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Abstract: In this paper, we propose a new method to study and evaluate the time-varying brain
network dynamics. The proposed RICI-imCPCC method (relative intersection of confidence intervals
for the imaginary component of the complex Pearson correlation coefficient) is based on an adaptive
window size and the imaginary part of the complex Pearson correlation coefficient. It reduces the
weaknesses of the existing method of constant sliding window analysis with narrow and wide
windows. These are the low temporal precision and low reliability for short connectivity periods for
wide windows, and high susceptibility to noise for narrow windows, all resulting in low estimation
accuracy. The proposed method overcomes these shortcomings by dynamically adjusting the window
width using the RICI rule, which is based on the statistical properties of the area around the observed
sample. In this paper, we compare the RICI-imCPCC with the existing constant sliding window
analysis method and describe its advantages. First, the mathematical principles are established.
Then, the comparison between the existing and the proposed method using synthetic and real
electroencephalography (EEG) data is presented. The results show that the proposed RICI-imCPCC
method has improved temporal resolution and estimation accuracy compared to the existing method
and is less affected by the noise. The estimation error energy calculated for the RICI-imCPCC method
on synthetic signals was lower by a factor of 1.22 compared to the error of the constant sliding
window analysis using narrow window size imCPCC, by a factor of 2.87 compared to using wide
window size imCPCC, by a factor of 6.69 compared to using narrow window size wPLI, and by a
factor of 4.72 compared to using wide window size wPLI. Analysis of the real signals shows the ability
of the proposed method to detect a P300 response and to detect a decrease in dynamic connectivity
due to desynchronization and blockage of mu-rhythms.

Keywords: brain connectivity analysis; brain network dynamics; complex Pearson correlation
coefficients

1. Introduction

Recently, various monitoring methods have been used to detect the dynamics of
brain networks [1,2]. Theoretical considerations and empirical observations of humans,
macaques, and rats using various recording methods, such as fMRI [3–7], blood-oxygenation-
level-dependent functional magnetic resonance imaging (BOLD-fMRI) [8,9], MEG [10],
and EEG [11–13], have been established and suggest that connectivity is time-dependent,
dynamic, and is associated with rhythmic activity [11,14–16].

In this study, electroencephalography (EEG) was used to monitor neuron activity. EEG
is a monitoring method that records the electrical activity of the brain [17]; i.e., it measures
the voltage fluctuations emanating from connected neurons. This method allows non-
invasive detection of neuron interactions/connections with high temporal resolution [18].

In general, brain connectivity analysis is divided into: structural and functional. Struc-
tural connectivity analysis studies a huge map of anatomical connections [19]. The most
appropriate recording methods for structural connectivity analysis are magnetic resonance
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imaging (MRI) [20], functional magnetic resonance imaging (fMRI) [21], and diffusion
tensor imaging (DTI) [22,23].

In addition, functional connectivity analysis provides information about the inter-
actions between distant brain regions [11]. Generally, there are two types: undirected
(estimating the degree of connectivity) and directed (estimating the degree and direction of
connectivity), and in this paper we focus on undirected connectivity. The second division
of functional connectivity deals with static and dynamic connectivity analysis, and in
this paper we focus on dynamic connectivity analysis. The most appropriate recording
methods for analyzing functional connectivity are magnetoencephalography (MEG) and
electroencephalography (EEG), due to their high temporal resolution.

Static functional connectivity indices always assumes that the degree of connectivity
remains constant throughout the observation period [11]. Accordingly, these methods
are only able to estimate an average degree of connectivity over the observation period.
A variety of static connectivity indices are used in research, but the most commonly
used indices are the phase locking value (PLV) [24,25] and the weighted phase lag index
(wPLI) [26]. The primary difference between these two indices is capacity to bypass the
influence of volume conduction.

In [27], an alternative to PLV and wPLI is proposed, called the complex Pearson cor-
relation coefficient (CPCC). It is a single measure that provides information about the
connectivity components with and without the influence of volume conduction. The imag-
inary part of the complex Pearson correlation coefficient (imCPCC) is closely related to
the wPLI measure, and the absolute value of the complex Pearson correlation coefficient
(absCPCC) is closely related to the PLV. If we compare imCPCC with wPLI and PLV with
absCPCC, we see that the difference is mainly in the normalization of the measures to the
interval [0, 1].

All of the static indices of functional connectivity described above cannot detect the
periods when brain regions are functionally connected or not. The need to obtain additional
information about when the changes in functional connectivity occur brings us to the study
of dynamic functional connectivity methods.

The most commonly used method to study the dynamics of brain networks is slid-
ing window analysis [11–13,28]. In this method, the index of functional connectivity is
calculated in a window with predefined number of samples (N), and then the window is
moved to the next set of samples with or without overlap. Functional connectivity (FC) is
calculated for an interval of interest.

In [29], constant sliding window analysis is used to analyze the differences between
30 patients with early Parkinson’s with mild cognitive impairment and 37 patients with
early Parkinson’s without mild cognitive impairment. In [29], window lengths were set to
500 to 2000 data points (samples) with a step of 10 samples. The overlap between windows
was also set to 0–250 data points. In the end, 906 different window lengths were determined
for four subbands, and the window length that showed the largest significant difference
between the observed patient groups was selected as the optimal sliding window. In [30],
dynamic functional connectivity was calculated using the sliding constant window analysis
method with window lengths of 45, 60, 75, and 90 s to confirm their hypothesis. The 75 s
window size was chosen because the most relationships were found with it. The higher-
order dynamic functional connectivity time series were computed in [31] using the constant
sliding window analysis method. In [32], the wPLI was computed based on predefined
2 s epochs, and constant sliding window analysis was proposed to extract information
about connectivity patterns in the future, focusing on determining the tradeoff between
temporal resolution and estimation error, i.e., determining the optimal window size. In [33],
it is mentioned that the window size should be short enough to represent a good tradeoff
between the ability to capture dynamic connectivity and sensitivity to noise. The dynamic
functional connectivity is currently not widely used because of the limitations of currently
used methods.
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The shortcomings of constant sliding window analysis are poor temporal resolution at
wide window size and results being affected by noise at narrow window size.

In other words, the overall variability of the estimate FC using sliding windows
increases as the size of the interval decreases [28] and vice versa. Thus, to obtain more
reliable estimates, we would like to have the FC indices computed on as wide an interval
as possible without including parts of the signal with different statistical properties.

In order to obtain such intervals that allow us to detect the time periods when brain
regions are functionally connected or not with good temporal resolution and without the
influence of noise on the estimation results, we propose to use an adaptive modification of a
statistical method called the intersection of confidence intervals (ICI) rule [34–36] called the
relative ICI (RICI) algorithm [37]. The RICI method will allow us to obtain results with better
temporal resolution and will allow less influence of noise on the estimates of the values of
the FC indices. Figure 1 illustrates the idea of dynamic functional connectivity analysis.

Figure 1. Illustration of the problem to be solved by the proposed method. (a) The experimental
paradigm with the sequence of different activities. (b) The connectivity matrix estimated for each
time sample. (c) The expected estimation of the functional connectivity index (FC) for a selected
electrode pair. The estimated FC must reflect the activities in time.

The rest of the article is organized as follows. In Section 2, we propose a novel method
for estimating the dynamics of the brain using RICI algorithm and the imCPCC measure.
In Section 3, we illustrate brain dynamics in practical experiments with synthetic and real
EEG signals. We compare the sliding window analysis method with the new proposed
method. The paper ends with a discussion and a conclusion.

2. Methods

We have recognized the shortcomings of existing methods in their choices of window
width, such as the inability to detect periods with functional connectivity and periods
without functional connectivity at wide window sizes, i.e., low temporal resolution, and
when using a narrow window, the influence of noise on the estimated FC values. In this
paper we propose a method to alleviate these problems. We name it RICI-CPCC, which
stands for the relative intersection of confidence intervals for the imaginary component of
the complex Pearson correlation coefficient estimation method, and it adopts previously
proposed solutions [27,37]. The first part of our solution is the use of the RICI algorithm,
which gives us the advantage of a variable window width and is used to estimate functional
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connectivity. The second part of our solution is the use of the CPCC, whose advantage
is the simultaneous evaluation of the connectivity with and without the influence of the
volume conduction and the use of a uniform scaling. We can calculate the CPCC for each
individual sample and obtain high temporal resolution but low connectivity resolution
due to high noise. Oppositely, we get poor temporal resolution and high connectivity
resolution using wide windows. The optimal window width depends on the signals
themselves, as the low temporal resolution is due to joining signal parts with different
statistical properties, and the low connectivity resolution is due to the low attenuation
to noise at small window sizes. To find the optimal window width that gives us good
temporal resolution and is not affected by noise, we introduce a variable window width
obtained by the RICI algorithm. The pseudocode of the RICI algorithm used to estimate
the time-varying functional connectivity index is shown in Algorithm 1.

Algorithm 1 The RICI algorithm used to estimate the time-varying FC.

1: for each time sample do
2: Set the minimal window size
3: while R ≥ Rc do
4: Compute confidence interval (CI) for a given window
5: Estimate lower and upper confidence interval boundaries Du and Dl
6: Update DuMIN and DlMAX
7: Compute new criterion ratio R
8: end
9: Compute functional connectivity for the given window

10: end

Any estimation procedure of a window size for dynamic analysis can be performed in
two ways: parametrically and non-parametrically. Parametric estimators expect a priori
information about the probability density functions (PDFs) of signal and noise. If these
assumptions are correct, parametric estimators provide more accurate estimates than
nonparametric estimators. In most practical applications, as with EEG analysis, a priori
information is not available, so nonparametric estimators must be used.

Accordingly, in this section we have defined the estimation methods based on the
goodness-of-fit statistic, the intersection of confidence intervals (ICI) rule, and the improved
method, the relative ICI (RICI) algorithm.

2.1. Measuring Temporal Functional Connectivity

Temporal functional connectivity (TFC) means that the functional connectivity index
is calculated in a predefined interval. We monitor brain network dynamics using the CPCC
(complex Pearson correlation coefficient) FC index, introduced in [27]. The CPCC measure
can be split into two components (measures): the absolute value of the complex Pearson
correlation coefficient (absCPCC) and the imaginary component of the complex Pearson
correlation coefficient (imCPCC). In [27], the relationships between the most commonly
used methods of functional connectivity, phase locking value (PLV) and weighted phase
lag index with absCPCC, and imCPCC are analytically and numerically proven. PLV can be
replaced by absCPCC and wPLI by imCPCC, it was concluded [27]. CPCC is defined as a
Pearson’s linear correlation coefficient:

CPCC(xa1, xa2) =
∑N

n=1 xa1,n · x∗a2,n√
∑N

n=1 |xa1,n|2 ·
√

∑N
n=1 |xa2,n|2

, (1)

where N is the number of samples, xa1 and xa2 are analytical signals given by the Hilbert
transform, and {.}∗ is the complex conjugate operator.
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In the following, we will use imCPCC, which is defined as follows:

imCPCCxa1,xa2 = |Im[r(xa1, xa2)]|. (2)

The calculation of imCPCC for a sample can be illustrated by creating two unit vectors,
each belonging to a sample of the observed signals. The scalar product of the first vector
and the conjugate complex value of the second vector are divided by the product of their
magnitudes; see Figure 2.

Figure 2. Visualization of the calculation of imCPCC for a sample.

2.2. Using the RICI Method to Determine the Optimum Window Width

The ICI rule [38,39] is based on a number of estimates of a observed parameter or in
our example, FC index. The estimation procedure is based on different window sizes. If we
define a set of windows with growing size as:

H = {hk|hk > hk−1, k = 1, 2, ..., K}, (3)

where hk−1 is a subset of hk. The K estimates of FC are computed for K consecutive windows.
Furthermore, we can define confidence intervals for the estimated functional connectivity
index F̂C (i.e., in this example, for the estimated value of imCPCC) as follows:

Dk =
[
F̂Chk

(n0)− Γσhk
(n0), F̂Chk

(n0) + Γσhk
(n0)

]
, (4)

where n0 is the signal sample under consideration and σhk
(n0) stands for the standard devi-

ation of the estimated signal sample on the observed window. The width of the confidence
interval is defined with the empirically set constant Γ. This leads to the introduction of
confidence intervals; the upper Du and lower Dl boundaries of the confidence interval are
defined as follows:

Du(n0 + ∆n) = F̂C(n0 + ∆n) + Γσ(n0 + ∆n), (5)

Dl(n0 + ∆n) = F̂C(n0 + ∆n)− Γσ(n0 + ∆n). (6)

∆n represents the observation window length in a range [0, N − n0] for the forward
calculation (where N is the total number of samples) and in a range [0, n0] for the backward
calculation of the confidence intervals intersection. The ICI algorithm yields the number of
samples suitable for calculating FC. The largest ∆n satisfies the following condition:

DuMIN (n0 + ∆n) ≥ DlMAX (n0 + ∆n), (7)

where DuMIN and DlMAX are defined as follows:

DuMIN (n0 + ∆n) = min(Du(n0), ..., Du(n0 + ∆n)), (8)

DlMAX (n0 + ∆n) = max(Dl(n0), ..., Dl(n0 + ∆n)). (9)
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The optimal window size for the considered signal sample is defined as:

h(n0) = ∆nF + ∆nB + 1, (10)

where ∆nF is the number of samples obtained from the forward calculation and ∆nB is the
number of samples obtained from the backward calculation.

An example of intersection of confidence intervals (ICI), with the lengths of the confi-
dence intervals is shown in the Figure 3.

Figure 3. An example of an intersection of confidence intervals. The blue dashed line marks DuMIN ,
and the red dashed line marks DlMAX . If the lines cross, the condition (Equation (7)) is not met. For the
largest width of the window for the observed sample, the last one that satisfies the condition is
then taken.

The ICI algorithm depends on the value of the parameter Γ [37,38]. Large values of
Γ lead to over-smoothing of the estimated values, and small values of Γ lead to under-
smoothing. This deficiency can be addressed using cross-validation or the Γ variable
selection method [38], but these methods require additional repetitions of the ICI algorithm
and therefore take additional time.

To avoid this deficiency, an improved version of the ICI algorithm was developed,
called the relative intersection of confidence intervals (RICI) [37].

The RICI algorithm [37] solves the problem of dependence on Γ parameter. Based on
the overlap of two back-to-back confidence intervals, a new parameter called the relative
amount of the overlapping confidence intervals was defined as follows:

R(n0 + ∆n) =
DuMIN (n0 + ∆n)− DlMAX (n0 + ∆n)

Du(n0 + ∆n)− Dl(n0 + ∆n)
, (11)

where DuMIN and DlMAX are the minimum value of the upper boundaries and the maximum
value of the lower boundaries defined by Equations (8) and (9). Du and Dl are the upper and
lower boundaries of the last observed confidence intervals. The new optimal window size
h(n0) for the observed sample is determined as the largest ∆n that satisfies the condition
called the RICI rule, defined as follows:

R(n0 + ∆n) ≥ RC, (12)

where RC ∈ [0, 1] is the predetermined threshold introduced by the RICI algorithm [37].
If we choose RC equal to 0, the RICI algorithm will revert to the ICI algorithm.

An example of the relative intersection of confidence intervals, with the lengths of the
confidence intervals, is shown in the Figure 4.
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Figure 4. An example of the relative intersection of confidence intervals RICI, with RC = 0.5. The blue
dashed line marks DuMIN , and the red dashed line marks DlMAX . If the R(n0 + ∆n) falls below the
value RC according to the condition (Equation (12)), the condition is not satisfied. For the largest
width of the window for the observed sample, the last one that satisfies the condition is then taken.

2.3. Description of Datasets

In this subsection we describe the datasets used in our article.

2.3.1. Description of Synthetic Signals

We generated two synthetic sinusoidal signals with a center frequency of 10 Hz and a
sampling frequency of 256 Hz; 3072 samples or 12 s of signals were generated. In the range
[1, 1024], signal two leads signal one by +π/2, and conversely, in the range [2049, 3072],
signal two is lagging signal one by −π/2. From 1025 to 2048, the two observed signals are
in phase. These two signals could be considered as a pair of electrode signals.

In a second stage of synthetic signal analysis, noise with a normal distribution and a
standard deviation of 0.1 is added to signal one, and noise with a normal distribution and
a standard deviation of 0.3 is added to signal two.

2.3.2. Description of the Auditory Oddball Dataset

The auditory oddball dataset [40] used consists of four EEG recordings from two
healthy subjects. Two recordings were obtained while subjects were not under hypnosis
and two while subjects were under hypnosis. In this article, we have used only the two
recordings in which the subjects were not under hypnosis. Subject S01 was a male right-
handed person and subject S02 was a female right-handed person. EEG recordings were
obtained using 27 EEG active g.tec electrodes (F8, F4, Fz, F3, F7, FC6, FC2, FC1, FC5, T8,
C4, Cz, C3, T7, TP10, CP6, CP2, CP1, CP5, TP9, P8, P4, Pz, P3, P7, O2, O1) and a recording
device. The participant sat in a comfortable reclining chair. The participant listened to
the tones through in-ear headphones (E-A-RTONE Gold, Auditory Systems, Indianapolis,
IN, USA). The participant was instructed to listen to a stream of tones and count the
occurrences of the odd (low) tones. Frequent (high) tones occurred between the odd tones.
The participant was asked to count only the odd tones. EEG recordings were obtained with
a sampling rate of 512 Hz, a bandpass filter of 0.01–100 Hz, and a notch filter at 50 Hz.
Stimulus-onset asynchrony (SOA) was 900 ms.

2.3.3. Description of the Motor Imagery Dataset

Ten subjects participated in the experiment [41]: six men and four women, ranging in
age from 21.4 to 28 years, all of whom were right-handed. Each of them sat in a comfortable
chair, and the LCD monitor was placed about 1 m in front of their eyes. EEG recordings
were made with an electrode cap (Easycap) and with Ag/AgCl electrodes placed on the
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scalp according to the international 10/20 system. Three electrodes were used: C3, Cz,
and C4. EEG recordings were obtained with a sampling rate of 250 Hz, a bandpass filter of
0.5–100 Hz, and a notch filter at 50 Hz. There are the results of several feedback experiments
in this dataset, but for the purposes of this article, we used results on imagined movement
of the right hand. The experiment began with the crosshairs fixed in the center of the screen
and a brief audible warning tone (1 kHz, 70 ms) lasting a total of 3 s. A visual cue was then
presented for 1.25 s. Subsequently, subjects imagined right hand movements for the next 4
s. Each trial ended with a short pause of at least 1.5 s. The dataset consists of sixty trials of
imagining right hand movement.

2.4. Offline Preprocessing

Offline preprocessing of the real raw data described in Sections 2.3.2 and 2.3.3 was
performed according to the steps in the flowchart shown in Figure 5.

Figure 5. The illustration of the offline preprocessing steps performed prior to dynamic
connectivity analysis.

Raw EEG data were imported into Matlab using the EEGLab toolbox, and channel
positions were defined in the software. In addition, the data were rereferenced to the
average. Then, the data were filtered to the desired frequency bands, and automatic
spectral-based channel suppression (z = 5) was performed using the EEGLab "pop-rejchan"
function. In addition, artifacts were removed using the EEGLab IClabel plugin, thresholds
to remove components greater than or equal to 0.9 for artifacts and less than or equal to
0.05 for brain activity were selected, and data were rereferenced to the average. The epoch
was extracted, and the baseline value was removed.

3. Results

In this section, we compare the proposed RICI-imCPCC estimation with the most
commonly used method: sliding window analysis with constant window width using
wPLI [26] and imCPCC.

3.1. Synthetic Signals

We calculated the dynamics of the brain using the proposed RICI-imCPCC and the
most commonly used constant sliding window analysis method. The graphs representing
the estimates of functional connectivity are shown in Figure 6. Figure 6a shows the two
signals with three intervals of three different behaviors marked with magenta vertical lines.
In the first and third intervals, temporal functional connectivity of the imCPCC should
produce a very high level of connectivity, and the imCPCC of the second region should
have a very low value.
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Figure 6. An example of a RICI-imCPCC estimation procedure for the ideal synthetic signals (RC = 0.8 [37]. For an example, the 95% confidence interval was
obtained for Γ = 1.96 [38,39]). (a) Two synthetic sinusoidal signals considered as a pair of electrode signals. The phase angle difference between these signals is
different in three intervals separated by magenta vertical lines. (b) The calculated temporal functional connectivity of wPLI and imCPCC for each of the intervals
separately with predefined interval boundaries. In addition, this line shows the distribution of the unit vector phase angle differences in the polar domain. (c) This
gives us an insight into the static functional connectivity imCPCC value calculated for the entire signal period and the distribution of unit vector phase angle
differences in the polar domain. (d,e) The estimated wPLI and imCPCC values calculated using the sliding constant window analysis method with narrow (window
size equal to 10 samples) and wide (window size equal to 500 samples) windows. (f) The estimate using the RICI-imCPCC method, and (g) the change in window
width for each observed sample defined using the RICI-imCPCC method.
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Observing the static connectivity for the provided signals gives imCPCC ∼= 0, but if
we observe the entire signal, the dynamics of the connectivity are not pronounced. The dis-
tribution of the unit vector phase angle differences in the polar domain on the entire signal
period is shown in the Figure 6c. If we observe each interval separately, we get different
values for the imCPCC value. The imCPCC values for each interval and the distribution
of the unit vector phase angle differences in the polar domain are shown in the Figure 6b.
For the first interval, the imCPCC value is ∼= 1, for the second interval it is ∼= 0, and for the
third interval it is ∼= 1. The second interval is an example of volume conduction between
two observed signals, and because of the ability of imCPCC to avoid the influence of volume
conduction, the imCPCC value is ∼= 0.

Figure 6d shows the estimation of the wPLI index using the constant sliding window
analysis method with narrow and wide window lengths. The use of a narrow window
leads to high variability in the second interval. The high variability in the situation where
we have a distribution around zero is another reason to use imCPCC instead of wPLI.
In general, using a narrow window leads to an estimate with good temporal resolution,
and the opposite for a wide window size.

Estimating the functional connectivity index with a narrow constant window size
yields a good result in this ideal situation, since the phase differences have only two main
changes during the observation period, and these two changes are fast. Estimating the
value of functional connectivity with a constant window size for wide window length
leads to incorrect values for imCPCC in the samples where changes occur because the rate
of change is too fast. In other words, the temporal resolution of the changes is low and
the exact time of changes is difficult to estimate; see Figure 6e. With the RICI-imCPCC
estimation procedure, the RICI algorithm defines the window width based on the statistical
properties of the phase differences between the observed signals. The estimated values are
very similar in this example with a narrow constant window size; see Figure 6f. The change
in window width for each observed sample defined by the RICI-imCPCC method is shown
in Figure 6g.

Figure 7a shows two sinusoidal synthetic signals as in Figure 6a, but with added
noise (superposition). The static functional connectivity imCPCC value and the temporal
functional connectivity imCPCC values on each of the predefined intervals are similar to
the results shown in Figure 6; see also Figure 7b,c. Inspection of Figure 7d suggests that the
estimated wPLI values are affected by noise when a narrow window is used in the second
interval, where the distribution of the phase angle differences is around zero. When using
a wide window size, temporal resolution and FC results are affected by the noise, as can be
seen when comparing Figures 6d and 7d. Comparing the estimates for imCPCC and wPLI,
we concluded that imCPCC has better temporal resolution for a wide window and lower
variability for a narrow window in the second interval. However, the estimated values
of the imCPCC in the constant sliding window analysis and the proposed RICI-imCPCC
are quite different. The estimated values generated with a constant narrow window have
higher variability (Figure 7e) than the values generated by the proposed RICI-imCPCC
estimation procedure. Moreover, the smoothness produced by RICI-imCPCC is due to the
adaptive window width defined by the RICI algorithm. RICI-imCPCC is not affected by
noise; see Figure 7f. In addition, the RICI-imCPCC provides good temporal resolution.
The variation of the window width over time is also shown in Figure 7g.
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Figure 7. An example of an RICI-imCPCC estimation procedure for the noisy synthetic signals (RC = 0.8 [37]. For an example, the 95% confidence interval was
obtained for Γ = 1.96 [38,39]). (a) Two noisy synthetic sinusoidal signals considered as a pair of electrode signals. The phase angle difference between these signals is
different in three intervals separated by magenta vertical lines. (b) The calculated temporal functional connectivity of wPLI and imCPCC for each of the intervals
separately with predefined interval boundaries. In addition, this line shows the distribution of the unit vector phase angle differences in the polar domain. (c) This
gives us an insight into the static functional connectivity imCPCC value calculated for the entire signal period and the distribution of unit vector phase angle
differences in the polar domain. (d,e) The estimated wPLI and imCPCC values calculated using the sliding constant window analysis method with narrow (window
size equal to 10 samples) and wide (window size equal to 500 samples) windows. (f) The estimate using the RICI-imCPCC method, and (g) the change in window
width for each observed sample defined using the RICI-imCPCC method.
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For the FC estimates shown in Figure 7e,f, the estimation error energy was calculated.
If the estimation error is defined as follows:

e(n) = FC(n)− F̂C(n), (13)

where FC(n) are the assumed ideal values and F̂C(n) are the estimated values. The estima-
tion error energy is defined as:

Ee =
N

∑
n=1
|e(n)|2, (14)

where e(n) is estimation error for each observed time sample. The estimation error energy
values for all observed methods are given in Table 1.

Table 1. This table presents the values of the estimation error energy (Ee) calculated for the values
of FC shown in Figure 7e,f. The Ee values were calculated for wPLI and imCPCC estimated values
obtained using the constant sliding window analysis method with narrow and wide window sizes
and the RICI-imCPCC estimation method.

Methods Ee

Narrow window size - wPLI 239.13
Wide window size - wPLI 168.81

Narrow window size - imCPCC 43.91
Wide window size - imCPCC 102.73

RICI-imCPCC 35.72

From Table 1, we can conclude that the estimation error energy is lowest for the
imCPCC results estimated by the RICI-imCPCC method (Ee = 35.72).

3.2. Auditory Oddball Real-Life Signals

In this experiment, we focused on the alpha band, because it is predominant, and alpha
connectivity patterns can be different according to different cortical generators depending
on the state of the brain [32]. Therefore, the signals were filtered to 8–13 Hz according
to [32,42–44].

Figure 8a shows estimation of wPLI using constant sliding window analysis with wide
and narrow window widths (for subject S01). If we expect some changes in the connectivity
between three and five hundred milliseconds due to the P300 [42,43], observing wPLI esti-
mation with wide window size produces bad temporal resolution. By observing estimation
with a narrow window, we can see that the wPLI value is almost always equal to one,
except for the intervals where the phase angle difference changes sign, and consequently,
wPLI approaches zero. Based on the theory of [42,43], during auditory oddball, the elec-
trode signals are not constantly connected, and therefore wPLI gives incorrect information.
Figure 8b shows estimation of imCPCC using constant sliding window analysis with wide
and narrow window sizes. Similarly to imCPCC, when using narrow window size, the
results are affected by the noise, and using wide window size, the results have bad temporal
resolution. Both these shortcomings are resolved using the proposed RICI-imCPCC method
(see Figure 8c), which produce good temporal resolution and is not affected by the noise.
Adaptive window sizes are represented in Figure 8d.
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Figure 8. An example of an RICI-imCPCC estimation procedure for the real signals (RC = 0.8 [37], Γ = 1.96 [38,39]). The minimum starting window size Np, used in
RICI-imCPCC procedure according to the [28] should be the number of samples corresponding to the period of the lowest observed signal frequency, which means:
Np = 1/8 ∗ 512 = 64 in our example. The growth step of the window is N = 1. In this example is observed electrode pair C4-TP10. (a,b) The estimated wPLI and
imCPCC values calculated using the sliding constant window analysis method with narrow (red line, window size is equal to 10 samples) and wide (black dashed
line, window size is equal to 128 samples) windows. (c) The estimate using the RICI-imCPCC method, and (d) the change in window width for each observed
sample defined using the RICI-imCPCC method.
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Figure 9 shows the mean RICI-imCPCC values (through all 27 trials) for different
electrode pairs, for subject S01. Marked with the red line are RICI-imCPCC results for
observation of odd tones, and the blue dashed line shows the same for frequent tones.
From Figure 9, we can conclude that the connectivity between electrodes was the same most
of the time for frequent tones, whereas the connectivity changed over time for odd tones.
The changes in connectivity between T8-TP10, Figure 9a, are due to the participant hearing
and processing a tone (areas BA21, 22) [45,46]. In addition, information is transmitted
to the part of the brain responsible for processing and computation [46], area BA40 [45]
(electrode pair TP10-CP6; see Figure 9b). In addition, information from the area responsible
for processing complex sounds [46] is transmitted to area BA44 [45], which is responsible
for working memory (i.e., short-term memory [46]), electrode pair T8-FC6; see Figure 9c.
Another indicator of activation of working memory area BA44 [45] is the change in con-
nectivity between TP10-FC6; see Figure 9d. Area BA08 [45] is responsible for auditory
perception and working memory, as indicated by the dynamic connectivity TP10-F4; see
Figure 9e. The change in connectivity between TP10-C4 could be due to the wiggling of the
fingers [46] during the experiment; see Figure 9f. With this explanation, we would like to
emphasize the possibility of practical application of the proposed RICI-imCPCC method.
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Figure 9. An example of RICI-imCPCC estimated values for frequent and odd tones in the observed
task (RC = 0.8 [37], Γ = 1.96 [38,39]). The minimum starting window size Np, used in the RICI-
imCPCC procedure according to the [28], should be the number of samples corresponding to the
period of the lowest observed signal frequency, which means: Np = 1/8 ∗ 512 = 64 in our example.
The growth step of the window is N = 1. The blue line shows the RICI-imCPCC estimated values
for odd tone, and the red dashed line shows the RICI-imCPCC estimated values for frequent tone.
Different electrode pairs are shown. (a) shows the RICI-imCPCC values for the electrode pair T8-TP10,
(b) for TP10-CP6, (c) for T8-FC6, (d) for TP10-FC6, (e) for TP10-F4, and (f) for C4-TP10.
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3.3. Motor Imagery Real-Life Signals

The frequencies of interest are in 8–12 Hz range, which corresponds to the mu-rhythm
(the other name is sensorimotor rhythm because it is localized above the sensorimotor
strip of the cortex) [47]. Subjects S03 and S10 are discarded in the preprocessing analysis
due to a large number of artifacts. Figure 10 shows the dynamic connectivity between the
electrode pair C3–C4 for subjects S01 and S09. The sensorimotor rhythm is blocked by the
corresponding hand movement or hand touch; accordingly, desynchronization between
the electrode pair C3–C4 should be detected during the motor imagery experiment [47].
Connectivity could be interpreted as a measure of the degree of synchronization between
some electrode pairs. Accordingly, we expect a decrease in dynamic connectivity when
desynchronization between electrode pairs occurs. In Figure 10a,b, the desynchronization
between C3 and C4 during the observation of dynamic connectivity is visible in the interval
from 0.5 to 0.9 s for subject S01 and in the interval from 0.5 to 1.5 for subject S09. The peak
that can be observed immediately after the trigger event and before 0.5 s could be explained
as a consequence of the event-related potential (ERP).
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Figure 10. An example of the mean (through 60 trials, frequency band: 8–12 Hz) RICI-imCPCC
estimated values for imagining right hand movement (RC = 0.8 [37], Γ = 1.96 [38,39]). The minimum
starting window size Np used inRICI-imCPCC procedure according to the [28] should be the number
of samples corresponding to the period of the lowest observed signal frequency, which means:
Np = 1/13 ∗ 250 = 20 in our example. The growth step of the window was N = 1. As a baseline
we used −0.1 to 2.5 s. (a,b) show the RICI-imCPCC values for subjects S01 and S09 for the electrode
pair C3-C4.

4. Discussion and Conclusions

In this work, we have proposed new methods for monitoring the dynamics of brain
networks. We introduced the relative intersection of confidence intervals calculated for the
imaginary component of the complex Pearson correlation coefficient (RICI-imCPCC). We
compared it with the most commonly used method for observing the dynamics of brain
networks, constant sliding window analysis.

The most commonly used brain network connectivity indices (PLV [24,25], PLI [25],
wPLI [26]) calculate the connectivity value for the entire observed period (static functional
connectivity indices). If our observed signal has multiple intervals with different synchroni-
sation properties for the observed electrode pairs and if we consider each interval separately,
we get an accurate connectivity index result (if we compute imCPCC exactly for the interval
of interest, i.e., temporal functional connectivity). The problem, however, is how to identify
the start and end times of intervals with different synchronization properties when we
do not know in advance the main properties of the observed signal, which is the case for
EEG signals.

In this work, we have shown that this weakness can be compensated for by using the
RICI algorithm to define the width of the window and accurately determine the timing of
the change in the relationship between the observed pair of electrodes. With RICI-imCPCC
and the ability to independently define the window width according to the statistical
features of the phase angle difference between the two observed signals, we can precisely



Sensors 2022, 22, 5162 16 of 18

define the required window width for imCPCC estimation using the observed sample,
which makes a precise estimate of synchronization or changes in information flow between
the observed electrodes or brain regions smoother.

Using the constant sliding window analysis method with a narrow window size
results in high variability of estimated index values when synchronization changes are
slow. When using the sliding constant window analysis method with a wide window
size, it is impossible to estimate at what time the connectivity changes occurred when
the changes are fast, i.e., bad temporal resolution. The RICI-imCPCC method overcomes
both shortcomings because this method can determine the window width according to
the RICI rule based on the statistical properties of the area around the observed sample.
Moreover, unlike the constant sliding window analysis method with a narrow window
size, RICI-imCPCC is not affected by the noise. RICI-imCPCC provides estimation results
with high accuracy and good temporal resolution.

In future work, we will use the fast intersection of confidence intervals (FICI) method [48],
which allows us to estimate connectivity in real time with minimally reduced estimation
accuracy. The use of FICI could be used to monitor brain network dynamics during neuro-
feedback protocol and can be used in brain–computer interfaces to interpret difficulties in
brain connections during various procedures. The proposed algorithm could also be used
as a preprocessing tool for extracting graph-theoretic measures [18] to explore hypotheses
about brain dynamics based on these measures.

After the above discussion, we can conclude that the newly proposed RICI-imCPCC
method can overcome the shortcomings of sliding constant window analysis with both
narrow and wide window sizes, and therefore provides us with the opportunity to further
investigate the brain network’s dynamics.
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Abbreviations
The following abbreviations are used in this manuscript:

absCPCC absolute value of complex Pearson correlation coefficient
BOLD-fMRI blood-oxygenation-level-dependent functional magnetic resonance imaging
CPCC Complex Pearson correlation coefficient
DTI Difussion Tensor Imaging
EC eyes closed
EEG Electroencephalography
EO eyes open
ERP event-related potential
FC Functional Connectivity
FICI Fast Intersection of Confidence Intervals
fMRI Functional Magnetic Resonance Imaging
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ICI Intersection of Confidence Intervals
imCPCC imaginary component of complex Pearson correlation coefficient
MEG Magnetoencephalography
MRI Magnetic Resonance Imaging
PDFs Probability Density Functions
PLI Phase Lag Index
PLV Phase Locking Value
RICI relative Intersection of Confidence Intervals

RICI-imCPCC
relative Intersection of Confidence Intervals for imaginary component
of complex Pearson correlation coefficient

TFC Temporal functional connectivity
wPLI Weighted Phase Lag Index
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27. Šverko, Z.; Vrankić, M.; Vlahinić, S.; Rogelj, P. Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors
2022, 22, 1477. [CrossRef] [PubMed]

28. Hutchison, R.M.; Womelsdorf, T.; Allen, E.A.; Bandettini, P.A.; Calhoun, V.D.; Corbetta, M.; Della Penna, S.; Duyn, J.H.; Glover,
G.H.; Gonzalez-Castillo, J.; et al. Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage 2013,
80, 360–378. [CrossRef]

29. Yi, G.; Wang, L.; Chu, C.; Liu, C.; Zhu, X.; Shen, X.; Li, Z.; Wang, F.; Yang, M.; Wang, J. Analysis of complexity and dynamic
functional connectivity based on resting-state EEG in early Parkinson’s disease patients with mild cognitive impairment. Cogn.
Neurodynamics 2022, 16, 309–323. [CrossRef]
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