 0.940 (0.938,0.942) 0.983 (0.982,0.985) 0.904
Precision 0.910 (0.877,0.926) 0.871 (0.829,0.916) 0.955 (0.951,0.960) 0.989 (0.983,0.995) 0.932
Recall 0.823 (0.791,0.862) 0.788 (0.743,0.829) 0.926 (0.917,0.931) 0.978 (0.971,0.985) 0.878
Accuracy 0.883 (0.877,0.889) 0.867 (0.857,0.880) 0.941 (0.940,0.943) 0.984 (0.982,0.985) 0.919
MCC 0.765 (0.754,0.776) 0.722 (0.701,0.749) 0.883 (0.880,0.887) 0.967 (0.964,0.971) 0.834
MAE 359.17 (345.36,371.95) 515.57 (470.77,551.56) 266.09 (260.46,271.35) 592.14 (577.86,617.02) 433.24
SAE −0.095 (−0.148,−0.015) −0.094 (−0.169,0.001) −0.030 (−0.045,−0.021) −0.012 (−0.024,−0.001) −0.058

As can be seen from the above table, the method performs relatively poorly in estimat-
ing the instantaneous power in the unseen scenario. Figure 7 shows the power estimates
of the method for the four AHUs. The poor MAE was obtained because these AHUs had
high operating power. However, the total power estimate for the whole monitoring period
is still excellent, as evidenced by the average SAE of −0.058.
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Figure 7. Comparison of the instantaneous power estimates and the actual power in the
unseen scenario.

6. Discussion

This study aims to enable non-intrusive monitoring of multiple commercial loads
simultaneously. According to the research results, in the see scene: the average score of
F1 is 0.957, the average score of SAE is −0.049, and in the unseen scene: the average score
of F1 is 0.904, and the average score of SAE is −0.058. The above results show that the
method proposed in this paper has achieved good results in the state identification and
power decomposition of all four commercial loads, indicating that the method can achieve
the preliminary purpose of the experiment.

Furthermore, the basic idea of this study is to improve monitoring accuracy by consid-
ering the correlation and imbalance of commercial loads. In this approach, correlations are
solved by RethinkNet and imbalances are solved by MLFL. To this end, extensive ablation
studies were performed to verify the role of each component, and the results are shown
in Table 8.

Table 8. Ablation studies of different components of TTRNet in the seen scenarios.

Model Transformer Temporal Pooling RethinkNet Focal Loss AHU0 AHU1 AHU2 AHU5 Avg

Baseline − X − − 0.926 0.772 0.923 0.930 0.888

ModelA − − − − 0.871 0.683 0.871 0.880 0.826
ModelB X X − − 0.898 0.840 0.901 0.922 0.890
ModelC − X X − 0.943 0.831 0.899 0.890 0.891
ModelD − X X X 0.904 0.897 0.921 0.931 0.913
ModelE X X X − 0.924 0.844 0.964 0.977 0.927

TTRNet X X X X 0.892 0.957 0.992 0.991 0.957

The TP-NILM [28] was used as the baseline. The accuracy of AHU2 is particularly
poor compared with the other three loads, indicating that AHU2 is a load that is difficult to
identify. Model A removes the Temporal Pooling module of the baseline and becomes a
structure composed entirely of deep CNN. The result is a significant drop in F1 scores for
all four loads, proving that the contextual information does have the effect of improving the
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results. Model B uses a Transformer as the encoder and trade-offs each load to improve the
average F1 score from 0.844 to 0.890 in the baseline. This result proves that a Transformer
can extract load features better than a CNN in NILM. Model C adds RethinkNet to the
baseline and improves the average result, indicating the importance of considering label
relevance in multi-label classification. Part of the load accuracy decreases, which may
be related to the correlation difference. Model D was trained using MLFL on top of
Model C and continued to improve the average F1 score, indicating that solving the load
imbalance problem can effectively improve the classification accuracy. Especially for AHU2,
it has increased from 0.772 to 0.897, indicating that MLFL can improve the monitoring
performance of challenging loads. Model E adds RethinkNet to Model B, and the increase
in average F1 score proves that Transformer and RethinkNet work better together. Finally,
the complete TTRNet model is obtained using MLFL based on model E. The average F1
score is improved from 0.888 in the baseline to 0.957, which is an improvement of 7.77%.
After adding MLFL, the results of AHU1 will be slightly reduced, which can also be seen
in the comparison of model C and model D. This may be affected by the current MLFL
weight parameter combination. The current setting is enough to prove the effectiveness of
this method, and it will be optimized by adjusting parameters in the future.

This method is also thoroughly compared with existing NILM methods based on
multi-label classification. Here, the existing methods are chosen from CNN and TP-NILM,
i.e., Model A and the baseline mentioned before. Tables 9 and 10 indicate the performance
comparison of different methods in the seen and unseen scenarios, respectively.

Table 9. Performance comparison of different multi-label classification NILM methods in
seen scenarios. The number in bold is the largest of the three model comparisons.

Device Model F1score Precision Recall Accuracy MCC MAE SAE

AHU0
CNN 0.871 0.783 0.982 0.907 0.812 273.71 0.286

TP-NILM 0.926 0.875 0.985 0.948 0.891 169.85 0.160
TTRNet 0.892 0.986 0.819 0.938 0.859 185.19 −0.148

AHU1
CNN 0.683 0.529 0.971 0.800 0.612 702.30 0.836

TP-NILM 0.772 0.650 0.959 0.872 0.716 484.95 0.485
TTRNet 0.951 0.978 0.928 0.979 0.940 142.76 −0.059

AHU2
CNN 0.871 0.781 0.985 0.894 0.798 422.14 0.206

TP-NILM 0.923 0.873 0.984 0.938 0.879 272.84 0.088
TTRNet 0.992 0.998 0.986 0.994 0.988 80.41 −0.057

AHU5
CNN 0.880 0.795 0.985 0.902 0.813 1235.75 0.325

TP-NILM 0.930 0.874 0.996 0.945 0.891 847.91 0.223
TTRNet 0.991 0.990 0.992 0.994 0.986 380.09 0.070

Table 10. Performance comparison of different multi-label classification NILM methods in
unseen scenarios. The number in bold is the largest of the three model comparisons.

Device Model F1score Precision Recall Accuracy MCC MAE SAE

AHU0
CNN 0.862 0.834 0.894 0.871 0.744 393.80 0.072

TP-NILM 0.890 0.873 0.910 0.899 0.798 325.52 0.043
TTRNet 0.864 0.910 0.823 0.883 0.765 359.17 −0.095

AHU1
CNN 0.763 0.735 0.793 0.801 0.593 692.26 0.080

TP-NILM 0.822 0.831 0.814 0.858 0.704 537.67 −0.019
TTRNet 0.827 0.871 0.788 0.867 0.722 515.57 −0.094

AHU2
CNN 0.862 0.835 0.891 0.858 0.718 551.67 0.067

TP-NILM 0.903 0.927 0.881 0.906 0.813 384.15 −0.048
TTRNet 0.940 0.955 0.926 0.941 0.883 266.09 −0.030

AHU5
CNN 0.901 0.882 0.921 0.900 0.801 1371.48 0.044

TP-NILM 0.933 0.935 0.933 0.934 0.869 1055.06 −0.002
TTRNet 0.983 0.989 0.978 0.984 0.967 592.14 −0.012
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By comparing the seven performance metrics with existing methods, most of the
metrics of TTRNet are far better than other methods, proving that the comprehensive
performance of the proposed method in this paper is the best. However, the present method
still has some shortcomings. This method is slightly less effective in identifying AHU1,
and the specific reasons have been explained above. The most significant advantage of this
method is its good power estimation performance while ensuring the correct identification
of the load state, especially for high power loads. The MAE of AHU5 in the seen scenario
is 380.09, which is 123.08% better than the 847.91 of TP-NILM, and the MAE of AHU5
in the unseen scenario is 592.14, which is 781.18% better than the 1055.06 of TP-NILM.
The evaluation of the unseen scenario is more meaningful because it is consistent with
the application of NILM in real life. In this scenario, the average F1 score of TTRNet is
0.904, which is 1.92% better than the 0.887 of TP-NILM. Although the results show that
the improvement of the proposed method over existing methods is not particularly large,
the main reason is that the data of the used public dataset are relatively ideal. In this case,
the advantages of this method are still reflected, and the effect of this method will be more
obvious when it is applied to more realistic data in the future. To sum up, the method
proposed in this paper has higher practical value than existing methods.

7. Conclusions and Future Work

From the perspective of demand response, this paper introduces the research value
of NILM for commercial loads. Then, this paper summarizes the algorithms used and the
problems of existing non-invasive commercial load monitoring methods. It is found that
the field is currently stuck in traditional algorithm research. These traditional algorithms
cannot meet the requirements of today’s demand response, which requires the simultaneous
acquisition of multiple loads. Further, the correlation and imbalance of commercial loads
are the main issues that limit the application of non-intrusive methods. Therefore, this
paper proposes a deep learning approach to address several such problems simultaneously.

The main idea of the approach is to propose a deep learning network, TTRNet, whose
inputs aggregate commercial load information and end-to-end directly outputs the subcom-
mercial load sequences contained therein. The design of TTRNet is divided into three main
steps. First, a deformer-based encoder is designed to enhance the extraction of time series
features by invoking and improving the latest techniques in NLP. Secondly, a Temporal
Pooling module is designed to pool features extracted from the encoder at different time
scales, thus increasing the perceptual domain without affecting the temporal resolution
of the output. Finally, a RethinkNet module is designed to utilize its unique rethinking
process to learn relevance while achieving the final multi-label classification. The original
Focal Loss is improved to adapt it to multi-label classification tasks and solve the load
imbalance problem and improve the accuracy of challenging loads.

In this study, the method was tested using the public dataset COMBED. To simulate
a realistic NILM application environment, a seen scenario and an unseen scenario were
designed separately. Then, several experiments were conducted under these two different
evaluation scenarios. Not only ED metrics but also EE metrics were used to evaluate
the performance of the method comprehensively. The experimental results show that the
method has high performance and stability in identifying the activation state, estimating
the instantaneous power and total power in both seen and unseen scenarios. In addition, ab-
lation experiments were conducted in this study to demonstrate the role of each component.
The experimental results show that considering the correlation and imbalance of loads can
effectively improve the accuracy of the NILM method for non-invasive commercial loads.
This not only provides a theoretical basis for the NILM study of commercial loads but also
provides new ideas for the NILM study of other types of loads.

In future work, two approaches will be taken: First, the study will be extended to mul-
tivariate heterogeneous commercial loads. This study can be seen as a study of multivariate
homogeneous loads. More factors need to be considered to realize NILM for multivariate
heterogeneous commercial loads based on this study. Second, the research approach will
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focus on lightweight models to speed up training and inference and investigate more
efficient optimization processes to improve the quality of monitoring for challenging loads.
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