Table 4.
Model | Parameter |
---|---|
DT | default |
GB | estimator = 100, learning rate = 0.1, max. depth = 3, random state = 0. |
kNN | k = 3. |
MLP | network solver = adam, alpha=1e-5, hidden layer = 128, input layer = 9 output layer = 5, max iteration = 600, random state = 42. |
RF | tree = 30, random state = 42. |
SVM | kernel = RBF, gamma = 0.8, C = 1. |