Table 2.
Model | Params | CC | MLO | Accuracy (%) |
Precision | Recall | Specificity | F1 Score | AUC | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Single-view DeiT-tiny |
5.5 M | ✓ | 69.6 ± 1.4 | 0.708 ± 0.035 | 0.662 ± 0.040 | 0.728 ± 0.058 | 0.683 ± 0.013 | 0.724 ± 0.013 | <0.001 | |
Single-view DeiT-tiny |
5.5 M | ✓ | 72.5 ± 2.8 | 0.728 ± 0.037 | 0.713 ± 0.027 | 0.737 ± 0.045 | 0.720 ± 0.028 | 0.769 ± 0.036 | 0.376 | |
Two-view DeiT-tiny (proposed) | 5.5 M | ✓ | ✓ | 77.0 ± 1.2 | 0.797 ± 0.039 | 0.726 ± 0.063 | 0.814 ± 0.057 | 0.757 ± 0.022 | 0.814 ± 0.026 | 0.031 |
Two-view DeiT-small (proposed) | 21.7 M | ✓ | ✓ | 76.3 ± 2.8 | 0.799 ± 0.071 | 0.706 ± 0.033 | 0.818 ± 0.081 | 0.747 ± 0.018 | 0.818 ± 0.039 | 0.009 |
CNN feature concatenation [16] |
44.7 M | ✓ | ✓ | 73.9 ± 2.4 | 0.761 ± 0.05 | 0.696 ± 0.041 | 0.781 ± 0.071 | 0.725 ± 0.019 | 0.784 ± 0.016 | - |
View-wise CNN [17] |
22.4 M | ✓ | ✓ | 71.7 ± 2.1 | 0.735 ± 0.04 | 0.677 ± 0.051 | 0.756 ± 0.069 | 0.702 ± 0.021 | 0.759 ± 0.023 | N/A |