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Abstract: Industrial-based application of supercritical CO2 (SCCO2) has emerged as a promising
technology in numerous scientific fields due to offering brilliant advantages, such as simplicity of ap-
plication, eco-friendliness, and high performance. Loxoprofen sodium (chemical formula C15H18O3)
is known as an efficient nonsteroidal anti-inflammatory drug (NSAID), which has been long pro-
pounded as an effective alleviator for various painful disorders like musculoskeletal conditions.
Although experimental research plays an important role in obtaining drug solubility in SCCO2,
the emergence of operational disadvantages such as high cost and long-time process duration has
motivated the researchers to develop mathematical models based on artificial intelligence (AI) to
predict this important parameter. Three distinct models have been used on the data in this work,
all of which were based on decision trees: K-nearest neighbors (KNN), NU support vector machine
(NU-SVR), and Gaussian process regression (GPR). The data set has two input characteristics, P
(pressure) and T (temperature), and a single output, Y = solubility. After implementing and fine-
tuning to the hyperparameters of these ensemble models, their performance has been evaluated
using a variety of measures. The R-squared scores of all three models are greater than 0.9, however,
the RMSE error rates are 1.879 × 10−4, 7.814 × 10−5, and 1.664 × 10−4 for the KNN, NU-SVR, and
GPR models, respectively. MAE metrics of 1.116 × 10−4, 6.197 × 10−5, and 8.777 × 10−5errors were
also discovered for the KNN, NU-SVR, and GPR models, respectively. A study was also carried out
to determine the best quantity of solubility, which can be referred to as the (x1 = 40.0, x2 = 338.0,
Y = 1.27 × 10−3) vector.
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1. Introduction

The invention of novel drugs and the development of promising therapeutic ap-
proaches can be considered as the most important challenges in the pharmaceutical in-
dustry [1,2]. Perceiving the solubility behavior of various therapeutic drugs is known
as a vital key point toward the efficient designation of the supercritical approach for the
pharmaceutical industry [3]. Solubility can be defined as the capability of a solute to be
dissolved in a particular solvent to obtain a homogenous Loxoprofen sodium is known
as an important nonsteroidal anti-inflammatory drug (NSAID), which has considerable
analgesic influence (10–20 times greater than ketoprofen or naproxen) that made it an
appropriate anti-inflammatory and antipyretic agent [4]. Additionally, this drug has shown
its great potential of application to relieve the acute/chronic pain without having serious
side effects for the gastrointestinal tract [5,6]. Loxoprofen is instantly metabolized through
the trans-alcohol formation, acts as a non-selective inhibitor of cyclooxygenase after oral
administration, and reaches its maximum plasma concentration in less than 1 h [7]. Table 1
lists the structure and characteristics of Loxoprofen.

Table 1. Structure and characteristics of Loxoprofen [8,9].

Molecular Structure Chemical
Formula Molecular Weight Routes of

Administration
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Over the last two decades, industrial-based application of supercritical CO2 (SCCO2) has
attracted raised attention around the world due to their significant superioriy over organic
solvents, such as non-toxicity, environmental-friendliness, and excellent efficiency [10,11].
In the case of environmental apprehension, SCCO2 is known as a green solvent, which
possesses the diffusivity of gas and the density of liquid in the supercritical state. These
interesting characteristics have provided an excellent opportunity for the replacement of
SCCO2 to chemical solvents [12].

SCCO2 has a great ability to handle an extensive range of complicated challenges in
pharmaceutical industries. This cutting-edge liquid solvent has been of great interest as a
reliable method for traditional unit operations related to the pharmaceutical production
process [13]. Determination of the optimized value of drug solubility is of great importance
in the pharmaceutical industry due to its effect on momentous parameters such as size,
shape, structure, and morphology [10]. Moreover, from the economic point of view, the
performance of the supercritical method substantially relies on the true vision of drug
solubility by supercritical fluids [14,15]. Numerous experimental/theoretical scientific
studies have been conducted to understand the properties of SCCO2 systems, especially
intermolecular interactions in supercritical fluid solutions [16–18]. Additionally, more
progression has taken place in the application of SCCO2 as an alternative solvent system
for materials’ processing [19–21].

It is no surprise that machine learning (ML) has become a gripping tool to enter the
scientific disciplines recently. Recently, we are experiencing a blasting of work that develops
and applies ML to a variety of scientific fields and domains [22–25]. In this study, three
models were suggested to predict the solubility output given in the dataset, including
KNN, Gaussian process regression, and NU-SVR. We also used a genetic algorithm (GA)
for hyper-parameter tuning of these models.

The support vector machine model, or SVM, is a key approach in ML for many disci-
plines for different data sizes. The SVM provides rapid and robust answers to regression
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tasks [26–28]. SVM-based learning algorithms are especially appropriate to problems re-
quiring previously unknown data, and they can be used to simply refine the solution. There
are several different varieties of SVR algorithms, including Linear-SVR, LS-SVR, C-SVR,
Nu-SVR, and many more [29,30].

It is the core idea behind k-nearest neighbors (KNN) models that they employ a
similarity of input attributes of data to make predictions using other data points that are
the most similar to the first. To be precise, it holds all of the training datasets during the
testing phase as well [31,32].

Furthermore, the Gaussian process model (GPR) was introduced as a useful nonpara-
metric Bayesian model which can be used in detection and utilization. The key benefit of
GPR is the ability to accomplish a trustworthy response for the model’s initial attributes.
By exploiting a theoretically infinite calculation of initial data and enables calculation of
the model complication through Bayesian inference, this model might depict a wide range
of relations among initial attributes and result values [33–36].

As mentioned before, the novelty of this study is using GA with three different new
models to optimize the configurations (hyper-parameters) of them in order to optimize
and predict the drug solubility. One of the best algorithms for addressing simple single-
objective problems is the genetic algorithm (GA). Furthermore, many scholars examine
multi-objective problems using the framework of GAs as the major body. Han et al. [37]
proposed the fitting and interpolation-based multi-objective GA. The algorithm produced
final solutions that outperformed other multi-objective algorithms in terms of diversity and
convergence. It can achieve significantly better diversity and convergence in final solutions
than other good multi-objective algorithms.

2. Data Set

In this work, a small dataset with 32 data points has been applied. Y = solubility
is the only output of the experimental dataset used in this investigation, which has two
input characteristics (pressure and temperature) and is displayed in Table 2. In Table 3, to
determine the linear correlation among characteristics, the Pearson correlation coefficient
is used.

Table 2. The whole dataset.

No. X1 = Pressure (MPa) X2 = Temperature (K) Y

1 12 308 6.75 × 10−5

2 16 308 1.32 × 10−4

3 20 308 1.77 × 10−4

4 24 308 2.23 × 10−4

5 28 308 2.77 × 10−4

6 32 308 3.41 × 10−4

7 36 308 3.93 × 10−4

8 40 308 4.29 × 10−4

9 12 318 3.46 × 10−5

10 16 318 1.13 × 10−4

11 20 318 1.94 × 10−4

12 24 318 2.70 × 10−4

13 28 318 3.85 × 10−4

14 32 318 5.01 × 10−4

15 36 318 5.67 × 10−4
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Table 2. Cont.

No. X1 = Pressure (MPa) X2 = Temperature (K) Y

16 40 318 7.07×10−4

17 12 328 2.20 × 10−5

18 16 328 7.65 × 10−5

19 20 328 2.23 × 10−4

20 24 328 3.09 × 10−4

21 28 328 4.88 × 10−4

22 32 328 6.60 × 10−4

23 36 328 8.16 × 10−4

24 40 328 8.81 × 10−4

25 12 338 1.35 × 10−5

26 16 338 6.33 × 10−5

27 20 338 2.07 × 10−4

28 24 338 3.73 × 10−4

29 28 338 6.07 × 10−4

30 32 338 8.20 × 10−4

31 36 338 9.01 × 10−4

32 40 338 1.28 × 10−3

Table 3. Pearson correlation analysis of data.

X1 X2 Y

X1 1.0 −8.40 × 10−16 8.62 × −10−1

X2 −8.40 × 10−16 1.0 3.36 × −10−1

Y 8.62 × −10−1 3.36 × −10−1 1.0

3. Methodology

The method has been used in this research is that the research data have been tested
using all three models. For each model, the hyper-parameters of these models are searched
and optimized using a genetic algorithm. Then, the best model with the best combination
of parameters is selected and presented as the final research model.

The genetic algorithm (GA) [38] is a metaheuristic search algorithm based on Dar-
winian Theory, whose principle is “survival of the fittest”, where each subsequent genera-
tion outperforms the preceding generation. The multi-objective optimization technique
and search problem are supported by the genetic algorithm.

GAs are among the most notable techniques under EAs, which are guided by evo-
lutionary theories of genetic choice. They also embrace Charles Darwin’s philosophy of
survival of the fittest. However, because of its superior optimization practice, GA has
been referred as a function optimizer. The method has been started by loading a group of
solutions (chromosome). It consists of a general explanation of the problem in the bit vector
class. Later, compute fitness for each chromosome using a fitness function appropriate for
the situation. Based on this, the most appropriate chromosomes are added to the matching
pool, where they are subject to crossover and mutation, resulting in a diverse collection of
solutions (offspring). Mutation, Crossover, and Selection are the three types of operators in
Genetic Algorithm Selection:

• Natural selection is a process that causes evolutionary changes in organisms. The
objective of optimization in our search algorithm is the maximum error of training data.
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Minimizing maximum error lets us to have the best hyper-parameter combination for
each model.

• Mutation is a unary operator that operates on one chromosome at a time.
• Crossover is a binary operator that can utilize two chromosomes at the same time.

3.1. K-Nearest Neighbors (KNN)

It is the core concept underlying k-nearest neighbors (KNN) models that they employ
the similarity of input attributes of data to make predictions using other data points that
are the most similar to the first. To be precise, it holds all of the training dataset during
the testing phase as well [31]. To use KNN regression, we just need to adjust how many
nearest neighbors that have the same numerical values as we do [39]. Another aspect is to
look at the data is to weigh the closest neighbors inversely based on how far they are from
the center. When regression is used, the same distance functions is utilized as when KNN
is an applied classification to figure out how far away the samples are from each other. The
following equations show how the distance is calculated between x and y, which are the
two input vectors:

Euc_Distance =

√√√√ k

∑
i=1

(xi − yi)
2 (1)

Man_Distance =
k

∑
i=1
|xi − yi| (2)

KNN trains by comparison of a given test instance (X, y) to a training dataset
S = {(Xind, yind)} For example, KNN computes the dind, which is distance between X
and each sample Xind in S and arranges the distance dind according to its value. Accordingly,
if dind is ranked ind, then the instance associated to dind is referred to as the ind-th closest
neighbor, and the result is shown as yind (X). Lat prediction y refers to the average of its k
closest neighbor’s outputs in regression, as illustrated in the following equation [40,41].

ŷ =
1
k

k

∑
ind=1

yind(X) (3)

3.2. NU-SVR

As a flavor of support vector machine regression models, Nu-SVR had shown signifi-
cant performance in many case studies. As the basic assumption considers a set of input
and output values, as shown in [42]:

{(x1, y1), . . . , (xn, yn)} (4)

The objective of the Nu-SVR model is to find a nonlinear correlation exhibited in the
down equation, as f (x) which should be adjacent to y as it is possible. In addition, it should
be as flat as feasible [43]:

f(x) = wT P(x) + b (5)

In the mentioned equation, b indicates the bias and P(x) is a nonlinear function that
shows the current initial area to an area with more demotions, and wT is the weight vector.
Getting the determined function to achieve the two basic goals of closeness and flatness is
the primary focus of the task. In fact, the primary aim of the task is to modify [43]:

1
2
|dwe|2+C

{
Y.ε +

1
n ∑n

i=1(ξ + ξ∗)

}
(6)

With the conditions below [43]:

yi − 〈wT .P(x)〉 − b ≤ ε + ξ∗i (7)
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〈wT .P(x)〉+ b− yi ≤ ε + ξi (8)

ξ∗i , ξi ≥ 0 (9)

Here, ε denotes a disparity of the f (x) of the actual observed amount, and ξ, ξi are
very weak variables declared in [44], which shows the disparity of ξ amount above ε error
are reasonable.

3.3. Gaussian Process Regression (GPR)

Resilience to errors in learning may often be improved using probabilistic regression.
On one of the nonlinear regression approaches that uses a probabilistic regression frame-
work but does not use parametric models, is the Gaussian Process Regression (GPR) [45].
In this method, the result variable y can be provided as follows:

y = f (x(k)) + ε (10)

x reflects a calculation of result data, f identifies the uncertain functional dependence,
and ξ refers to Gaussian noise σ2

n is the variance of Gaussian noise [46].
The results value is calculated using the Gaussian distribution p (y∗|X, y, x∗) by [47]:

ŷ∗ = m(x∗) + kT
∗
(
K + σ2

nI
)−1

(y−m(x∗)),
σ2

y∗ = k∗ + σ2
n − kT

∗
(
K + σ2

nI
)−1k∗,

(11)

K refers to a covariance matrix via the elements Ki,j = cov(xi, xj), vector k∗ by below
equation [47]:

[k∗]i = cov(xi, x∗) and k∗ = cov(x∗, x∗) (12)

To make trustworthy predictions, the mean and covariance function attributes are
computed applying the dataset. The attributes are illustrated as hyper-attributes due to the
aspects of the predictive possible distribution. The hyper-attributes are basically formed
through maximizing of logp(y|X) [48]:

log p(y|X) = −1
2

yT
(

K + σ2
nI
)−1

y− 1
2

log
(∣∣∣K + σ2

nI
∣∣∣)− n

2
log(2π) (13)

where, n denotes the quantity of training subset.

4. Results

In order to test and analyze how well the provided models work in real data, final
models will be built, and three metrics will be utilized to compare them. To find the optimal
configurations of models, a genetic algorithm (GA) optimization was used. All implemen-
tations of this research have been used by applying Python programming language, which
is a high-level language suitable for machine learning methods. This language is suitable
for libraries, some of which include Sklearn, Numpy, Matplotlib, and Seaborn have been
used in this research.

The horizontal area among two following amounts, especially the calculated and
predicted results amount, can be calculated through the equation below; the mean absolute
error (MAE) [49].

MAE =
1
n

n

∑
i=1
|ŷi − yi| (14)

where n shows the amount of dataset and yi illustrates the real measured amount, and ŷi
shows the predicted amount.
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A dataset’s standard deviation is measured utilizing the predicted amounts and the
measured amounts are calculated via [49]:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(15)

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − µ)2 (16)

µ shows the mean value of the real calculated values [49].
Given that all three models have good performance and that the R-square of all three

is higher than 0.9, we had a hard time choosing the most general model. For this purpose,
we pay attention to Figures 1–3, in which the real (observation) values (green line) are
displayed with the predicted values (blue in the training and red in the test). However, the
points in the NU-SVR model seem to be further away from the actual data line compared to
the other two models. But considering that in the other two models there is at least one red
dot (test) with a very large distance, NU-SVR is the most general model. In other words,
NU-SVR is considered as a better model because all the test points have shown an average
prediction error, but in two other models, many of the points have shown errors near to
zero, although in other points the error is huge. Table 4 compares the MAE, R2, and RMSE
values of all developed models.
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Table 4. The outputs.

Models MAE R2 RMSE

KNN 1.116 × 10−4 0.917 1.879 × 10−4

NU-SVR 6.197 × 10−5 0.971 7.814 × 10−5

GPR 8.777 × 10−5 0.968 1.664 × 10−4

To summarize, in addition to introducing the models and explaining how to tune their
configuration (calibrate super-parameters), experimental data and model predictions are
compared in the last three figures. The dots model predictions, and the line is experimental
data. Therefore, the NU-SVR model is the final model (most accurate) which is selected in
this study, and that is used to analyze the solubility of the drug, and the continuation of the
results is based on this.

Figure 4 displays a 3D projection of the inputs onto a single output channel. It
indicates that increasing the value of both traits will roughly increase output. Almost
same fact is shown in Table 5 of optimal values. Detailed analysis in the demonstrated
results of Figures 4–6 imply the influence of pressure on drug solubility, directly. The
increment of the pressure eventuates in improving the measured solubility amount of the
drug. This problem may be justified because higher pressure positively encourages the
density of SCCO2, which improves the solubilizing capability of SCCO2. Better speaking,
by enhancement of pressure, the molecular arrangement occurs in a more compressed
configuration, which changes the property of SCCO2 to a liquid-like fluid. By altering the
property of the SCCO2 to a liquid-like fluid, its solvating strength significantly increases
and, therefore, positively affects the solubility of the drug [50]. The second parameter is
temperature, in which its variation has a significant impact on solubility. The impact of
temperature on drug solubility is more complicated and needs more analysis. Temperature
possesses a different influence on the density and pressure of the sublimation process,
particularly when that is close to the solute melting point. Generally, an increase in
temperature leads to an increment in molecular energy. Then, an increase in molecular
energy results in higher propulsive forces and decreasing the density so that it causes a
significant decrement in solvating of SCCO2. Density reduction results in the decrement
of SCCO2 solvating followed by decreasing in the amount of Loxoprofen solubility in
SCCO2. For pressures more than 27 MPa, temperature possesses reverse affection on
drug solubility. It means that the pressure 27 MPa is identified as a turning amount, so
that the affection of temperature on drug solubility is altered entirely. This attitude is
due to the spontaneous impact of temperature on density decrement and the pressure
of the sublimation process, which implies its indirect impact on the drug solubility in
SCCO2. For the pressures below 27 MPa, the impact of density decrement because of
temperature increase is more prevailing in comparison to the influence of the pressure of
the sublimation process. If the amount is more than 27 MPa, the influence of temperature
increment on the solid sublimation pressure is more than the density reduction, which
causes the improvement of drug solubility. Following the abovementioned descriptions,
pressure 27 MPa and temperature 338 K are obtained as optimized values for maximum
response (1.268 × 10−4) hence considered optimized values.

Table 5. Final attributes amount for the supreme outputs.

X1 = P (MPa) X2 = T (K) Y

40.0 338.0 1.268 × 10−4
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to predict the optimized solubility of Loxoprofen sodium anti-inflammatory drug in SCCO2.
For this purpose, three methods were used in this research to look at the data: KNN, NU-
SVR, and Gaussian process regression. In this data set, there are two variables that can
be changed: P (pressure) and T (temperature). The only output that can be obtained is Y,
which is solubility. After setting up and fine-tuning the hyperparameters of these ensemble
models, we looked at how well they did on several tests. This means that the RMSE error
rates for the three models are all less than 0.99. The KNN, NU-SVR, and GPR models each
have an RMSE error rate of 1.978 × 10−4, 7.814 × 10−5, and 1.660 × 10−4. This is not all:
MAE metrics for the KNN model, NU-SVR model, and GPR model were also found to
have 1.116 × 10−4, 6.197 × 10−5, and 8.777 × 10−5errors. A study was also undertaken to
figure out the best amount of solubility, which can be described as (x1 = 40.0, x2 = 338.0,
Y = 1.27 × 10−3) vector.
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