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Abstract: Although increasing evidences support the notion that psychiatric disorders are associated
with abnormal communication between brain regions, scattered studies have investigated brain
electrophysiological disconnectivity of patients with generalized anxiety disorder (GAD). To this
end, this study intends to develop an analysis framework for automatic GAD detection through
incorporating multidimensional EEG feature extraction and machine learning techniques. Specifically,
resting-state EEG signals with a duration of 10 min were obtained from 45 patients with GAD and
36 healthy controls (HC). Then, an analysis framework of multidimensional EEG characteristics (in-
cluding univariate power spectral density (PSD) and fuzzy entropy (FE), and multivariate functional
connectivity (FC), which can decode the EEG information from three different dimensions) were
introduced for extracting aberrated multidimensional EEG features via statistical inter-group com-
parisons. These aberrated features were subsequently fused and fed into three previously validated
machine learning methods to evaluate classification performance for automatic patient detection. We
showed that patients exhibited a significant increase in beta rhythm and decrease in alpha1 rhythm of
PSD, together with the reduced long-range FC between frontal and other brain areas in all frequency
bands. Moreover, these aberrated features contributed to a very good classification performance with
97.83 ± 0.40% of accuracy, 97.55 ± 0.31% of sensitivity, 97.78 ± 0.36% of specificity, and 97.95 ± 0.17%
of F1. These findings corroborate previous hypothesis of disconnectivity in psychiatric disorders and
further shed light on distribution patterns of aberrant spatio-spectral EEG characteristics, which may
lead to potential application of automatic diagnosis of GAD.

Keywords: generalized anxiety disorder (GAD); electroencephalogram (EEG); functional connectivity
(FC); fuzzy entropy (FE); power spectrum density (PSD); machine learning

1. Introduction

Generalized anxiety disorder (GAD), a subtype of the anxiety disorder, is characterized
by frequent/persistent, generalized feelings of nervousness and excessive anxiety without
a clear object or fixed content [1]. It often manifests as overmuch worriedness or annoyance
about real-life problems [2] (i.e., worrying about work, illness, financial situations, social
competence, or accidents of oneself or relatives), leading to undesired and inappropriate
feelings for the patients that cannot be easily off-loaded. According to the previous reports,
the prevalence of the GAD is up to 3.1% every year or 5.7% over the lifetime in the United
States of America (USA) [3], while the prevalence of GAD in urban China is 5.3% [4]. Hence,
it has attracted growing attention in research due to the high prevalence rate as well as its
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common-existence in our daily surroundings [5,6]. Specifically, recent findings showed that
GAD usually appears during mid-adolescence [7,8] and can be unremitting throughout
life if not treated properly [6]. Despite recent advancements in the understanding of the
physiological and psychological of GAD, the electrophysiological correlates of GAD still
remain poorly understood [9].

Electroencephalogram (EEG) is an important non-invasive and economical electro-
physiological measurement technique that explores neuronal activity by placing electrodes
on the scalp [10]. EEG has a high temporal resolution, on the same millisecond scale
as brain neural activity (synaptic transmission is on the order of 1 millisecond, and in-
formation transmission is on the order of hundreds of milliseconds), enabling accurate
acquisition of neural activity and characterization of functional changes during cerebral
dynamic activity [11]. Up to now, EEG has been widely utilized in revealing the etiology
of various mental disorders (i.e., anxiety [12], depression [13], epilepsy [14], schizophre-
nia [15], Alzheimer [16], Parkinson [17], Autism Spectrum Disorder [18], etc.) due to its
low-cost, easy-to-use, and flexible regions-of-interest configuration [19,20]. Of note, power
spectrum density (PSD) analysis (which is a common power analysis method, mainly
including power, relative power, power ratio, power spectral coupling, etc.) with typical
EEG rhythms showed GAD related aberrations. For instance, Oathes et al. reported that
patients with GAD exhibited high power in the gamma band in posterior channels that
have long been recognized to be associated with negative emotion [21]. More recently, the
power spectral coupling between the delta and beta oscillations has been proven to be
related to GAD [22].

Although researchers have become increasingly interested in studying normal and
pathological brain functions via the interactions between different brain regions [22,23],
very few investigations of EEG functional connectivity (FC) have been performed on
GAD recently. FC in brain neuroscience represents the correlation of simultaneous activ-
ity between different brain anatomical areas, and is essentially a statistical connotation
that captures statistically dependent changes among the distributed remote neural ensem-
bles [24]. According to the global neuronal workspace theory, the brain relies on multiple
functional brain regions even performing very simple tasks, and the changes of the brain
functions will inevitably map onto the FCs between the entire functional brain regions.
Therefore, FC analysis can provide a unique quantitative approach to analyze the neural
mechanism of GAD from the perspective of whole brain functional network. From the
network topology perspective, it has been found that theta rhythm network integration
(measured by characteristic path length) increased as the cognitive load increased during
more complex emotion regulation tasks in patients with GAD [25]. EEG-based functional
connectome is highly dynamic and specific, and it can serve as a promising non-invasive
biomarker for GAD diagnostic.

In this study, we expanded these early studies in regard of proposing a novel analysis
framework incorporating multidimensional EEG characteristics extraction and machine
learning analysis, with an ultimate aim of augmenting our understanding of the underly-
ing aberrant neural mechanisms of GAD and automatic GAD detection. Specifically, the
nascent filed of FC studies of GAD [9] was adopted together with the previously validated
univariate EEG studies (i.e., PSD and entropy [26]) for multidimensional EEG characteris-
tics construction, which were then subjected to a conventional feature selection approach
via inter-group statistical comparisons. Then the statistically different features were used
as input for three widely utilized machine learning techniques. We expect to reveal neuro-
biological markers via the proposed analytical framework. In addition, among the existed
studies [26–28], the highest classification accuracy between GAD and HC group, to our
knowledge, is 93% with a deep learning model using task EEG signals. We also hope the
proposed analysis framework could provide an effective and reliable GAD identification
method to achieve better classification performance with machine learning models.
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2. Materials and Methods
2.1. Participants

Forty-five patients who met the Diagnostic and Statistical Manual of Mental Disorders-
IV (DSM-IV) criteria for GAD were recruited from Huzhou Third People’s Hospital, and
thirty-six healthy controls (HC) were recruited from the local community and assessed by a
psychiatrist using the Structural Clinical Interview for DSM-IV Disorders. The demographic
and clinical characteristics of the participants are given in Table 1. As shown in Table 1, the
mean age of GAD was 41.8 ± 9.4 (13 males and 32 females), and the mean age of HC was
36.9 ± 11.3 (11 males and 25 females), with no statistical differences between GAD and HC.
All subjects should participate in two questionnaires, Hamilton Rating Scale for Anxiety
(HAMA) scores and 17-item Hamilton Rating Scale for Depression (HAMD-17), and meet
the following requirements: HAMA scores ≥ 17 and HAM-D17 ≤ 14 for GAD; HAMA
scores ≤ 7 and HAMD-17 ≤ 7 for HC. In addition, each participant should be right-handed,
no other mental disorders (such as dementia, schizophrenia, epilepsy, delusional disorder,
bipolar disorder, depression disorder and so on, except GAD) and physical disorders (such
as severe cardiopulmonary, hepatorenal insufficiency, malignant tumor or hematopathy,
autoimmune diseases and so on) that may impair brain functions, no substance and alcohol
abuse, and no signs of brain damage, which were determined by self-reported. Each
participant was also required to not stay up late, not drink alcohol and drugs within one
day before the experiment, and no smoking, coffee and tea in 8 h before EEG recording. The
experiment was permitted by the Ethics Committee of Huzhou Third Municipal Hospital.
Written informed consent was obtained from all participants before the test.

Table 1. Demographic and clinical characteristics of the participants.

Characteristics GAD (n = 45) HC (n = 36) t F p-Value

Age (year) 22–55 (41.8 ± 9.4) 21–57 (36.9 ± 11.3) 1.99 3.96 0.06
Gender:

male/female 13/32 11/25 - - -

Duration of
illness (month) 1–48 (7.9 ± 7.6) - - - -

HAMA 27.1 ± 9.0 2.3 ± 0.9 16.63 222.18 1.14 × 10−24

HAMD-17 10.6 ± 6.0 2.4 ± 0.8 17.70 253.59 2.24 ×10−26

2.2. EEG Data Acquisition and Preprocessing

Sixteen-channel EEG signals, Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8,
P7, and P8, were collected by an EEG apparatus (Nicolet EEG TS215605) according to the
international 10–20 system, and referenced to the average of the left and right mastoids. The
sampling rate was 250 Hz and the electrode impedance was controlled below 5000 Ω. Each
subject was required to close their eyes, be awake and relaxed for ten minutes to collect 10-
m continuous EEG data. The whole experiment was implemented in a professional EEG
lab in Huzhou Third People’s Hospital.

A popular preprocessing procedure was applied for the EEG data. Firstly, the raw EEG
data were down sampled from 250 Hz to 100 Hz, and filtered between 4 Hz and 30 Hz by a
digital pass filter of fourth-order Butterworth band. Then, fast ICA was utilized for artifacts
removal (such as eye blinks, slow eye movements and so on). Next, 4 s of continuous EEG
data with 50% overlap were singled out as an EEG sample, resulting in 10,273 samples for
GAD group and 7773 samples for HC group. It is important to note that all the further
analyses are based on 4-s continuous EEG data. Finally, EEG rhythms of theta (4–8 Hz),
alpha1 (8–10 Hz), alpha2 (10–13 Hz), and beta (13–30 Hz) were extracted for every EEG
sample by the same band pass filter.

2.3. EEG Features Extraction

Numerous studies have demonstrated the feasibility of utilizing EEG features to
explore and detect mental disorders. As mentioned previously, the primary objective of the
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current work is to develop a feasible and efficient method for automatic GAD detection
via utilizing multidimensional EEG characteristics. To this end, three widely used EEG
features (including PSD analysis, fuzzy entropy (FE) analysis, and FC analysis), which
have been repeatedly demonstrated their effectiveness in detecting mental disorders [29],
were adopted in this work. These three methods decode the information contained in
EEG signals from three different dimensions, which portrayed the neurophysiological
implications of EEG signals from three different perspectives. They are very representative.
Specifically, PSD, FE, and phase lag index (PLI, which is a common method for determining
the weights of FCs) are calculated for each EEG sample.

2.3.1. PSD Calculation

For the given EEG signal x(i) (i = 1, 2, 3, . . . , N; N is the number point of x(i)), its
frequency spectrum X(f ) can be estimated by fast Fourier transform (FFT), and then the
power spectrum Px(f ) was gained with Equation (1). The relative power of PSD(h) for each
EEG rhythm can be computed through Equation (2). In Equation (2), h represents the EEG
rhythms of theta, alpha1, alpha2, and beta, f m and fn are the upper and lower frequencies
of the EEG signal with four rhythms, while fh and fl are the upper and lower frequencies of
h rhythm, respectively.

Px( f ) =
1
N
|X( f )|2 (1)

PSD(h) =

∫ fh
fl

Px( f )d f∫ fm
fn

Px( f )d f
× fm − fn

fh − fl
(2)

2.3.2. FE Calculation

For the given EEG signal x(i) (i = 1, 2, 3, . . . , N), it can be reconstructed into a set of
m-dimensional vectors Xm

i shown in Equation (3), where m is the embedding dimension,
and x0(i) represents the mean value shown in Equation (4). The distance dm

ij between
Xm

i and Xm
j is calculated by Equation (5). Then the similarity Dm

ij between Xm
I and Xm

j is
defined as Equation (6). The Om(r) is calculated by Equation (7). The FE [30] of the EEG
signal x(i) could then be estimated as Equation (8).

Xm
i = {x(i), x(i + 1), · · · x(i + m− 1)} − x0(i), (i = 1, 2, · · · , N −m + 1) (3)

x0(i) =
1
m

m−1

∑
j=0

u(i + j) (4)

dm
ij = max

k∈(1,m)
{|(u(i + k)− u0(i))− (u(j + k)− u0(j))|}, (i 6= j) (5)

Dm
ij = exp(− ln(2)× (

dm
ij

r
)2) (6)

Om(r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

Dm
ij

)
(7)

FE(m, r, N) = ln Om(r)− ln Om+1(r) (8)

In the current study, a typical value for the embedding dimension m is set as 2, and
the value r is determined by k × δ, N is the length of the EEG signal x(i) under observation
(N = 1000). Additionally, k is the constant value set as 0.2 (usually the value range is
between 0.10 and 0.25), and δ is the standard deviation of the EEG signal x(i).
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2.3.3. PLI Calculation

For the given EEG time series xi(t), it can be expressed as zi(t) by Hilbert transform [31]
shown in Equation (9):

zi(t) = Zi(t)ejϕi(t) (9)

where Zi and ϕi are the instantaneous amplitude and phase of xi(t), respectively. Then the
PLI [32] of two EEG time series xk(t) and xl(t) can be estimated by Equation (10):

PLIk,l = |〈sign(ϕk(t)− ϕl(t))〉| (10)

where sign is sign function, <•> means the average value, and |•| denotes the absolute
value. The PLI value ranges between 0 and 1. PLI = 0 represents the case where there is no
phase synchronization, while PLI = 1 indicates the perfect phase locking between two EEG
time series.

2.4. Feature Selection via Statistical Analysis

Once the multidimensional EEG features were constructed, a feature selection ap-
proach was needed given that the number of features is relatively large (i.e., PSD, 16 EEG
channels × 4 frequency bands; FE, 16 EEG channels × 4 frequency bands; PLI,
16 × (16 − 1)/2 functional connections × 4 frequency bands) that may contain irrelevant
features and redundant features. Here, a conventional statistical comparison approach was
used for feature section. Specifically, a separate one-way analysis of variance (ANOVA)
was carried out to determine the significant statistical differences of EEG characteristics
between GAD and HC groups. Of note, this one-way ANOVA was performed on the PSD,
FE, and FCs. The statistical differences were considered significant at a threshold of 0.05
(p < 0.05).

2.5. Machine Learning for Classification

In this study, three previously validated machine learning models [29], support vector
machine (SVM), random forest (RF), and ensemble learning of back propagation neural
network based on bagging strategy (BP_Bagging), were utilized with 10 times of hold-
out method for cross-validation (80% samples for training and 20% samples for testing),
respectively. Specifically, the kernel function of radial basis function (RBF) was applied
for SVM, and 500 decision trees were utilized for RF. As for BP_Bagging, 100 base learners
with 6 hidden layers and 100 neuron cells were used for ensemble, 80% of features and
train samples were implemented for feature perturbation and sample perturbation, and
then the voting method was performed on the outputs of 100 base learners to gain the
final classified result. The performances of the three models are evaluated by accuracy
[(TP + TN)/(TP + TN + FP + FN)], sensitivity [TP/(TP + FN)], specificity [TN/(FP + TN)],
F1 [2TP/(2TP + FP + FN)]. Where, TP is true positive, FP is false positive, FN is false
negative, and TN is true positive. Besides, all analyses, including EEG preprocessing,
feature calculations, statistics, and classifications, were implemented using the MATLAB
2019b software.

3. Results

Figures 1 and 2 demonstrate the results of PSD and FE analysis between GAD and HC.
Comparing Figure 1a with Figure 1b, it suggests that slow EEG rhythms (theta and alpha1)
have lower relative power, and fast EEG rhythms (alpha2 and beta) have higher relative
power in GAD than in HC. Meanwhile, only alpha1 rhythm in the frontal, temporal and
central areas and beta rhythm in the frontal and temporal areas have significant statistical
differences, and the most significant changes are distributed in the frontal and temporal
regions (see the topography of alpha1 and beta rhythm in Figure 1c). In Figure 2a,b, the
FE of theta, alpha1, and alpha2 rhythms in GAD exhibit a decreasing trend compared
with HC. Meanwhile, beta rhythm shows a trend of increase; but all rhythms have no
statistical differences.
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Figure 1. Brain topography of the PSD for the four EEG rhythms. Each value is the average of all
subjects. The relative powers of HC (a) and GAD (b) have been normalized between 0 and 1 for the
theta, alpha1, alpha2, and beta rhythms for the sake of better visualization, so they share the same
color bar. The red dots represent these EEG channels have significant differences (p < 0.05). The
subgraphs of (c) are the relative PSD (RP: |PSDGAD-PSDHC|/PSDHC) of GAD relative to HC for the
four rhythms.
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Figure 2. Brain topography of the FE for all EEG rhythms. Each value is the average of all subjects.
The FE of HC (a) and GAD (b) have been normalized between 0 and 1 for the theta, alpha1, alpha2,
and beta rhythms for the sake of better visualization, so they share the same color bar. All rhythms
have no significant differences (p > 0.05). The subgraphs of (c) are the relative FE (RFE: |FEGAD–
FEHC|/FEHC) of GAD relative to HC for the four rhythms.
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Figure 3 shows the results of the FC analysis. In Figure 3, the FCs with statistical
differences are demonstrated in the brain functional networks. Interestingly, 77% of the
existed FCs (7/30 for theta, 2/15 for alpha1, 1/7 for alpha2, and 11/40 for beta) have
lower values in GAD compared to HC. The topological distributions of the brain networks
indicate that the FCs are mainly related to the frontal area and distributed between frontal
and other areas. Specifically, the ratio of the FCs related to frontal area is 67% in total, and
24/30, 11/15, 4/7, and 23/40 for theta, alpha1, alpha2, and beta rhythms, respectively. To
sum up, the results suggest the reduced long-range brain interactive activities between
frontal and other areas among the patients with GAD.
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Figure 3. Brain functional network of theta, alpha1, alpha2, and beta rhythms. In the brain functional
networks, the red edge means the PLI value of GAD is lower than that of HC. Meanwhile, the blue
edge represents the PLI value of GAD is higher than that of HC.

In addition, three popular classifiers of SVM, RF, and BP_Bagging are applied for
identifying GAD and HC with the aberrated EEG features (18 PSD features, 0 FE features,
and 92 FC features). As shown in Table 2, the classification accuracies with these three
classifiers are 97.83 ± 0.40%, 90.16 ± 0.92%, 95.51 ± 0.20%, respectively. We also calculate
the accuracies of the four rhythms separately (theta, alpha1, alpha2, and beta rhythms
contains 30, 25, 7, 48 EEG features, respectively). The highest accuracies for each rhythm
are 70.92 ± 0.80%, 73.67%, 69.46%, and 96.49 ± 0.33%, respectively. Among these four EEG
frequency bands, beta rhythm acquires the highest accuracy, and is very close to the results
of the accuracy obtained with all features.

Table 2. Classification accuracies with different feature groups between GAD and HC.

Models Index (%) All Theta Alpha1 Alpha2 Beta

SVM

Accuracy 97.83 ± 0.40 70.92 ± 0.80 73.39 ± 0.56 63.13 ± 0.40 96.49 ± 0.33
Sensitivity 97.55 ± 0.31 74.00 ± 0.80 75.91 ± 0.65 66.64 ± 1.03 96.83 ± 0.34
Specificity 97.78 ± 0.36 66.12 ± 1.16 69.76 ± 0.15 56.89 ± 2.23 95.82 ± 0.44

F1 97.95 ± 0.17 74.33 ± 0.55 76.91 ± 0.58 67.71 ± 0.49 96.83 ± 0.23

RF

Accuracy 90.16 ± 0.92 69.59 ± 0.69 73.67 ± 0.91 69.46 ± 0.44 88.76 ± 0.52
Sensitivity 88.82 ± 1.08 70.16 ± 0.97 72.01 ± 0.70 68.49 ± 0.80 88.30 ± 0.98
Specificity 91.69 ± 0.51 68.32 ± 0.46 77.90 ± 1.55 70.70 ± 0.98 89.71 ± 1.17

F1 91.44 ± 0.65 75.13 ± 0.72 79.31 ± 0.77 75.78 ± 0.66 90.45 ± 0.18

BP_Bagging

Accuracy 95.51 ± 0.20 68.42 ± 0.80 71.37 ± 0.39 68.99 ± 0.33 93.41 ± 0.85
Sensitivity 88.74 ± 0.88 73.45 ± 0.66 71.94 ± 0.53 66.56 ± 0.48 88.54 ± 0.52
Specificity 91.98 ± 0.97 66.23 ± 1.34 78.26 ± 1.56 68.78 ± 1.47 89.74 ± 0.84

F1 91.50 ± 0.38 72.22 ± 3.75 79.30 ± 0.42 73.87 ± 0.14 90.58 ± 0.56

4. Discussion

In this resting-state EEG study, we provided a comprehensive analysis with three
widely used types of EEG feature extraction strategies, which can decode the EEG informa-
tion from three different dimensions, to reveal the neurophysiological alterations of GAD.
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The significant findings are as follows: first, beta rhythm emerged with significant changes
both in PSD analysis and machine learning analysis, depicted by increased relative power
in GAD compared to HC. Second, the statistics of FC values and distributions indicated
that GAD has the reduced long-range brain interactive activities between frontal and other
areas in all frequency bands. Third, the highest classification accuracy of 97.83 ± 0.40% for
GAD detection was acquired with the extracted multidimensional EEG features, suggesting
good performances of extracting aberrated EEG features. These findings are discussed in
greater detail below.

4.1. Striking EEG Rhythm in GAD

Although numerous studies have used EEG rhythms as reliable characteristic patterns
for GAD studies [19], our study further supports the important role of beta rhythm in
GAD through different perspectives. On the one hand, beta rhythm had statistical differ-
ences between GAD and HC in PSD analysis. On the other hand, beta rhythm had the
highest classification accuracy compared to theta, alpha1, and alpha2, which means the
largest difference of beta rhythms were between GAD and HC than that of other rhythms.
Although alpha1 rhythms also had statistically difference in the PSD analysis, the classifi-
cation accuracy of alpha1 rhythms (73.67%) was much lower compared to beta rhythms
(96.49 ± 0.33%). In fact, few previous studies reported the similar conclusion of the impor-
tant role of beta rhythm in GAD. A direct reason may be the lack of multi-methodological
comparative studies with EEG signals. To our knowledge, there is no study performed
multidimensional feature extraction and machine learning on the EEG signals with GAD.
More attention has been paid to the delta-beta cross-frequency correlation [22]. The striking
beta rhythm can help to be better understanding the neuromechanism of GAD.

The increases of beta relative power and FE indicated that patients’ brain activities
are often keeping them in a state of nervousness and neural disorganization. Previous
studies have also widely reported the significant increase in beta power [19,33,34] and
the similar distribution of the frontal region [35], which is inconsistent with our study.
Beta rhythm is usually associated with the vigilant and excited state of the brain [22,36,37]
and mediates higher cognitive functions [38] (for instance, ‘top-down’ modulation of
brain processing [39]). By contrast, theta rhythm is linked with emotional influences on
perception [38,40]. The decrease in slow EEG relative powers (theta and alpha1) and
significant increase in fast EEG (beta) powers reflected negative emotions and significant
activation of the brain [41]. Meanwhile, FE performs an improved evaluation of signal
complexity and has been powerfully applied to EEG signals [42,43]. The slight increase
in FE of beta rhythm indicated the increased complexity of EEG signals and prompted
the brain neural disorganization. A similar study based on correlation dimension analysis
also pointed out the increase complexity of the EEG signals with GAD [9]. One possible
explanation may be the increased worry/internal cognitive processing of the GAD in the
form of divergent negatively biased mind wandering (i.e., considering all possible outcomes
leading to “catastrophic thinking”) during non-specific information processing [11]. To sum
up, the significant changes in beta rhythm can help to well explain the neural mechanism of
GAD, and provide basic theoretical supports for subsequent research on detection methods
and neural marker identification.

This current study was also motivated by previous studies which have divided the
EEG bands into narrower frequency bands [19]. Here, we firstly divided alpha rhythm
into two sub-bands (alpha1 and alpha2) in GAD research, and obtained some meaningful
results. That is, the relative power of alpha1 rhythm and alpha2 showed a different changing
mode and statistical analysis results, suggesting the essential process in EEG-related GAD
research to divide alpha frequency band into alpha1 and alpha2 sub-bands. Klimesch
et al. have reported that narrower frequency bands can reduce the risk of offsetting or
undetected frequency effects [44]. In summary, narrower band divisions can enhance the
physiological significance of sub-bands, which is supported by the results of alpha1 and
alpha2 relative powers.
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4.2. Reduced FCs and Dominant Brain Areas

In this study, PLI was utilized to estimate brain FC, which can overcome the volume
conduction problem during EEG acquisition [32]. Significantly, we observed the reduced
weights of most FCs in GAD through statistical analysis, and these statistical FCs were
significantly correlated with prefrontal area and mainly distributed between frontal and
other brain areas. We can conclude that GAD has reduced FC between frontal areas and
other brain regions.

To date, scant FC studies based on EEG signals have been performed on GAD [11].
As it is known, different subtypes of anxiety disorders exhibit different specific pheno-
types [11,22]. Some relevant studies of other subtypes of anxiety disorder (such as panic
disorder, social anxiety disorder, trait anxiety disorder) based on brain FC give our findings
some support [2,45]. Panic disorder patients have lower weights of inter-hemispheric FCs
in the frontal region and intra-hemispheric FCs in the bilateral temporal region [46]. Lower
FC is associated with higher trait anxiety disorder [47], and dysregulated alpha connectivity
is observed in trait anxiety disorder [48]. Conversely, an increase in oscillatory coherence of
the theta rhythm indicated the higher connectivity in the social anxiety disorder compared
to HC during resting-state EEG study [49]. Increasing evidence supports the notion that
anxiety disorders are associated with abnormal communication between brain regions.
Existed studies also proved that different subtypes of anxiety disorder are modulated by
discrete neurobiological mechanisms.

4.3. Excellent Classification Performance for GAD Detection

In this study, we obtained excellent classification performance, with an accuracy of up
to 97.83± 0.40% between GAD and HC groups, which is better than existing similar studies.
Mokatren et al. obtained a highest accuracy of 92.19% with a convolutional neural network
model and an 81.25% accuracy with a SVM classifier applied on social anxiety disorder with
resting-state EEG dataset [26]. Park et al. reported their highest accuracy of 91.03% with
elastic net classifier using resting-state EEG data [28]. Al-Ezzi et al. achieved the accuracies
of 92.86%, 92.86%, 96.43%, and 89.29% for severe, moderate, mild anxiety and HC by using
a deep learning model (convolutional neural network + long short-term memory) with task-
state EEG data, respectively [27]. Moreover, lower classification accuracies were reported
using other modalities data [50–52], such as an accuracy of 87.4% with Self-Rating Anxiety
Scale questionnaires data [12], and an accuracy of 86% with language-based features [53].
The above studies give us the following insight: better performance with our proposed
EEG feature extraction and selection than the results of other existing studies indicates the
importance of the EEG feature extraction process in classification problems. Compared to
Mokatren’s SVM result, we achieved much higher accuracy than Mokatren’s. This is most
likely because only relative power and wavelet entropy were used for SVM in Mokatren’s
study, without FC method and feature selection method.

4.4. Limitations

Although the current results may be intriguing, some limitations should be considered.
Firstly, there were 45 patients with GAD and 36 HC volunteers enrolled in this study. This
sample size is not big enough to draw definitive conclusions. Secondly, the participants
were between 18 and 55 years old. A broader age range needs to be designed to obtain
more comprehensive findings in future research. Thirdly, a 16 electrode EEG system was
used for this study. Further research will focus on a high-density EEG system (for example,
64 electrodes) and compare the results with these findings. Fourthly, only one of the anxiety
subtypes, GAD, was explored herein. Other anxiety disorder subtypes and deep learning
models will be considered for the identifications among the subtypes. Finally, three widely
used EEG assessments that have been proven in detecting mental disorders were adopted
here for multidimensional EEG feature construction. Additional efforts are needed to
exploit for the best combination of EEG measurements to replicate our findings and more
importantly further improve the detection performance.
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5. Conclusions

In this study, we developed an EEG feature extraction and selection framework for the
automatic detection of GAD with resting-state EEG. By incorporating multidimensional
EEG characteristics and statistical analysis, we found that individuals with GAD exhibited
a significant increase in beta rhythm and a decrease in alpha1 rhythm of relative power,
together with the reduced long-range brain interactive activities between frontal and other
brain areas in all frequency bands, which can be served as the neural biomarkers of GAD.
Furthermore, to the best of our knowledge, the highest classification performance with
97.83 ± 0.40% of accuracy, 97.55 ± 0.31% of sensitivity, 97.78 ± 0.36% of specificity, and
97.95 ± 0.17% of F1 was achieved, based on aberrated multidimensional EEG features.
Overall, the subjective and electrophysiological findings reported herein have potential
applications for the developments of electrophysiological neuromechanisms and automatic
diagnosis of GAD.
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