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Abstract

Objective.—Deep learning denoising networks are typically trained with images that are 

representative of the testing data. Due to the large variability of the noise levels in PET images, it 

is challenging to develop a proper training set for general clinical use. Our work aims to develop a 

personalized denoising strategy for the low-count PET images at various noise levels.

Approach.—We first investigated the impact of the noise level in the training images on the 

model performance. Five 3D U-Net models were trained on five groups of images at different 

noise levels, and a one-size-fits-all model was trained on images covering a wider range of noise 

levels. We then developed a personalized weighting method by linearly blending the results from 

two models trained on 20%-count level images and 60%-count level images to balance the trade-

off between noise reduction and spatial blurring. By adjusting the weighting factor, denoising can 

be conducted in a personalized and task-dependent way.

Main results.—The evaluation results of the six models showed that models trained on noisier 

images had better performance in denoising but introduced more spatial blurriness, and the one-

size-fits-all model did not generalize well when deployed for testing images with a wide range of 

noise levels. The personalized denoising results showed that noisier images require higher weights 

on noise reduction to maximize the structural similarity (SSIM) and mean squared error (MSE). 

And model trained on 20%-count level images can produce the best liver lesion detectability.

Significance.—Our study demonstrated that in deep learning-based low dose PET denoising, 

noise levels in the training input images have a substantial impact on the model performance. The 

proposed personalized denoising strategy utilized two training sets to overcome the drawbacks 

introduced by each individual network and provided a series of denoised results for clinical 

reading.

Ethical Statement
This research is conducted under the principles embodied in the Declaration of Helsinki, with written informed consent obtained from 
all the subjects. This study has been approved by Yale Institutional Review Board.

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2023 July 13.

Published in final edited form as:
Phys Med Biol. ; 67(14): . doi:10.1088/1361-6560/ac783d.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

noise level disparity; deep learning; personalized denoising; low count PET

Introduction

Positron Emission Tomography (PET) has been widely applied in clinics for oncology (Bar-

Shalom et al., 2000; Rohren et al., 2004), cardiology (Schindler et al., 2010), and neurology 

(Nasrallah and Dubroff, 2013; Chen, 2001). A typical PET scan requires a standard dose of 

radioactive tracer injection, followed by a 60-minute waiting period allowing the tracer to 

be distributed and a 10 to 20 minutes scanning time during which the patients are asked to 

stay motionless(Beyer et al., 2000). The increasing number of PET studies each year raises 

concerns about the lifetime cancer risk to patients and healthcare providers due to excessive 

radiation exposure(Robbins, 2008). In addition, the long image acquisition time not only 

introduces motion artifacts on the PET image but also discomforts for the patients(Peng et 

al., 2021). As a result, it is desirable to reduce tracer dosage and image acquisition time. 

However, in this case, the detector rings will collect fewer coincidence events and result in 

noisier reconstructed images. It is more difficult to detect low contrast lesions in a noisier 

image (Yan et al., 2016).

Therefore, many conventional and deep learning (DL) methods have been proposed to 

improve the low count PET image quality. There are three categories of the conventional 

denoising algorithms: image filtering and post-processing(Chan et al., 2010; Peltonen et al., 

2011; Dutta et al., 2013; Arabi and Zaidi, 2021), image translation and denoising(Lin et 

al., 2001; Green, 2005; Le Pogam et al., 2013), and iterative reconstruction(Somayajula et 

al., 2010; Riddell et al., 2001; Cheng et al., 2021). Deep-learning approach can learn both 

the noise distribution and the image prior information which makes it outperform many 

conventional methods(Wang et al., 2021a) in medical image denoising fileds, including 

CT(Chen et al., 2017; Gholizadeh-Ansari et al., 2020), MRI(Manjón and Coupe, 2018; 

Tian et al., 2022), Ultrasound(Karaoğlu et al., 2022; Khor et al., 2022), and PET(Zhou et 

al., 2021). Xu et al. applied a residual convolutional neural network (CNN)(Zhang et al., 

2017) to denoise the ultra-low-dose (0.5% counts level) brain PET data(Xu, 2017). The 

results showed that aside from better noise reduction, DL-based approach better preserved 

fine structures and image resolution. Incorporating anatomical information from Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) in the deep-learning network is 

an efficient way to further preserve image resolution. Xiang et al. proposed a CNN network 

utilizing both the low dose brain PET and the T1 MRI as the training inputs to estimate the 

standard dose brain PET images (Xiang et al., 2017). Cui et al. trained a U-Net (Çiçek et al., 

2016) with CT or MRI image as input and the noisy PET image as label(Cui et al., 2019). 

The network was able to learn the intrinsic structure and denoise the low count PET image 

simultaneously.

However, it is hard to directly apply a lab-trained DL model in clinics. In the DL 

experiments, the noise levels in the testing images are usually pre-defined, so the training 

datasets are designed to match the testing datasets. Images previously acquired from the 
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same imaging protocol are collected to train the network. In this case, tracer type and 

voxel size are matched. Even if the majority of training images are collected from different 

vendors and have different tracer types and voxel sizes with the testing images, transfer 

learning can be implemented to address this issue(Chen et al., 2020; Liu et al., 2020). 

However, the previous transfer learning works did not take the noise level disparity into 

consideration. The remaining challenge for implementing a DL-based denoising algorithm 

on PET data is that PET images have wide range of noise levels. Even for PET images 

collected from the same scanner and reconstructed using the same algorithm, the noise 

level can vary greatly due to different injection doses, scanning time, patient weights, tracer 

distribution, and so on. In a previous extremely obese patient study, when the training 

images had higher noise level than the obese patient images, the deep learning model 

introduced spatial blurriness to the testing images(Liu et al., 2021a). To the best of our 

knowledge, there is no supervised DL denoising for PET images generalizable for a wider 

noise level range.

In CT denoising, task-specific and noise reduction controllable networks have gained more 

interest in recent years. Shan et al proposed a modularized cascaded network to denoise low 

count CT images(Shan et al., 2019). Intermediate denoised CT images were obtained and 

evaluated by physicians in a task-dependent way. The cascaded denoising network works 

well on CT images with different noise levels. Wang et al. inserted a hyper-parameter in a 

CNN network that can control the noise reduction level in the denoised CT images(Wang et 

al., 2021b). In total, nine networks were trained with nine hyper-parameters which allows a 

personalized selection towards nine different noise-resolution trade-offs. Since PET images 

have a higher degree of variation in noise level than CT images, DL-based personalized 

denoising for low-count PET images are particularly needed. Several studies made attempts 

toward this goal. Kim et al. proposed a penalized function to solve the noise level disparity 

problem in PET iterative reconstruction((Kim et al., 2018)). A linear fitting function was 

applied to control the bias generated by DnCNN(Zhang et al. ,2017) which was trained 

on different noise level images. Another study suggested that in the training process, low 

dose input images with higher counts or higher noise levels had more influence on the 

model optimization direction, so a modified loss function taking the image noise level as 

a weighting factor could increase model generalizability(Liu et al., 2021b). However, there 

is no study investigating personalized low-count PET denoising that allows controllable 

noise-resolution trade-offs.

In this work, we first investigated the impact of the noise level in the training images on 

the model performance. Normalized standard deviation in the liver region of interest (ROI) 

was chosen as a surrogate of image noise. We found that the noise level in the training 

images had a substantial impact on the model performance. The model trained with noisier 

input images had better performance in denoising but led to more spatial blurring. Based on 

this finding, we propose a personalized denoising method. Two networks were trained using 

lower and higher noise level datasets as inputs, respectively. The testing result was combined 

by the predictions of the two networks multiplied by tunable weighting factors. In this way, 

the weighting factors could be easily adjusted based on the image noise level or a given task. 

Our personalized denoising method was evaluated on patient images and phantom images in 
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terms of image quality and lesion detectability. We found that the optimal weighting factors 

are different for various tasks.

Materials and Methods

2.1 Patient dataset

195 anonymized patients’ 18F-FDG PET images acquired on a Siemens Biograph mCT at 

Yale-New Haven Hospital were included in this study. The patient dosage was 368.24±30.26 

MBq (303.33-435.12 MBq), and patient weight was 77.27±22.91 kg (37.56-178.40 kg).

Corrections for attenuation, scatter, and randoms were included in reconstruction using 

the Siemens E7 tool. Images were reconstructed by the ordered-subsets expectation 

maximization (OSEM) method with three iterations, 21 subsets, and a voxel size of 4×4×3 

mm3. A Gaussian filter with a 5-mm kernel was applied to the reconstructed image. Images 

were all calibrated, decay corrected, and normalized to standard uptake value (SUV) units.

The low dose PET images were simulated by uniformly decimating the list-mode data 

at 20%, 40%, and 60% down-sampling rates(Schaefferkoetter et al., 2019). There were 

five independent 20%-count replicates, two independent 40%-count replicates , and one 

independent 60%-count replicate rebinned from the 100%-count list-mode data. We 

generated two noise realizations at 20% and 40% count levels, and only one sample at 

the 60% count level to make sure the independence of the simulated low dose images. 

Among the 195 patients’ PET studies, 100 studies were randomly selected as the training 

datasets, 27 studies were used as validation datasets, and the remaining 68 studies were used 

as the testing data. Therefore, there were in total 500 images for training, 135 images for 

validation, and 340 images for testing.

2.2 Network architecture and training

We employed a 3D U-Net (Çiçek et al., 2016) for the denoising task, as illustrated in Figure 

1. The contracting path consists of three down-sampling blocks, which are constructed 

by two 3×3×3 3D convolutional layers. A 2×2×2 max-pooling layer connects the down-

sampling blocks. Image patch size is down-sampled from 64×64×16 to 32×32×8, and to 

16×16×4. The contracting path is followed by a bottleneck, which consists of two 3×3×3 

convolutional layers. The expanding path has three up-sampling blocks, and each contains 

an up-convolutional layer followed by two convolutional layers. The concatenating paths 

copy and concatenate the down-sampling layers to the up-convolutional layers.

Due to the limitations of GPU memory, a patch-based training strategy was utilized, with 

the patch size set as 64×64×16 voxels. During each training iteration, 1600 patches were 

used and the mini-batch size was set as 64. Based on the validation set that after 240 epochs 

the loss remained stable, the total epoch number was set as 240. Adam optimizer was used 

and the learning rate was set to 0.0001 initially with the exponential decay set as 0.999 

after each iteration. The training was towards minimizing the L2 loss. The total number 

of trainable parameters was around 7.1 million. 46G memory space was required to train 

the network. In the testing step, patch size was increased to 256×256×64 voxels with a 
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64×64×16 overlapping-tile stride. The final denoised image was combined by the predicted 

patches where the overlapped voxels were averaged.

Training the network using 100 images took around 72 hours and testing on 340 images took 

20 hours on average. The computing source used a 48G Quadro RTX 8000 GPU card.

2.3 Analysis of noise level impact on model performance

The impact of the noise level in the training images was first investigated. To determine 

the noise level of each PET image, we utilized the normalized standard deviation (NSTD) 

within a 3-cm diameter sphere in a relatively uniform part of the liver as the surrogate of 

image noise(Schaefferkoetter et al., 2019). We evenly grouped the 500 training images into 

five groups based on their NSTD value, named as Group 1 to 5. The NSTD ranges were 

shown in Table 1. Group 1 contained images with the lowest noise level while Group 5 

contained the noisiest images. Five sample images are shown in Figure 2. In addition, we 

created a set of training images named “Group All” containing 100 images randomly chosen 

from the 500 images, covering a large range of noise levels. In Group All, there were 20, 

23, 22, 19, 16 images belong to Group 1, 2, 3, 4, 5, respectively. The NSTD distribution 

of the 6 groups was shown in Figure 3. Group 5 had the widest range of NSTD values 

and some outliers. Group All had some outliers too. The training label images were the 

corresponding 100% counts level images. Six networks were trained using the six group 

datasets, respectively. The testing dataset included 340 patient images and were also sorted 

into 5 groups based on the NSTD ranges similar to those of the training images. The number 

of testing images in each group was 67, 76, 63, 60, and 74, respectively. All six networks 

were evaluated on the five testing groups.

2.4 Personalized Weighting for personalized denoising

We incorporated a blending strategy into PET denoising. Two denoised images, one has 

higher resolution and another has lower noise, were weighted by a tunable parameter. The 

overall workflow of the proposed method is shown in Figure 4. To acquire the denoised 

images, two 3D U-Net models were trained using 20% and 60%-count level images as 

inputs respectively, named as UNet 20 and UNet 60. Images denoised by these two networks 

were called Denoised 20 and Denoised 60. Denoised 20 were less noisy and more blurred, 

while Denoised 60 could better preserve the resolution but were noisier. The final denoised 

image was the linear blending of Denosied 20 and Denoised 60. The weighting factor was 

evaluated as eleven values between 0 and 1 with increments of 0.1, while in practice the 

weighting factor can be adjusted into any value between 0 and 1. The optimal weighting 

factor was determined in terms of image noise and given tasks.

We tested the customized weighting method on 340 low-dose PET images and the lung and 

liver lesion phantom data from the University of Pennsylvania(Surti et al., 2020). The 340 

low-dose PET images were the same as the testing images used in the matched denoising 

study. The lung and liver lesion phantoms were the combination of the SNMMI CTN 

phantom (lung) with a uniform cylinder (liver) acquired on a Siemens mCT scanner. The 

lesion data were collected by scanning the spheres in the air. There were 16 lesions in 

the lung and 21 lesions in the cylinder. Both the phantom and the lesion list-mode data 
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were combined to generate the phantom images embedded with the lesions. There were 10 

replicates of the phantom datasets. For each dataset, the full scanning time was 6 min. Then 

each dataset was parsed into small time fractions at 0.5, 1, 1.5, 2, and 3 minutes to generate 

five low-count level images. There are 60 phantom images in total. Sample phantom images 

are shown in Figure 5.

2.5 Evaluation metrics

2.5.1 Noise level—We applied NSTD as the surrogate of image noise for the human 

images. In the relatively uniforme liver region, we selected a 3 cm diameter sphere as the 

region of interest (ROI). The total number of voxels in the ROI is denoted as n. Ii, and Ii
L

are the SUV values in the ROI of the evaluated image and the label image. Higher the NSTD 

value, noisier the image

NSTD =
∑i Ii − Ii

L 2

n∑iIi
(1)

2.5.2 Mean Squared Error (MSE)—MSE is used as a loss function and comparison 

method for both human and phantom images. It is defined as

MSE =
∑i (Ii − Ii

L)2

m , (2)

where m is the total number of voxels within the human body. The background region in the 

PET image is excluded.

2.5.3 Peak signal-to-noise ratio (PSNR)—PSNR is defined as

PSNR = 10log10
max(IL)2

1
m ∑i ∈ R (Ii − Ii

L)2 , (3)

and is evaluated on the human images. Only voxels within the human body are considered.

2.5.4 Structural similarity index measure (SSIM)—SSIM is calculated by

SSIM = 1
NR

∑j ∈ R
(2μjxμjxL + c1)(2σjxL + c2)

μjx2 + μjxL
2 + c1 σjx2 + σjxL

2 + c2
× 100%, (4)

where R represents the region of interest within the human body, x and xL represent the 

evaluated image and the label image, respectively. μjx, μjxL, and σjx2 , σjxL
2  are the means 

and standard deviations in the square window on the jth voxel of x and xL. σxxL is the 

covariance between x and xL. c1, and c2 follow the default settings, equal to 2.552 and 7.652 

respectively. It is calculated for both human and phantom images.
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2.5.5 Lesion detectability—The lesion detectability was evaluated by the area under 

the localized receiver operating curve using the CTN phantom data. We first calculated the 

contrast of both background and lesions to generate the probability distribution function. 

Based on the two functions, the ALROC can be obtained using the below function.

ALROC = ∫
−∞

∞
ft(c) ∗ G(c)2dc, (5)

where f(c) and g(c) are the lesion and background probability distribution functions, 

respectively, and G(c) is the cumulative distribution function of g(c)(Surti et al., 2020).

Results

3.1 Impact of the noise level in training images on model performance

In Figure 6, the illustrated noisy input images are down-sampled from the same 100% 

counts level label image. The first row 20%-count level image matches the Group 5 noise 

level, the second row 40%-count level image matches with Group 3, and the third row 

60%-count level image is sorted into Group 1. The first colum shows the input low-count 

images. The middle six columns show the denoised images by different models. Model 1, 

Model 2, Model 3, Model 4, Model 5, and Model All U-Nets utilized training input images 

from Group 1, Group 2, Group 3, Group 4, Group 5, and Group All respectively. The right 

most column shows the same three 100% counts level label images. For the noisy input at 

Group 1 noise level, the MSE, PSNR, and SSIM value of input were the highest. For the 

noisier testing image at Group 3 noise level, the denoised MSE, PSNR, and SSIM value was 

the highest using Model 2. For the 20%-count images which is sorted as Group 5, Model 5 

achieved the best MSE and PSNR, and Model 4 has the highest SSIM. Denoised images by 

Model 5 and Model All are visually less noisy than other denoised image (Pointed by the red 

arrows). However, Model 5 and Model All introduce more spatial blurriness. Pointed by the 

yellow arrows, the two lesions are merged in Model 5 and Model All images. While in the 

rest denoised image, the boundary between these two lesions is clear.

3.1.1 Noise reduction—Table 2 shows the NSTD mean and variance of the input, label, 

and denoised images for the five groups with the paired t-test results between the label and 

denoised images. The p-values higher than 0.05 are shown in the table. Compared with the 

input low dose images, denoised images have lower NSTD. The NSTD decreasing trend is 

observed for images denoised by a model trained on noisier images. For less noisy images 

from Group 1, the NSTDs of the denoised images by Model 1 are consistent with the label 

NSTDs. For noisier input images from Groups 2, 3, and 4, to get the similar denoised 

NSTDs with the label, the model needs to be trained on noisier images. In terms of the 

NSTD values. Model All has the closest performance with Model 4(p = 0.08).

Sample images and line profiles are shown in Figure 7. The left sub-figure shows the images 

and line profiles of the spine in a sample Group 1 testing image. The Group 1 testing input 

image, label image, Model 1 denoised image, and Model 5 denoised image are shown in 

the upper left. The right sub-figure shows the line profile of a lesion in a Group 5 testing 
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image, including the corresponding testing input image, label image, Model 1, and Model 5 

denoised images. Model 5 led to more blurring than Model 1.

3.1.3 Image Quality—MSE, PSNR, SSIM comparison results are presented in Table 3, 

Table 4, and Table 5, respectively. We computed the mean and standard deviation across 

all patients in each group. Within each group, the best model is identified by the lowest 

value for MSE or the highest value for PSNR and SSIM. A paired-test was performed to 

show the statistical significance of the best model by comparing it with the input images and 

other models. P-value larger than 0.05 are shown in the table. For MSE comparison, when 

the testing input image is from Group 1 and Group 2, Model 1 produces the lowest MSE 

value but doesn’t outperform the input images, which are not very noisy. For testing images 

from Group 3, Model 1 and Model 2 have similar superior performance. For noisier testing 

images from Group 4 and 5, Model 5 trained on the noisiest input images outperforms other 

models.

Similar results are observed in the PSNR comparison. Model 1 produces the highest PSNR 

among other models given the testing images from Group 1, 2, and 3. For testing imgaes 

from Group 4, all models have similar performance. For noisier testing images from Group 

5, Model 5 outperforms other models with the highest PSNR.

For SSIM comparison, given the testing images from Group 1, 2, 3, and 4, Model 2, 3, 4, 

and 5 achieve the highest SSIM respectively. For the testing images from Group 5, Model 5 

produces the highest SSIM.

3.2 Customized weighting for personalized denoising

Figure 8 shows the sagittal view of the personalized denoising results of a sample patient. 

Denoised images are shown in the middle five columns with five different weighting factors. 

Smaller weights led to images with higher resolution and noise. SSIM values are labeled on 

the images. Images with the highest SSIM value from the same input are framed. For 20% 

count level input, the highest SSIM is achieved with weight of 0.9, which means 90% from 

Denoised 20 and 10% from Denoised 60. For the 40% count level, the weight of 0.5 with 

half Denoised 20 and half Denoised 60 outperformed other weightings. For the least noisy 

image at 60% count level, the highest SSIM is achieved at 10% of Denoised 20 blended with 

90% of Denoised 60.

Coronal views of the phantom images are shown in Figure 9. The left input images have 1.5, 

2, and 3 minutes scan time, and the three same label images are shown on the right. The 

middle five columns show the weighted denoising results with weighting factors selected to 

be 0, 0.3, 0.5, 0.8, and 1. Similar performance is observed in the phantom images that noisier 

images require higher proportion from Denoised 20 to get the highest SSIM value.

3.2.1 Image quality evaluation—The SSIM and MSE using different weighting 

factors are shown in Figure 10. Overall, denoised images from a input with lower noise 

have higher SSIM and lower MSE. Both the SSIM and MSE curves show a clear trend that 

for noisier input, more weights on Denoised 20 are needed. The optimal weighting factors 

at five groups for optimizing SSIM and MSE are not always the same. For SSIM, they are 
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0.2, 0.4, 0.6, 0.7, 0.8, repectively for the 5 groups. For MSE, they are 0.2, 0.5, 0.6, 0.7, 0.8, 

repectively for the 5 groups.

The phantom SSIM and MSE curves are shown in Figure 11. When the count levels are 

higher than 20%, we observed the same SSIM trend with human data. However, for the 

MSE curve, the optimal weights are equal to 1, except for 50%, which is equal to 0.7.

3.2.2 Lesion detectability—We plotted the lesion ALROC as shown in Figure 12. 

Overall, the lesions in the denoised image from higher count data are more likely to be 

detected. A weighting factor equal to 1 achieves the highest ALROC for a liver lesion at all 

noise level images, and for the lung lesion, there was no significant difference when using 

different weighting factors.

Discussion

In this low count PET denoising study, we demonstrated the substantial impact of the 

noise level in the training images on the model performance and developed a personalized 

weighting strategy to balance the noise reduction and resolution preservation. We found 

that the optimal weights are affected by the image noise level and are task-driven. Given 

the tunable feature of the weights, it can be adjusted by physicians according to their 

preferences as well.

In the investigation of noise level impact, our work showed that models trained on higher 

noise level images have better noise reduction ability but the denoised images have a worse 

resolution. We also noticed that there is a noise level threshold at around NSTD smaller than 

0.12 (Group 1) that performing deep learning denoising models on these images doesn’t 

improve the image quality. Training input images having the similar noise levels with the 

testing images is preferred in most cases. However, when given high noise level images, 

the preferred denoising model should be trained using higher noise level images as the 

input. If the model selection is fully dependent on better noise reduction, models trained on 

reasonable higher noise level images are preferred.

Model All trained on a wide range of noise level images has a similar performance with 

Model 4 in terms of NSTD value (p = 0.08) and Model All couldn’t outperform the 

matched models, which suggests that the one-size-fits-all training might not have good 

model generalizability. In fact, this assumption was proved in the previous study(Liu et 

al., 2021b). Noisier images or higher dosage have more influence in the model training 

procedure. A weighting matrix was applied in the loss function to diminish the impact of 

different dosages and noise levels. The model generalizability is improved with the modified 

loss function.

Based on our findings that the noise level in the training images has a substantial impact 

on the model performance, we propose the personalized weighting method utilizing models 

trained on lower noise level images and noisier images. The personalized weighting method 

was inspired by the widely applied adaptive statistical iterative reconstruction (ASiR™) in 

CT (Mangat et al., 2016; Protik et al., 2012). Compared with the filtered-back projection 

(FBP) reconstruction images, ASiR™ images have lower noise levels but limited spatial 
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resolution. A linear combination of ASiR™ with FBP can achieve better image quality 

compared with 100% ASiR™ or FBP. In addition, the weight can be adjusted by the CT 

dosage and physician’s preferences(Brady and Shulkin, 2015). Practically, we envision that 

a similar strategy can be used for our proposed PET approach with tunable weighting 

factors, that can be chosen by individual users according to the PET images for a specific 

task. The previous deep learning studies can denoise the CT image in a personalized way, 

but only a fixed number of denoising degrees are available(Shan et al., 2019). Besides, some 

studies trained more than ten networks to achieve the goal, which consumes a fair amount 

of network training time(Wang et al., 2021a). Our personalized denoising only requires 

training two deep learning networks, and the number of alternative tunable parameters is not 

limited. The customized weighting method gives reasonable results on our clinical human 

images and lung and liver phantom images. Higher weight on the Denoised 20 is favored 

given noisier images, which is expected because UNet 20 has better noise reduction ability 

compared with UNet 60. When the testing image has a lower noise level, the weighting 

factor is smaller, which means the final denoised image has less contribution from Denoised 

20 and more contibution from Denoised 60. By tuning the weighting factor, our customized 

weighting method can denoise PET images at a wide reasonable range of noise levels. In 

addition, the optimal weights for whole image visualization and lesion detectability are 

different. For liver lesions, the weighting factor equaling to 1 provides the best lesion 

detectability. For lung lesions, we did not observe the difference using different weighting 

factors, which may be due to the low activity of the lung background.(Surti et al., 2020). 

The personalized denoising with FDG data trained network was also applied to a sample 

set of low-count 68Ga-DOTATATE images. As illustrated in Figure 13, the highest SSIM 

value between the denoised images with the 100%-count DOTATATE image was achieved 

when the weighting factor equaled 0.3 for a 30%-count image and 0 for a 50%-count image. 

More comprehensice evaluations are needed to demonstrate the feasibility of personzalied 

denoising for other tracers. Besides, the performance of personalized denoising on other 

tracer datasets can be improved by transfer learning(Liu et al., 2020).

Currently, this study focused on the simulated low dose PET image between 20% and 60% 

counts level, with the noise level NSTD range in 0.07 to 0.45. We have shown that when the 

image noise level is low (e.g. Group 1 image), DL denoising is unnessary. The performance 

of personalized weighting on noisier images is also not guaranteed although phantom studies 

show that when the image counts level is lower than 20%, the potential optimal weights 

should be larger than one. In this case, a model trained on noisier images is needed. In 

other words, the Denoised 20 should be noisier in such cases to create a wider range for the 

weighting strategy to tune. However, it is noted that the model trained on higher noise level 

images has worse spatial blurriness. Although we used Denoised 20 and Denoised 60 as 

examples to demonstrate our proposed weighted strategy in this study, the optimal choice of 

the input image noise level of the two networks in the weighted strategy depends on specific 

applications. In this study, the local noise level in the liver region was used as the surrogate 

of the whole image noise level. Since organs may have different local noise levels, further 

study incorporating organ segmentations will be performed to optimize the denoising for 

each organ. We will also examine the customized weighting on dynamic images where the 

noise level has large variance across frames even within the same patient.
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Conclusions

In this study, we comprehensively investigated the impact of the noise level in the training 

images on the model performance and proposed a personalized weighting method applicable 

to denoised images at a wide range of noise levels. The noise level in the training images has 

a substantial impact on the model performance: model trained on high noise level images 

has stronger noise reduction ability but will introduce more spatial blurriness while model 

trained on low noise level images can better preserve the resolution but with inferior noise 

reduction. Personalized denoising is realized by individually weighting two denoised results 

by these two kinds of models. The optimal weighting factor is task-dependent and can be 

adjusted by users.
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Figure 1. 
3D U-Net structure used in this study.
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Figure 2. 
Sample training images in each of the 5 groups.
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Figure 3. 
Boxplot of NSTD distribution in 6 training groups
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Figure 4. 
Workflow of customized denoising
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Figure 5. 
Sample slices of six noise level phantom images. The embedded lung lesions are indicated 

by red arrows. The embedded lung lesions are pointed by yellow arrows.

Liu et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Results of matched denoising, unmatched denoising, and one-size-fits-all denoising from 

one sample patient. The MSE, PSNR, and SSIM values with the label image as reference are 

shown on each image, with the highest value shown in yellow. Yellow arrows point to the 

gap between two lesions. Red arrows indicate the noise reduction in the chest.
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Figure 7. 
Line profile of spine in Group 1(left) and lesion in Group 3(right). Input, label, Model 1 

denoised, and Model 5 denoised line profile are shown at the bottom.
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Figure 8. 
Personalized denoising results of three human images at 20%, 40%, and 60% counts levels. 

The weighting factor is denoted as ‘a’. The SSIM values are shown on the image in yellow. 

Denoised images with the highest SSIM value are framed.
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Figure 9. 
Personalized denoising results for phantom images at 8%, 17%, 25%, 33%, and 50% counts 

level. The weighting factor is denoted as ‘a’. The SSIM values are shown on the image in 

yellow. Denoised images with the highest SSIM value are framed.

Liu et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
SSIM and MSE curves of the denoised human images. Optimal weighting factors in terms of 

highest SSIM and lowest MSE are marked on the curve.
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Figure 11. 
SSIM and MSE curves for denoised phantom images produced by customized weighting. 

The optimal weighting factors in terms of highest SSIM and lowest MSE are marked on the 

curve.

Liu et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
The Area under the Localized Operating Curve of liver and lung lesions.
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Figure 13. 
Samples of 30%-count and 50%-count DOTATATE images, and denoised images at weights 

0, 0.3, 0.7, and 1. The SSIM value are shown in the bottom of each image. Weighted 

denoised images with the highest SSIM are framed. The yellow arrows point out lesions that 

were smoothed by U-Net 20.
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Table 1.

Ranges of liver ROI NSTD in the five groups.

Group 1 Group 2 Group 3 Group 4 Group 5

(0.060-0.113) (0.113-0.141) (0.141-0.166) (0.166-0.204) (0.204-0.540)
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Table 2

The average NSTD value in the input, label, and denoising images

NSTD Input Label Model All Model 1 Model 2 Model 3 Model 4 Model 5

Group 1 0.097±0.012 0.072±0.011 0.058±0.008 0.073±0.010

p = 0.25

0.068±0.009 0.062±0.009 0.057±0.008 0.050±0.008

Group 2 0.127±0.008 0.087±0.017 0.078±0.009 0.097±0.008 0.092±0.008 0.084±0.009

p = 0.08

0.077±0.010 0.069±0.011

Group 3 0.152±0.007 0.093±0.016 0.093±0.008

p = 0.48

0.118±0.007 0.110±0.007 0.102±0.007 0.093±0.008

p = 0.46

0.083±0.009

Group 4 0.182±0.012 0.103±0.022 0.111±0.010 0.142±0.010 0.133±0.010 0.124±0.010 0.113±0.009 0.099±0.010

p = 0.08

Group 5 0.249±0.042 0.136±0.046 0.167±0.040 0.205±0.041 0.195±0.041 0.185±0.041 0.171±0.041 0.151±0.040
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Table 3

MSE between low dose testing images and full activity images (Mean ± SD)

Group Input Model All Model1 Model2 Model3 Model4 Model5

1 0.002±0.001 0.003±0.002 0.002±0.001 0.003±0.002 0.003±0.002 0.003±0.002 0.003±0.001

2 0.004±0.002
P=0.985

0.004±0.003 0.004±0.002 0.004±0.004 0.004±0.003 0.005±0.003 0.005±0.002

3 0.006±0.003 0.005±0.002 0.005±0.002
P=0.079

0.005±0.002
P=0.054

0.005±0.002 0.005±0.002 0.005±0.002 

4 0.009±0.005 0.007±0.004 0.007±0.004 0.007±0.004 0.007±0.004 0.007±0.003 0.006±0.003 

5 0.018±0.013 0.012±0.008 0.014±0.010 0.013±0.009 0.012±0.009 0.012±0.008 0.010±0.007 
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Table 4

PSNR between low dose testing images and full activity images (Mean ± SD)

Group Input Model All Model1 Model2 Model3 Model4 Model5

1 56.09±8.49 53.55±6.67 55.18±6.98 54.53±6.52 54.33±6.73 53.38±6.89 53.35±7.30

2 53.20±7.62
P=0.482

52.40±6.03 53.25±6.47 52.90±6.09 52.82±6.21 52.27±6.16 52.34±6.34

3 51.57±6.15 52.30±5.43 52.44±5.75 52.43±5.59 52.36±5.59 52.23±5.51 52.37±5.48

4 49.40±5.53 50.58±4.87 50.42±5.12
P=0.769

50.51±4.95
P=0.241

50.49±5.00
P=0.818

50.55±4.91 50.79±4.96 

5 48.75±7.28 50.17±6.32 49.77±6.76 49.90±6.50 49.91±6.54 50.20±6.35 50.63±6.30 
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Table 5

SSIM between low dose testing images and full activity images (Mean ± SD)

Group Input Model All Model1 Model2 Model3 Model4 Model5

1 94.57%±2.05%
P=0.551

93.41%±1.29% 94.51%±1.46% 94.62%±1.47% 94.45%±1.35% 94.10%±1.24% 93.19%±1.19%

2 91.48%±3.09% 91.64%±1.69% 92.23%±2.21% 92.37%±2.17%
P=0.082

92.43%±1.94% 92.29%±1.72% 91.67%±1.49%

3 87.65%±3.95% 89.35%±2.12% 89.26%±2.89% 89.44%±2.81% 89.75%±2.55% 89.92%±2.21% 89.71%±1.79%

4 85.22%±4.28% 87.56%±3.07% 87.35%±3.52% 87.35%±3.30% 87.80%±3.30% 88.12%±3.02%
P=0.326

88.21%±2.71% 

5 81.00%±6.35% 84.18%±5.04% 83.49%±5.65% 83.49%±5.65% 84.12%±5.43% 84.71%±5.08% 85.30%±4.50% 
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