Skip to main content
. 2022 Jun 28;12(7):1565. doi: 10.3390/diagnostics12071565

Table 3.

For each machine learning algorithm, the selected features are reported.

Method Selected Features
RF BMI-equator-apex-TOT_ZONE-PSA density-ratio-Blood glucose-HDL-Triglycerides-Creatinine -
Ctree TOT_ZONE-prostate volume-Blood glucose-HDL-Triglycerides-
NN BMI-base-equator-apex-transitional-TOT_ZONE-prostate volume-PSA-psa density-Free PSA-ratio-Blood glucose-Total Cholesterol-HDL–LDL-Triglycerides-Creatinine-
SVM BMI-base-TOT_ZONE-PSA-psa density-ratio-Blood glucose-Triglycerides-Creatinine-

BMI: body mass index; Ctree: classification tree; HDL: high-density lipoprotein; LDL: low-density lipoprotein; NN: neural network; PSA: prostate-specific antigen; RF: random forest; SVM: support vector machines; TOT_ZONE: number of suspected areas.