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Abstract

The Genetic Toxicology Technical Committee (GTTC) of the Health and

Environmental Sciences Institute (HESI) is developing adverse outcome pathways

(AOPs) that describe modes of action leading to potentially heritable genomic dam-

age. The goal was to enhance the use of mechanistic information in genotoxicity

assessment by building empirical support for the relationships between relevant

molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology.

Herein, we present an AOP network that links oxidative DNA damage to two adverse

outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evi-

dence from the literature to evaluate the key event relationships between the MIE

and the AOs, and assessed the weight of evidence using the modified Bradford-Hill

criteria for causality. Oxidative DNA damage is constantly induced and repaired in
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cells given the ubiquitous presence of reactive oxygen species and free radicals. How-

ever, xenobiotic exposures may increase damage above baseline levels through a vari-

ety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity.

Unrepaired oxidative DNA base damage can lead to base substitutions during replica-

tion and, along with repair intermediates, can also cause DNA strand breaks that can

lead to mutations and chromosomal aberrations if not repaired adequately. This AOP

network identifies knowledge gaps that could be filled by targeted studies designed

to better define the quantitative relationships between key events, which could be

leveraged for quantitative chemical safety assessment. We anticipate that this AOP

network will provide the building blocks for additional genotoxicity-associated AOPs

and aid in designing novel integrated testing approaches for genotoxicity.

1 | INTRODUCTION

The Adverse Outcome Pathway (AOP) framework organizes biological

knowledge into a linear sequence of events, starting from a molecular

initiating event (MIE) and ultimately leading to an adverse outcome

(AO: an endpoint of regulatory concern) (Ankley et al., 2010; OECD,

2018). AOPs are purposefully simplified descriptions of toxicological

pathways that are chemical-agnostic (i.e., molecular interaction-spe-

cific, not chemical-specific) allowing for broad applications (Villeneuve

et al., 2014). AOPs provide an effective method for applying new and

existing knowledge to demonstrate the relationships between mea-

surable biological events (Key events: KEs) and AOs at all levels of

organization: molecular, cellular, tissue, organism, and population.

During the process of developing an AOP, all relevant information is

considered for assessing biological plausibility and building empirical

evidence to support the relationships between the events (key event

relationships: KERs). Typically, data are collected from a survey of the

literature and vetted against the modified Bradford-Hill (BH) criteria

for causality to evaluate the weight of evidence (WOE) supporting the

AOP (OECD, 2018).

The Health and Environmental Sciences Institute (HESI)'s

Genetic Toxicology Technical Committee (GTTC) is currently work-

ing to develop a series of AOPs ending in potentially heritable geno-

mic damage (e.g., AOs of mutations, chromosomal aberrations, and

aneuploidy) to facilitate and promote the application of mechanistic

information in genotoxicity assessment (Sasaki et al., 2020). The

MIEs investigated by the GTTC thus far include oxidative DNA dam-

age, topoisomerase inhibition, interactions with tubulin, and aurora

kinase inhibition.

Herein, we describe an AOP network (Figure 1) developed as

part of the HESI-GTTC project (AOP #296 in the AOPWiki; URL:

https://aopwiki.org/aops/296) (OECD, 2018). The AOP network

links oxidative DNA damage to two regulatory endpoints in genetic

toxicology: the induction of chromosomal aberrations and/or gene

mutations. We anticipate that this AOP network will be valuable for

designing novel Integrated Approaches to Testing and Assessment

(IATA) aimed at identifying oxidative DNA damage as MIE and will

be useful for providing key modules when building future AOPs

(OECD, 2020a).

2 | ADVERSE OUTCOME PATHWAY
(AOP #296)

AOP #296 (Figure 1) links oxidative DNA damage to mutations and

chromosomal aberrations. We note that oxidative stress and oxidative

DNA damage, as well as DNA strand breaks, mutations, and chromo-

somal damage, are intermediate processes in diverse pathways. Thus,

the modules within this AOP network can be bridged into other AOPs.

Indeed, this AOP network already shares KEs and KERs with AOP

#15: Alkylation of DNA leading to heritable mutations (URL: https://

aopwiki.org/aops/15; [Yauk et al., 2015]) and AOP #272: Direct depo-

sition of ionizing energy onto DNA leading to lung cancer (URL:

https://aopwiki.org/aops/272; [Chauhan et al., 2020]).

Strictly speaking, AOP #296 is a network because it contains two

separate AOs: mutations and chromosomal aberrations. Table 1 sum-

marizes the KEs that constitute the network and available methods

for measuring each KE. Detailed descriptions of each KE are available

online in the AOPWiki. The MIE of the network is increases in oxida-

tive DNA damage. This event encompasses the broad range of lesions

caused by oxidizing agents including strand breaks caused by direct

electrophilic attack on the phosphate backbone and/or oxidatively

damaged nitrogenous bases (Cadet et al., 2017; Melis et al., 2013). If

the quantity and/or type of oxidative damage exceeds the DNA repair

capacity of the cell (both high- and low-fidelity repair pathways), the

damage will not be repaired efficiently, completely, and/or accurately,

leading to inadequate repair (KE1). Inadequately repaired lesions can

lead to an increase in DNA strand breaks (KE2) or insertion of an incor-

rect base during replication, resulting in elevated numbers of mutations

(AO1). Inadequate repair of DNA strand breaks (e.g., joining of two

incorrect ends, unincorporated DNA fragment, lack of rejoining) can

then lead to structural chromosomal damage and changes in the DNA

sequence, resulting in an increase in chromosomal aberrations (AO2)

and mutations (AO1), respectively.
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The GTTC AOP sub-team developed the AOP network in

accordance with the OECD AOP Users' Handbook supplement

for guidance in AOP development (OECD, 2018). Below, we

provide background relevant to the AOP, summarize the

evidence supporting the KERs and KEs, provide an overall AOP

assessment, and discuss uncertainties, inconsistencies, and major

knowledge gaps.

3 | BACKGROUND

Oxidative stress generally refers to an imbalance between oxidants

and antioxidants within a cell, where oxidants overwhelm the antioxi-

dants. Elevated levels of cellular reactive oxygen species (ROS) and

reactive nitrogen species (RNS) have been associated with genomic

instability (Hanahan & Weinberg, 2011; Panieri & Santoro, 2016;

Roszkowski et al., 2011). Indeed, the ability to induce excessive ROS

and other free radicals is a common characteristic of carcinogens

(Krewski et al., 2019; Smith et al., 2016). Therefore, the potential for

chemicals to induce oxidative DNA damage can be an important

consideration in chemical genotoxicity and carcinogenicity safety

assessment.

Oxidants can arise from both endogenous and exogenous

sources. Many endogenous biochemical processes involve redox reac-

tions; at steady state, cellular respiration and various metabolic activi-

ties (e.g., oxidative phosphorylation in the mitochondria, NADPH

oxidase, monoamine oxidase, and CYP450 monooxygenase activities)

continuously generate ROS and other free radicals (Liou & Storz,

2010). Furthermore, the role that ROS and RNS play as secondary sig-

naling molecules in various pathways indicates that certain amounts

of these reactive species (e.g., H2O2) are essential for proper cellular

functions (D'Autreaux & Toledano, 2007; Finkel, 2011; Weidinger &

Kozlov, 2015). Healthy cells are capable of tightly regulating oxidant

levels at steady state using endogenous antioxidants (e.g., N-ace-

tylcysteine, glutathione) and enzymes (e.g., glutathione-S-transferases)

and have antioxidant responses for countering elevations in ROS and

other oxidants to a certain extent (e.g., via catalase), to maintain non-

cytotoxic levels of oxidants.

F IGURE 1 Flow chart of
AOP #296: Oxidative DNA
damage leading to mutations and
chromosomal aberrations. “KE1:
Indequate DNA repair” is shown
twice in this flow diagram to
emphasize that different repair
pathways are involved in
repairing different type of DNA

damage and that “KE2: Increase,
DNA strand breaks” is required
for the progression to “AO2:
Increase, Chromosomal
aberrations”
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TABLE 1 Summary of key events in the AOP network (AOP #296) and methods of measurement

Type Event title Description How to measure

Molecular Initiating

Event (MIE)

Increases in Oxidative

DNA damage

This KE includes:

• A broad range of lesions including

direct breakage of the phosphate

backbone of DNA causing strand

breaks

• Oxidation of nitrogenous bases of the

DNA. Notably, oxidative guanine

lesions (e.g.,8-Oxo-20-deoxyguanosine
(8-oxo-dG), 2,6-diamino-4-hydroxy-

5-formamidopyrimidine (FapyG)) are

the most extensively studied and

known to be the most abundant

compared to other oxidative base

lesions.

Relative quantification methods

• Modified comet assay (Fpg or hOGG1

enzyme digestion of DNA prior to

electrophoresis) (Moller et al., 2017)

• Enzyme-linked immunosorbant assays

(ELISA) (Breton et al., 2003)

• 32P-labelling (Collins, 2000) (has

generally been replaced with newer

assays)

Absolute quantification methods

• High performance liquid

chromatography coupled to

electrochemical detection (HPLC-EC)

(Chepelev et al., 2015)

• Liquid chromatography (LC) coupled

with mass spectrometry (MS)

(Collins, 2000)

Key Event (KE) Inadequate DNA repair This KE includes:

• Lack of DNA repair (accumulation of

unrepaired damage)

• Incorrect or error-prone DNA repair

(insertion of incorrect base, joining two

incorrect ends by NHEJ)

• Incomplete DNA repair (accumulation

of repair intermediates)

The KE can be inferred from retention of

DNA lesions or increase in mutations

and chromosomal aberrations (AO1 &

AO2) which would indicate lack of

repair, incomplete repair, or incorrect

repair. Thus, methods of measuring this

KE are mostly indirect (e.g., time-course

measurement of DNA lesions following

exposure, dose–response experiments).

Direct methods would include assays that

measure a cell's capability to repair DNA

damage (e.g., introducing fluorescent

reporter construct containing a specific

lesion [Mao et al., 2011; Chaim et al.,

2017; Nagel et al., 2019]).

Models of DNA repair deficiency such as

knock-out cell lines and rodent models

(e.g., Agg�/� mice [Kay et al., 2021]) can

be used to determine which pathway is

critical for repairing the genotoxic lesion

(Olivieri et al., 2020).

Key Event (KE) Increases in DNA strand

breaks

This KE includes:

• Increase in both single strand breaks

(SSB) and double strand breaks (DSB)

• Strand breaks can arise during excision

repair (e.g., BER, NER), during

replication and transcription (e.g.,

topoisomerase), or directly due to

chemical insult (e.g., collapsed

replication fork)

• Two SSBs in close proximity to each

other on opposite strands can lead to

a DSB

• Comet assay (neutral and alkaline)

(Collins, 2004; Ge et al., 2021; Ngo

et al., 2021; OECD, 2014b)

• γ-H2AX foci detection methods (e.g.,

fluorescent immunostaining and

detection by flow cytometry,

microscopy, in-cell Western, and ELISA)

(Bryce et al., 2016; Garcia-Canton

et al., 2013; Khoury et al., 2013)

• Pulsed field gel electrophoresis

(Kawashima et al., 2017)

• Transcriptomic biomarkers of DNA

damage (e.g., TGx-DDI biomarker [Li

et al., 2017])

Adverse Outcome (AO) Increases in Mutations This KE includes:

• Permanent alterations in DNA

sequence

• The alteration may involve a few bases

(e.g., single nucleotide variants or small

insertions/deletions) or a larger

segment of DNA (e.g., incorrect

rejoining of DSB, loss or insertion of

large fragments)

• Various gene mutation assays (e.g.,

HPRT, TK, PIG-A/O assays)

(Dobrovolsky et al., 2014; Gollapudi

et al., 2015)

• Transgenic rodent mutation assays

(e.g., bacterial transfection with

reporter gene, fluorescence tag

expression in transgenic mice) (Lambert

et al., 2005; OECD, 2020b)

(Continues)
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All biomolecules, including nuclear and mitochondrial DNA, are

susceptible to oxidative damage (Cadet et al., 2017; Markkanen,

2017). Oxidative stress occurs when free radicals overwhelm the cel-

lular antioxidant capacity, which can occur under certain physiological

conditions, such as inflammation, and via exogenous stressors that are

direct oxidants and/or induce oxidative species. Perturbation of cellular

respiration (e.g., electron transport chain disruptors [Wang et al., 2015]),

depletion of endogenous antioxidants (e.g., glutathione [Beddowes

et al., 2003]), generation and/or amplification of reactive species

(e.g., redox cycling of quinones (Penning, 2017), Fenton reaction of

metals (Cu2+, Fe2+, Ni2+) with molecular oxygen (Lloyd & Phillips,

1999)), and direct oxidation of cellular components (e.g., ionizing and

non-ionizing radiation, oxidants such as potassium bromate [Murata

et al., 2001]) are ways in which toxicants cause oxidative stress and

damage in the cell.

ROS and other free radicals cause a broad range of oxidative

damage to DNA. Direct electrophilic attack on the phosphate back-

bone can induce DNA strand breaks. Additionally, all nitrogenous

bases are vulnerable to oxidative damage (Cadet & Wagner, 2013;

Cooke et al., 2003). Oxidative adducts form mainly on C5 and less

frequently on C6 of thymine and cytosine (e.g., thymine glycol,

5-hydroxy-20-deoxycytidine [5-OHdC]), and on C8 of guanine and

adenine (e.g., 8-oxo-deoxyguanine (8-oxo-dG), 8-oxo-deoxy-

adenine,2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG),

8-nitroguanine, 4,6-diamino-5-formamidopyrimidine (FapyA))

(Berquist & Wilson III, 2012; Hiraku, 2010; Whitaker et al., 2017).

Guanine is most prone to oxidation due to its low oxidation

potential (i.e., most easily loses electrons) (Jovanovic & Simic,

1986). In fact, 8-oxo-dG is the most mutagenic and abundant oxida-

tive DNA lesion; between 2400 and 10,000 8-oxo-dG are esti-

mated to be present in the genome at steady state due to

endogenous oxidants (Kalam et al., 2006; Ohno et al., 2006; Swenberg

et al., 2011). In addition, abasic (AP; apurinic or apyrimidinic) sites are

abundant in dsDNA at steady state as they can arise from spontaneous

hydrolytic reactions and the removal of nitrogenous bases by

glycosylases during base damage repair (Swenberg et al., 2011). Oxida-

tive degradation of certain cellular components can also give rise to

toxic products and exacerbate the damage in the cell during oxidative

stress; for example, lipid peroxidation generates DNA-reactive alde-

hydes, such as malondialdehyde and acrolein, that form mutagenic

malondialdehyde-20-deoxyguanosine (M1G) and γ-hydroxy-1,N2-

propano-20-deoxyguanosine adducts, respectively (Gentile et al., 2017;

Zhou et al., 2005).

For practical reasons, AOP #296 equates 8-oxo-dG formation

with ‘oxidative DNA damage’, and the MIE. The fate of guanine

lesions has been most extensively researched and is well understood

(Cadet et al., 2017; Markkanen, 2017; Roszkowski et al., 2011;

Whitaker et al., 2017). In human biomonitoring studies, 8-oxo-dG is

an accepted biomarker of oxidative stress and oxidative DNA damage

(Cooke et al., 2008; Li et al., 2014). We note that 8-oxo-dG is not a

terminal product of oxidative damage; 8-oxo-dG can be further

oxidized to additional mutagenic intermediates such as spiroiminodi-

hydantoin and guanidinohydantoin (Jena & Mishra, 2012). However,

as with many other oxidative lesions on pyrimidines and adenine, these

TABLE 1 (Continued)

Type Event title Description How to measure

• PCR methods (Allele-specific

competitive blocker-polymerase chain

reaction [ACB-PCR] for using mutant-

specific primers to amplify point

mutations in the target allele; single

molecule PCR) (Banda et al., 2013)

• Error-corrected next generation

sequencing (Salk & Kennedy, 2020) and

similar technologies

Adverse Outcome (AO) Increases in Chromosomal

aberrations

This KE includes:

• Chromatid-type and chromosome-type

structural aberrations such as

translocations, inversions, rings, and

fragmentation.

• Micronucleus detection (scoring by

light or fluorescent microscopy and

flow cytometry) (Bryce et al., 2014;

OECD, 2014a; OECD, 2016b)

• Chromosomal aberration test

(metaphase spread examined by

microscopy and aberrations are scored)

(OECD, 2016a; OECD, 2016c; OECD

et al., 2015)

• Indirect detection methods such as

γH2AX foci and p53 protein expression

assays (flow cytometric and in-cell

Western blotting), and fluorescent

protein reporter assays for stress

signaling pathway activation (Bryce

et al., 2016; Hendriks et al., 2012;

Khoury et al., 2013)
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lesions are estimated to be small fractions compared to 8-oxo-dG

(Cooke et al., 2008; Yu et al., 2005).

When DNA damage is caused by uncertain mechanisms, oxidative

stress is often suspected because it is observed under diverse chemi-

cal insults such as tert-butylhydroquinone (Eskandani et al., 2014;

Ramadan & Suzuki, 2012), heavy metals (Patlolla et al., 2009a; Patlolla

et al., 2009b; Skipper et al., 2016), and carbon tetrachloride

(Beddowes et al., 2003). Oxidative DNA base damage has been impli-

cated in genomic instability, which is one of the hallmarks of cancer

(Hanahan & Weinberg, 2011). Furthermore, oxidative DNA damage is

observed in many non-neoplastic diseases including neurodegenera-

tive (Coppede & Migliore, 2015), cardiovascular (Ishida et al., 2014;

Shah et al., 2018), and inflammatory airway diseases (Tzortzki et al.,

2012). Thus, measurement of 8-oxo-G is an effective strategy to

assess a chemical's potential to induce oxidative DNA damage

(through direct and indirect processes) and can provide insight into

the causal genotoxic mechanism.

4 | KEY EVENT RELATIONSHIPS (KERs)

KERs describe the causal relationships between upstream and down-

stream KEs. The WOE analysis of KERs involves an assessment of bio-

logical plausibility, empirical evidence including evidence supporting

the essentiality of each KE in the AOP, and consideration of uncer-

tainties and inconsistencies. In AOP #296, two sets of KERs connect

the KEs in the network – adjacent and non-adjacent (Figure 1).

Adjacent KERs link two KEs that are directly upstream and down-

stream of each other in the pathway. Non-adjacent KERs link two KEs

that are separated by one or more intermediate KEs; these KERs are

particularly useful for strengthening the evidence for the overall path-

way when there is a limited number of studies supporting the adjacent

KERs (e.g., when one KE is not routinely measured). Tables 2 and 3

summarize the adjacent and non-adjacent KERs within the AOP net-

work, respectively. These tables describe each of the KERs and pro-

vide examples of empirical evidence supporting the relationships.

Extended sets of empirical evidence for each KER are available online

in the AOPWiki, and collectively, the empirical evidence for both

types of KERs provides WOE for the overall AOP (OECD, 2018).

To develop this AOP, the team members were assigned modules

(i.e., KEs or KERs) and reviewed the literature to identify key methodol-

ogies for measuring the KEs within their modules. For each KER, a liter-

ature search was conducted independently of other KERs to maintain

modularity. The modified BH criteria for causality guided the selection

of studies that were used as empirical evidence. Initially, the BH criteria

were created to facilitate the evaluation of causal associations in epide-

miological studies. The BH criteria used herein have been modified for

applications in WOE assessment of AOPs (Becker et al., 2015).

The three main criteria considered when evaluating empirical sup-

port for the KERs include: concordance in concentration/dose, tempo-

rality, and incidence of the KEs (Becker et al., 2015; OECD, 2018).

Concentration or dose concordance indicates that the upstream KE is

observed at the same or lower stressor concentrations or doses than

the downstream KE within the KER. Similarly, incidence concordance

indicates that the upstream KE occurs more frequently (or at the same

frequency), or at a higher (or the same) incidence, than the down-

stream KE. Temporal concordance is demonstrated by the detection

of the upstream KE at an earlier (or identical) time point to the down-

stream KE. Both in vivo and in vitro data were considered and diverse

experimental methods were used within these studies (Tables 2 and

3). Thus, to evaluate empirical support for the AOP, studies that mea-

sured more than one KE from the AOP were considered.

5 | BIOLOGICAL PLAUSIBILITY

Proper repair of oxidative DNA lesions is critical for maintaining geno-

mic integrity. It is well-established knowledge that DNA repair capac-

ity in a cell is limited and that an increase in oxidative DNA lesions

above a cell's threshold for effective repair can lead to damage of the

genome (Brenerman et al., 2014; Cadet & Wagner, 2013; Yang et al.,

2006). Overall, based on the current mechanistic understanding of

mutation and chromosomal aberration induction by ROS and other

oxidizing agents, biological plausibility of this AOP network is strong.

The mutagenicity of certain oxidative base lesions has been

extensively studied (Riva et al., 2020). Many of the oxidative base

lesions can form stable base pairs with incorrect dNTPs during replica-

tion via translesion synthesis (TLS), giving rise to base substitutions

(Cadet et al., 2017; Maddukuri et al., 2014; Shimizu et al., 2007). For

example, FapyA and 8-oxo-dA can base pair with C, giving rise to A to

C transversions (Kalam et al., 2006). Similarly, dA can be inserted

opposite of 8-oxo-dG or FapyG by replicative polymerases and TLS

polymerases, η and κ, leading to G to T transversions (Markkanen

et al., 2012; Shimizu et al., 2007; Taggart et al., 2014). Since 8-oxo-G

is the predominant oxidative DNA lesion, G to T transversions are the

most predominant base substitutions observed in cells exposed to

various oxidative stress inducers (Arai et al., 2002; Klungland et al.,

1999; Unfried et al., 2002).

Oxidative damage to nitrogenous bases is primarily repaired by base

excision repair (BER) and, to a lesser extent, by nucleotide excision

repair (NER) (Scott et al., 2014; Shafirovich et al., 2016; Whitaker et al.,

2017). Several different DNA glycosylases initiate the repair of oxidative

base lesions: OGG1, MYH (MUTYH), NTHL1, NEIL1, NEIL2, and NEIL3

(Markkanen, 2017; Shafirovich et al., 2016). BER glycosylases are either

mono-functional (glycosylase only) or bifunctional (glycosylase and

lyase). DNA glycosylases remove oxidized nitrogenous bases by hydro-

lyzing the N-glycosidic bond, giving rise to an abasic site (AP). The lyase

function of bifunctional glycosylases creates a SSB 30 to the AP site after

the removal of the oxidized nitrogenous base (Jacobs & Schar, 2012;

Minko et al., 2016).

Following BER initiation by glycosylases, the AP endonuclease

(APE1) then creates a SSB 50 to the AP site. A single nucleotide gap

will form if a bifunctional glycosylase preceded APE1, as there will be

a nick 30 to the AP site created earlier by the lyase function. If BER is

initiated by a mono-functional glycosylase, the AP site will remain

after the APE1 reaction. Flap endonuclease (FEN1) is then required to

excise the AP site by creating a nick 30 to the site, giving rise to a sin-

gle nucleotide gap. DNA polymerase β then synthesizes over the gap
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TABLE 2 Summary of adjacent key event relationships (KER)

Key event relationship (KER) title Description Examples of empirical evidence

Increases in Oxidative DNA damage leads

to Inadequate DNA repair

At steady state, oxidative lesions generated

by endogenous free radicals are readily

repaired by basal repair mechanisms,

mainly base excision repair (BER), to

maintain baseline levels. However, if the

level of oxidative DNA lesions (i.e.,

oxidized bases, abasic sites, strand

breaks) increases above a cell's ability to

detoxify, an exceeded repair capacity can

lead to lack of, or faulty repair (i.e.,

increase in unrepaired lesions, repair

intermediates, mispaired bases) – all

indicators of inadequate DNA repair.

Concentration/Dose Concordance

• Threshold dose–response curve of

8-oxo-dG observed in the liver and urine

of mice exposed to increasing doses of

X-rays; exceeded threshold indicates

exceeded repair capacity leading to the

observed increase in oxidative damage

(Li et al., 2013)

Temporal Concordance

• The 8-oxo-dG levels in

Ogg1-overexpressing Chinese hamster

ovary cells returned to baseline within 4

hours following UV exposure, while wild

type cells retained 70% of the lesions

(Dahle et al., 2008)

Other types of evidence

• Enrichment of 8-oxo-dG and γH2AX

(DSB marker) in the same genomic

regions was observed in human cells in

culture by chromatin

immunoprecipitation sequencing (ChIP-

seq) (Amente et al., 2019; Murata

et al., 2012)

Inadequate DNA repair leads to Increases

in DNA strand breaks

Exceeded BER capacity due to an increase

in oxidative lesions can lead to an

accumulation of repair intermediates,

including AP sites and SSBs. Increase in

the number of SSBs elevates the risk of

two SSBs occurring in close proximity to

each other; if two SSBs occur on opposite

strands, it may be converted into a DSB,

exacerbating the damage. Increase in

unrepaired lesions and repair

intermediates due to inadequate repair

can further impede the repair of other

damaged sites nearby. BER intermediates

are known to be replication blocks that

can cause a replication fork to stall and

collapse. Collapsing of replication forks

can cause DSBs, the most toxic type of

DNA lesion.

Concentration/Dose and Incidence

Concordance

• OGG1-deficiency causing concentration-

dependent increase in strand breaks (Wu

et al., 2008)

• BER-proficiency leading to increase in

strand breaks due to BER imbalance or

interference with replication (Ensminger

et al., 2014; Wang, Li, et al., 2018)

Dose and Temporal Concordance

• Dose-dependent increase in DSBs

measured in primary human dermal cells

after a 16-h recovery following ionizing

irradiation (Rydberg et al., 2005)

Increases in DNA strand breaks leads to

Inadequate DNA repair

Increase in the number of strand breaks can

exceed the repair capacity (DSB: NHEJ or

HR; SSB: SSBR), resulting in prolonged

presence of strand breaks (lack of repair).

Increase in the occurrence of NHEJ may

also increase the incidence of two

incorrect ends being joined, altering the

DNA sequence.

DSBs may also lead to mutagenic salvage

DNA repair pathways such as break-

induced replication (BIR) and

microhomology-mediated break-induced

replication (MMBIR).

Concentration and Incidence Concordance

• In the Rydberg et al. (2005) study above,

dose-dependent increase in misrejoined

DSBs was also observed in primary

human dermal cells after a 16-h recovery

following irradiation (Rydberg

et al., 2005)

• In several studies, dose-dependent

increase in unrepaired DSBs was

detected in irradiated mammalian cells

after varying recovery periods, indicating

exceeded repair capacity (Kuhne

et al., 2000; Kuhne et al., 2005; Lobrich

et al., 2000)

Temporal Concordance

• In the studies above, the levels of DSBs

were measured immediately after

exposure and after recovery; inadequate

repair was indicated by unrepaired or

mis-rejoined DSBs after the recovery

period.
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and DNA ligase forms a new phosphodiester bond that seals the SSB

(Whitaker et al., 2017). Overwhelmed BER capacity may cause an

imbalance in the initiating steps of BER, resulting in incomplete repair

of oxidative lesions (Cabelof et al., 2004; Parrish et al., 2018; Wang,

Li, et al., 2018; Yang et al., 2006). If BER is disrupted before comple-

tion, intermediates such as AP sites and SSBs can persist in the

genome (Cabelof et al., 2004; Parrish et al., 2018; Sheng et al., 2012).

Both strand breaks and AP sites can arise directly due to reactive

species and as BER intermediates (Cadet et al., 2017). SSBs and AP

sites are known to block DNA replication; if a replication fork encoun-

ters such lesions, it can stall and collapse, resulting in a DSB

(Ensminger et al., 2014; Kidane et al., 2014; Kuzminov, 2001). Fur-

thermore, unrepaired oxidative base lesions, SSBs, and AP sites are

more toxic and difficult to repair when in closer proximity to each

other (Pearson et al., 2004; Sedletska et al., 2013; Yang et al., 2004).

Oxidative base lesions, especially 8-oxo-dG, can impede the repair of

neighboring SSBs, increasing the risk of DSB formation (Calsou et al.,

1996; Lomax et al., 2004). Thus, if such base lesions persist in the

genome due to inadequate repair, the repair of existing and new

strand breaks can be impaired, leading to a net increase in strand

breaks (Caglayan & Wilson, 2015). In addition, if two SSBs occur on

opposite strands within a sufficiently small distance during BER, the

SSBs may be converted to a DSB. Some studies suggest that multiple

DNA lesions within one or two helical turns can increase the rate of

DSB formation (Cannan & Pederson, 2016).

While BER is essential for maintaining genomic integrity, it is

known to have both protective and damaging effects on the genome

during oxidative stress. For example, MUTYH, a glycosylase that

removes dA opposite 8-oxo-dG, may undergo futile cycles of dA

removal and reinsertion by polymerases, potentially increasing AP

sites in the genome (Hashimoto et al., 2004). Moreover, knock-out of

OGG1, a bifunctional glycosylase that primarily targets 8-oxo-dG

lesions opposite dC, prevented AP site accumulation in human cells

infected with H. pylori monitored over a 72-h period (Kidane et al.,

2014). AP sites are electrophilic and chemically unstable and, thus, are

prone to strand breakage (Greenberg, 2014). In addition, an increase

TABLE 2 (Continued)

Key event relationship (KER) title Description Examples of empirical evidence

Inadequate DNA repair leads to Increases

in Mutations

Higher incidences of NHEJ and mutagenic

salvage repair can increase the chance of

incorrect joining of two broken ends,

altering the DNA sequence.

Unrepaired base lesions can lead to point

mutations, especially if they are able to

form stable base pairs with incoming

nucleotides during replication (e.g.,

8-oxo-dG base pairing with adenine).

Incidence and Concentration Concordance

• Concentration-dependent increase in

DSB misrepair and mutation frequency

in cells exposed to ionizing radiation

(McMahon et al., 2016)

• A larger fold increase in KBrO3–induced
mutations in Ogg1 �/� mice vs. wild

type mice (Arai et al., 2002)

Temporal Concordance

• A larger fold increase in spontaneous

mutations in Ogg1 �/� mice at 14

weeks of age than at 9 weeks,

compared to wild type (Minowa

et al., 2000)

Inadequate DNA repair leads to Increases

in Chromosomal Aberrations

If DSBs are not repaired in a timely manner,

the ends can shift away from the original

position, reducing the likelihood of error-

free repair. Unrepaired strand breaks and

mis-joined ends by incorrect repair can

result in translocation, inversion, deletion

of sections (unincorporated fragments),

and other structural aberrations of the

chromosome (e.g., ring and loop

formation).

Concentration/Dose and Incidence

Concordance

• Dose-dependent increase in incorrect

rejoining of DSBs in irradiated cells

(McMahon et al., 2016)

• Clear, positive correlation between

radiation dosage and clastogenic

endpoints (CA, MN, copy number

variants) reported by several studies (Arlt

et al., 2012; Balajee, 2014; George

et al., 2009; Suto et al., 2015)

Temporal Concordance

• DNA-PK (DNA-dependent protein

kinase) was chemically inhibited and

DSBs and MN were measured in

gamma-irradiated cells at 3 h and 24 h,

respectively, post-irradiation; irradiation

dose-dependent increase in DSBs and

inhibitor concentration-dependent

increase in MN were observed

(Chernikova et al., 1999)
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TABLE 3 Summary of non-adjacent key event relationships (KER)

Key event relationship (KER) title Description Empirical evidence

Increases in Oxidative DNA damage leads

to Increases in DNA strand breaks

Biologically plausible mechanisms linking

increase in oxidative DNA lesions to

increase in strand breaks include: 1)

Incomplete BER due to an imbalance in

the glycosylase and AP site endonuclease

(APE) activities resulting in AP site and

SSB accumulation; 2) increase in

oxidative lesions impeding the repair of

neighboring lesions (possibly SSBs); 3)

occurrence of SSBs in close proximity to

each other during BER; 4) collision of

replication fork with BER proteins and

intermediates.

Concentration/Dose Concordance

• In Fpg-modified comet assay, significant

increase in Fpg-sensitive sites (e.g.,

8-oxo-dG, AP sites) occurred at lower

concentrations than strand breaks in

HepG2 cells exposed to a nodularin

(Lankoff et al., 2006).

Temporal Concordance

• Temporal profiles of oxidative lesions

and strand breaks induced by tert

butylhydroperoxide, hydrogen peroxide,

and menadione showed positively

correlated increases over an 8-h period

(Deferme et al., 2013)

Increases in Oxidative DNA damage leads

to Increases in Mutations

It has been extensively demonstrated that

8-oxodG, the most abundant oxidative

DNA lesion, preferentially forms base

pairs with incoming dA during replication

causing G to T transversions, which are

characteristic of oxidative DNA damage.

Temporal and Incidence Concordance

• Several studies have demonstrated a

strong positive correlation between

8-oxo-dG formation and incidences of G

to T transversions over time in mice and

in vitro (Arai et al., 2002; Dahle

et al., 2008; Klungland et al., 1999;

Minowa et al., 2000).

Concentration Concordance

• Following KBrO3 exposure, the no

observed genotoxic effect level (NOGEL)

in TK gene mutations could be

determined, while all concentrations

induced detectable responses in the

Fpg-modified comet assay for oxidative

lesions (therefore, no NOGEL) (Platel

et al., 2011)

Increases in DNA strand breaks leads to

Increases in Mutations

Increases in SSBs and DSBs can lead to a

higher incidence of erroneous repair by

NHEJ and mutagenic salvage repair

pathways.

Concentration/Dose and Incidence

Concordance

• Concentration-dependent increases

observed in strand breaks after 1 h and

in mutant frequency measured after 23

and 72 h after bleomycin exposure in

TK6 cells (Platel et al., 2011).

• Several in vitro studies have shown

radiation dose-dependent increases in

DSBs and concordant increases in

incorrect rejoining and retention of

unrepaired DSBs after a recovery period

(16-24 h) post ionizing radiation

exposure (Dikomey & Brammer, 2000;

Kuhne et al., 2000; Kuhne et al., 2005;

Lobrich et al., 2000)

Increases in DNA strand breaks leads to

Increases in Chromosomal Aberrations

Mechanistically, DSBs must occur for

chromosomal aberrations to occur. If

DSBs are not rejoined in a timely manner,

the ends may shift away from their

original position, resulting in loss of

segments or rearrangement of sections.

Temporal Concordance

• Several in vivo and in vitro studies

demonstrated the occurrence of strand

breaks (via comet assay and γH2AX foci

detection) at early time points (1–4 h)

post exposure and micronucleus,

chromatid break, or translocation

at later time points (24–40 h) (Dertinger

et al., 2019; Platel et al., 2009; Trenz

et al., 2003; Turner et al., 2015)
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in the number of damaged sites where BER is in progress may

increase the risk of DSB generation due to collision with the replica-

tion fork (Ensminger et al., 2014). Other studies have shown exacer-

bated strand breaks in BER-proficient cells following acute chemical

exposures (Banda et al., 2017; Sheng et al., 2012; Wang, Li, et al.,

2018). However, a compromised BER capability (due to glycosylase

variants or knock-out) leads to an increase in spontaneous mutation

frequency and structural damage (DSBs and MN formation) under

chronic chemical exposures (Arai et al., 2002; Galick et al., 2013; Hu

et al., 2005; Minowa et al., 2000; Ondovcik et al., 2012). Collectively,

these studies suggest that elevated BER glycosylase activity in

response to increases in oxidative lesions can give rise to higher inci-

dences of incomplete repair but a timely clearance of oxidative base

lesions is ultimately critical for maintaining genomic stability.

Failed repair of oxidative lesions (e.g., replication fork stalling and

collapsing due to BER intermediates or unrepaired SSBs during the S

phase) can lead to the formation of DSBs. The active repair pathway

and the efficiency of repair can vary depending on the cell cycle stage,

and these pathways can be error-prone. Non-homologous end joining

(NHEJ), the fastest DSB repair pathway, is an error-prone process that

ligates two broken ends generally based on microhomologies (≤4 nt)

of single-strand overhangs and is active across all cell cycle stages

(Chang et al., 2017; Lieber et al., 2010; Rodgers & McVey, 2016). The

level of NHEJ activity has been observed to increase with the pro-

gression in cell cycle, reaching the highest level in the G2 phase; con-

cordantly, the efficiency of DSB repair has been reported to be the

highest in the G2/M phase (Mao et al., 2008). Comparatively, NHEJ is

often a longer process than homologous recombination (HR), which

requires homologous sequences in the sister chromatid or homolo-

gous chromosome as a template to ensure fidelity of the

reconstructed strands; HR is mostly restricted to the S and G2 phases

of the cell cycle and is most active in the S phase (Brandsma & van

Gent, 2012; Fugger & West, 2016; Gandhi et al., 2012).

As with oxidative base lesions, the repair capacity for DSBs is lim-

ited and repair kinetics are compromised with increasing DSBs; thus,

the risk of faulty or lack of repair and, consequently, structural chro-

mosomal damage (AO2) increases with the number of DSBs (Calsou

et al., 1996; Cannan & Pederson, 2016). The presence of DNA strand

breaks over a prolonged period of time increases the chance of the

two broken ends diffusing away from the original position, hampering

restoration of the original structure (Schipler & Iliakis, 2013). In a cell

under chemical insult, DSBs may also lead to the induction of salvage

DNA repair pathways with high error rates such as microhomology-

mediated end joining (MMEJ), break-induced replication (BIR), and

microhomology-mediated break-induced replication (MMBIR)

(Kramara et al., 2018; Sakofsky et al., 2015; Seol et al., 2018). While

salvage repair pathways and NHEJ promote survival of the cell, the

inadequate repair of DSBs can ultimately result in structural aberra-

tions (AO2) (i.e., large deletions and insertions, translocations, ring for-

mation) and mutations (AO1) (Ferguson & Alt, 2001; Iliakis et al.,

2004). In addition, chromosomal aberrations can also arise from HR,

which is typically a highly accurate repair pathway; for example, a

crossover event between the damaged site and a region of sequence

homology on another chromosome can result in exchange-type

structural aberrations causing translocations, radial formation, and/or

dicentric chromosomes with accompanying acentric fragments (Obe

et al., 2002). Thus, DSBs in areas of repetitive sequences have a

higher risk of misalignment with an incorrect chromosome region

during homologous recombination (Brandsma & van Gent, 2012).

6 | ESSENTIALITY OF KEY EVENTS

The essentiality of each KE in the pathway can be demonstrated

by modulating one KE (e.g., via overexpression or inhibition of an

enzyme) and observing concordance in the downstream KEs. The

essentiality of the MIE, “Increase, Oxidative DNA Damage”, has been
demonstrated by studies inhibiting or exacerbating ROS by treating

cells with an antioxidant (e.g., N-acetylcysteine) or depleting endoge-

nous glutathione (using buthionine sulphoximine). For example, pre-

treatment with an antioxidant reduced the quantity of oxidative base

lesions (MIE) that are formed following exposure to a ROS inducer,

with concordant decreases in DNA strand breaks (KE2: Increase, DNA

Strand Breaks) and MN (AO2: Increase, Chromosomal Aberrations)

observed at later time points (Dong et al., 2014; Federici et al., 2015;

Kopp et al., 2020; Reliene et al., 2004). Similarly, depletion of glutathi-

one resulted in elevated levels of both 8-oxo-dG and DNA strand

breaks (Beddowes et al., 2003).

The essentiality of KE1, “Inadequate DNA Repair”, has been

demonstrated by studies that modulated DNA repair capacity by

knocking out various BER glycosylases (Hu et al., 2005; Nallanthighal

et al., 2017; Suzuki et al., 2010; Wang, Li, et al., 2018). For example,

steady-state levels of oxidative lesions (e.g., 8-oxo-dG, FapyG, FapyA)

and spontaneous G to T transversions (AO1: Increase, Mutations)

increased in mammalian cells deficient in various BER glycosylases (Hu

et al., 2005; Nallanthighal et al., 2017; Suzuki et al., 2010). OGG1 defi-

ciency had different effects on cells exposed for different durations.

After a 30 min-exposure to hydrogen peroxide, significantly fewer

strand breaks (KE2) were observed in OGG1-deficient cells compared to

wild type cells, suggesting an accumulation of SSBs due to incomplete

BER in wild type cells (Wang, Li, et al., 2018). A seven-day continuous

exposure to silver nanoparticles in mice induced significant concordant

increases in 8-oxo-dG, DSBs (KE2), and MN (AO2) in Ogg1-deficient

mice compared to wild type mice (Nallanthighal et al., 2017). An increase

in OGG1 activity may lead to incomplete BER and an acute exacerbation

of strand breaks; however, persistent oxidative DNA lesions resulting

from aberrant glycosylase activity may induce MN in daughter cells.

The essentiality of KE2, “Increase, DNA Strand Breaks”, has been
shown by studies that examined both mutations (AO1) arising from

incorrect rejoining of DSBs and chromosomal damage indicated by

MN induction (AO2) (Kurashige et al., 2017; Tatsumi-Miyajima et al.,

1993). Tatsumi-Miyajima et al. (1993) introduced plasmids with or

without a DSB in the supF gene to five different human fibroblast cell

lines and monitored supF gene mutation frequency in a colony forma-

tion assay. The plasmids that contained a DSB produced a higher fre-

quency of supF mutants than the undamaged plasmids; up to 50% of

the analyzed colonies were supF gene mutants indicating mutagenic

repair of the DSB by human fibroblasts. To demonstrate the
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essentiality of KE2 in inducing structural damage (AO2), studies exam-

ining strand breaks and MN were considered. In a study by Kurashige

et al. (2017), rat thyroid cells were irradiated with X-rays with or with-

out NAC pre-treatment; a reduced number of strand breaks and a

concordant reduction in MN frequency were observed in NAC-

treated cells. Together, these two studies demonstrate the effect of

modulating DNA strand breaks on the two AOs of the AOP network.

7 | UNCERTAINTIES AND
KNOWLEDGE GAPS

During the process of developing this AOP network, we identified

areas requiring further understanding and empirical evidence. Most

importantly, the quantitative relationships between the KEs within

the AOP network require development. In order to facilitate predic-

tive toxicology, the level to which oxidative DNA damage occurs in

order to result in mutations and chromosomal aberrations must be

determined. Currently, empirical evidence to establish quantitative

relationships is limited; there is a lack of studies specifically measuring

DNA strand breaks, chromosomal aberrations, and mutations in rela-

tion to the quantities of oxidative DNA lesions detected at early time

points. Fully evaluating the modified BH criteria was a challenge for

certain KERs because the methods used to measure the MIE, KEs,

and AOs differ vastly in sensitivity and analytical sampling times

(e.g., comet assay for strand breaks vs. gene mutation and MN assays).

Thus, a better understanding of the dose–response curves (thresholds

and shapes) of different commonly used assays and the quantitative

relationships between the responses measured by these assays are

critical for establishing stronger causal relationships between the KEs.

Current knowledge of the consequences of oxidative base lesions

is largely based on studies focusing on 8-oxo-dG. Indeed, the literature

on the mutagenicity and repair of oxidative base lesions is overrepre-

sented by studies on 8-oxo-dG, while the mutagenic and clastogenic

potential of other oxidative lesions, such as 8-oxo-dA and thymine gly-

col, are not as well defined (Bellon et al., 2009; Kalam et al., 2006).

Furthermore, the mechanisms through which oxidative base lesions

cause clastogenicity and mutagenicity involve several different repair

pathways. While BER is the primary repair pathway for oxidative

lesions, MMR and NER may also play important roles in repairing oxi-

dative damage (Brierley & Martin, 2013; Melis et al., 2012). For exam-

ple, MMR removes oxidized bases that are inserted into DNA during

replication, predominantly 8-oxodGMP paired to dC, as well as non-

oxidized bases inserted opposite oxidatively damaged bases, such as

dAMP inserted opposite 8-oxodG (Bridge et al., 2014; Colussi et al.,

2002). NER is responsible for repairing bulkier, helix-distorting lesions

induced by free radicals, such as 8,50-cyclopurine-20-deoxynucleosides

and intra- and inter-strand crosslinks (Melis et al., 2012). In cells with

defective BER glycosylases, NER has been observed to provide addi-

tional support in repairing oxidatively altered bases that do not disturb

the helical structure (Melis et al., 2012). Furthermore, there are genetic

factors that may modulate a cell's susceptibility to oxidative stress and

associated DNA damage. For example, cells that are deficient in

BRCA1 or BRCA2, proteins involved in genome maintenance, have

been observed to have elevated levels of intracellular ROS and to be

more sensitive to oxidative DNA damage in the S phase due to com-

promised HR (Fridlich et al., 2015; Renaudin et al., 2021). Overall, the

interplay of different repair pathways in modulating the KEs down-

stream of the MIE requires further research to better define both the

mechanistic and quantitative understanding of the AOP.

Studies on oxidative damage to nuclear DNA (nDNA) were exam-

ined exclusively when developing this AOP network. However, we

note that oxidative damage occurs not only in nDNA but also in the

deoxynucleotide (dNTP) and ribonucleotide (rNTP) triphosphate pools

and in mitochondrial DNA (mtDNA). mtDNA is more susceptible to

oxidative damage than nDNA due to its location and crosstalk exists

between the nucleus and mitochondria during oxidative stress; DNA

glycosylases that initiate BER such as OGG1 are encoded by nDNA

and the enzymes translocate to the mitochondria to repair oxidative

mtDNA damage (Cha et al., 2015; Saki & Prakash, 2017). BER is

essential for maintaining mitochondrial genome stability as it is for the

nuclear genome (Cha et al., 2015). Oxidized dNTPs and rNTPs, espe-

cially 8-oxodGTP and r8oxoG, can be inserted into both genomes

during replication and excision repair, giving rise to mismatches

and impeding the repair of existing damage, respectively; both sce-

narios can directly lead to inadequate DNA repair, promoting the

progression of this AOP network (Caglayan et al., 2017; Colussi

et al., 2002; Malfatti et al., 2017; Russo et al., 2004). Moving for-

ward, KEs addressing oxidative damage to the dNTP pool and

mtDNA are necessary to build a more complete map of oxidative

stress-related genotoxicity and to expand the AOP network to

other related AOs.

8 | OVERALL WEIGHT OF EVIDENCE
ASSESSMENT (SUMMARY) OF THE AOP
NETWORK

8.1 | Biological plausibility: Strong

Rationale: Considering the current literature and mechanistic under-

standing of oxidative DNA lesions, the repair pathways, and the

induction of the two AOs, the biological plausibility of the AOP net-

work is strong. Extensive research has been performed to investigate

the toxicity of 8-oxo-dG; this guanine lesion is known to be abundant

and is an accepted biomarker of oxidative stress and DNA damage.

Many studies have reported a strong positive correlation between the

levels of 8-oxo-dG and G to T transversions. Mechanistically, 8-oxo-

dG is known to base pair with both dC and dA, but with a stronger

preference for dA. Indeed, G to T transversions are the most prevalent

base substitutions observed under oxidative stress-inducing chemical

exposures and in BER glycosylase knock-out cells and rodents. More-

over, BER, the primary repair pathway for oxidized base lesions, and

strand break repair pathways (HR and NHEJ) have been extensively

studied and the existence of a limit in repair capacity of DNA repair is

well known. It was established that inadequate BER and strand break
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repair can both lead to increased strand breaks downstream. Finally,

inadequate repair of strand breaks leading to structural genomic dam-

age has been observed in numerous studies and is a mechanistically

plausible event.

8.2 | Essentiality of the KEs: Strong

Rationale: The essentiality of the MIE and the two KEs has been dem-

onstrated by studies that modulated these events in both in vitro and

in vivo models. An increase or decrease in oxidative DNA lesions,

DNA repair capacity (via gene knock-out), or DNA strand breaks

led to concordant changes in the downstream KEs and the AOs in a

variety of model systems.

8.3 | Empirical evidence supporting the KERs:
Moderate

Rationale: Empirical evidence supporting individual KERs varies

between weak and strong. The two KERs with strong WOE, Increases

in Oxidative DNA Damage leading to Mutations and Inadequate DNA

repair leading to Mutations, are supported by data from both in vivo

and in vitro studies (e.g., OGG1 deficiency or overexpression in

human cells and rodents) that demonstrate concentration/dose, inci-

dence, and temporal concordances in the two events. However, the

extent of evidence available to evaluate the BH criteria for certain

KERs (especially strand breaks leading to the two AOs) was low

because most studies are not designed to take this into consideration

and do not measure all the necessary endpoints to support a KER

within a single study. Moreover, concentration and temporal concor-

dance analysis was not feasible in many cases because of the use of

methods to measure strand breaks that differed in sensitivity, dynamic

range, and measurement time points.

8.4 | Quantitative understanding: Weak

Rationale: There is very limited quantitative understanding of the

amount of oxidative DNA damage that exceeds repair capacity and

leads to mutations and chromosomal aberrations; few studies have

specifically investigated these relationships using a quantitative

approach. In order to address the current gaps in quantitative under-

standing, future studies should be designed to concurrently measure

the KEs of this AOP over increasing stressor concentrations and time

in different model systems. Such experiments would allow quantita-

tive analysis of the changes in the KEs in relation to one another.

9 | CONCLUDING REMARKS

Oxidative stress is a cellular hazard that contributes to DNA damage

during chemical insult; indeed, the ability to induce oxidative stress and

genotoxicity are two prevalent characteristics of carcinogens. The AOP

network described here provides WOE that links early oxidative DNA

damage to regulatory endpoints in genetic toxicology (Heflich et al.,

2020). As the genotoxicity testing paradigm moves toward integrating

more quantitative and predictive in vitro methods, incorporation of

mechanistic information will become necessary in chemical safety

assessment. The AOP framework provides an effective method for

organizing mechanistic knowledge and identifying knowledge gaps. As

demonstrated in the development of the AOP network, the framework

can be used to coordinate information from various mechanism-based

assays to assess the probability that a chemical will cause oxidative

DNA damage leading to mutations and/or chromosomal aberrations. As

such, AOPs that describe genotoxic pathways can provide the founda-

tion for designing IATA for genotoxicity. With new mechanistic assays

measuring non-traditional genotoxicity endpoints emerging, AOPs will

help contextualize their utility in applied genetic toxicology. Incorporat-

ing AOPs in genotoxicity assessment will facilitate the transition toward

predictive, mechanism-based testing paradigms for more streamlined

and more efficient assessment of chemical safety.
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