Skip to main content
. 2022 Jul 21;22(14):5437. doi: 10.3390/s22145437
Algorithm 1 GAN-based algorithm for complex-scenario MFGs

Require:σ diffusion parameter, H Hamiltonian, g terminal cost, f interaction term.

Require: Initialize neural networks Nω and Nθ, batch size B.

Require: Set ϕω and Gθ as in (29).

while not converged do

         train ϕω:

         Sample batch zb,tbb=1B where zbρ0 and tbUnif(0,T)

         Obtaining generated data xb,tbb=1B,xbGθzb,tb.

         Update discriminator parameters ω to minimize total=0+t+HJB

                  ωωη1total(ω)

         train Gθ:

         Sample batch zb,tbb=1B where zbρ0 and tbUnif(0,T)

         Update generator parameters θ to minimize ζt

                  θθη2ζt(θ)

end while