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Abstract
The shrinking of glaciers is among the most iconic consequences of climate change. 
Despite this, the downstream consequences for ecosystem processes and related 
microbiome structure and function remain poorly understood. Here, using a space-
for-time substitution approach across 101 glacier-fed streams (GFSs) from six major 
regions worldwide, we investigated how glacier shrinkage is likely to impact the or-
ganic matter (OM) decomposition rates of benthic biofilms. To do this, we measured 
the activities of five common extracellular enzymes and estimated decomposition 
rates by using enzyme allocation equations based on stoichiometry. We found de-
composition rates to average 0.0129 (% d−1), and that decreases in glacier influence 
(estimated by percent glacier catchment coverage, turbidity, and a glacier index) 
accelerates decomposition rates. To explore mechanisms behind these relation-
ships, we further compared decomposition rates with biofilm and stream water 
characteristics. We found that chlorophyll-a, temperature, and stream water N:P 
together explained 61% of the variability in decomposition. Algal biomass, which 
is also increasing with glacier shrinkage, showed a particularly strong relationship 
with decomposition, likely indicating their importance in contributing labile organic 
compounds to these carbon-poor habitats. We also found high relative abundances 
of chytrid fungi in GFS sediments, which putatively parasitize these algae, promot-
ing decomposition through a fungal shunt. Exploring the biofilm microbiome, we 
then sought to identify bacterial phylogenetic clades significantly associated with 
decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively 
(e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of 
different bacterial classes possessing different proportions of EEA-encoding genes, 
potentially informing some of the microbial associations with decomposition rates. 
Our results, therefore, present new mechanistic insights into OM decomposition in 
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1  |  INTRODUC TION

The decomposition of organic matter (OM) by microorganisms is 
a major intermediary to the global carbon cycle. Microorganisms 
produce extracellular enzymes that degrade organic compounds, 
which can be metabolized to CO2 or CH4, or incorporated into mi-
crobial biomass and further into the food web (Battin et al., 2008; 
Sinsabaugh et al., 2009). Therefore, assessing controls on OM de-
composition is critical to understand carbon fluxes through eco-
systems and climate-change impacts on this ecosystem process. 
Current understanding of OM decomposition in streams (Boyero 
et al., 2021; Rosemond et al., 2015; Tiegs et al., 2019) is rooted in 
early stream ecosystem science and biased toward the decompo-
sition of terrestrial OM subsidies and its relevance for the “brown 
food web” (Webster & Benfield, 1986; Webster & Meyer, 1997). In 
this context, leaf litter bags and cotton strips that have been widely 
used as model substrates for OM degradation in running waters 
revealed latitudinal and altitudinal controls on OM decomposition 
rates (Boyero et al., 2021; Follstad Shah et al., 2017; Tiegs et al., 
2019). Yet, such approaches fail to capture OM decomposition in 
high-latitude and high-altitude streams above the treeline, where 
terrestrial subsidies of vascular plant material rich in cellulose are 
scarce or even absent.

Foremost among the streams with little terrestrial OM subsidies 
are glacier-fed streams (GFSs), which sustain flow in some of the 
world's largest fluvial networks and contribute to large-scale carbon 
fluxes (Hood et al., 2015; Horgby et al., 2019; Singer et al., 2012). 
Climate-induced shrinkage of mountain glaciers is altering the GFS 
environment at an unprecedented pace (Milner et al., 2017). How 
these alterations affect biodiversity in GFSs is becoming increas-
ingly well understood (Cauvy-Fraunié & Dangles, 2019; Jacobsen 
& Dangles, 2012; Wilhelm et al., 2013), but less so ecosystem pro-
cesses (Elser et al., 2020; Milner et al., 2017). It has been speculated 
that primary production will increase in GFSs following peak gla-
cier melt when environmental conditions (e.g., higher water clarity) 
become more beneficial to primary producers (Milner et al., 2017). 
This is an important consideration given that primary production is 
the primary energy source in GFSs, particularly in reaches close to 
the glacier that are largely devoid of terrestrial OM subsidies (Zah & 
Uehlinger, 2001). To date, we do not properly understand how gla-
cier shrinkage may affect primary production, and how this in turn 
may affect the decomposition of OM in GFSs.

Fungi and bacteria are the main decomposers of OM in streams 
and rivers (Findlay, 2021; Hall & Meyer, 1998). The role of fungal 
hyphomycetes as early decomposers of stream OM, particularly leaf 
litter, is generally well documented in the aquatic literature (Gessner 
& Chauvet, 1994); yet, how bacterial diversity and community com-
position affect OM degradation, both in terrestrial and aquatic eco-
systems, remains a subject of active debate (Glassman et al., 2018; 
Hayer et al., 2021). In GFSs, OM decomposition and its microbial 
ecology is only rudimentarily understood. A recent study using cot-
ton strips as a surrogate for OM highlighted the relevance of fungal 
hyphomycetes for OM decomposition in GFSs (Fell et al., 2021), and 
further related hyphomycete biomass to relative glacier coverage to 
infer that glacier shrinkage will accelerate decomposition. Despite 
these insights, we are still missing a comprehensive and mechanistic 
understanding of the drivers of OM decomposition in GFSs, and how 
it may respond to glacier shrinkage.

Using a space-for-time substitution approach, we studied how 
glacier shrinkage affects the rate of OM decomposition associated 
with benthic biofilms from 101 GFSs, spanning six major regions 
worldwide. We inferred decomposition rates from measured extra-
cellular enzymatic activities (EEAs) involved in carbon (C), nitrogen 
(N), and phosphorus (P) acquisition (Hill et al., 2017; Sinsabaugh & 
Moorhead, 1994). The advantage of this approach, compared with 
others (e.g., leaf litter packs and cotton strips), is that it intrinsically 
and directly links OM decomposition to the microorganisms. We fur-
ther used amplicon sequencing (16S rRNA and 18S rRNA genes), as 
well as metagenomics, to study relationships between decomposi-
tion rates and microbiome structure and function.

Based on fundamental considerations of ecophysiological and 
stoichiometric controls on OM decomposition (Brown et al., 2004; 
Follstad Shah et al., 2017; Rosemond et al., 2015), we anticipated that 
decreasing glacier influence affects decomposition rates through el-
evated water temperatures and nutrient N:P ratios. Furthermore, 
given the largely missing subsidies of vascular plant material in GFSs, 
we expected primary producer biomass to be a major driver of de-
composition rates. Finally, we expected to find distinct components 
of the microbiome to be associated with changes in decomposition 
rates. Our findings shed new light on the downstream impacts of 
glacier shrinkage by quantifying the relationship between glacier 
coverage and decomposition rates across a wide range of GFSs 
worldwide and by revealing the role of microbiome structure and 
function for this important ecosystem process.

GFSs by demonstrating that an algal-based “green food web” is likely to increase in 
importance in the future and will promote important biogeochemical shifts in these 
streams as glaciers vanish.

K E Y W O R D S
alpine biogeochemistry, carbon cycling, ecological stoichiometry, extracellular enzyme activity, 
microbial ecology
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2  |  MATERIAL S AND METHODS

2.1  |  Sampling and field data

We sampled 101 GFSs from six major regions globally over 2019–
2020, including the Southern Alps of New Zealand (n  =  20), the 
Nuuk and Qeqertarsuaq (Disko Island) areas of Greenland (n = 10), 
the Ecuadorian Andes (n = 15), the Russian Caucasus (n = 19), the 
Lyngen Alps and Jotunheim Mountains of Norway (n = 10), and the 
European Alps (n  =  27). The sampled GFSs spanned a gradient in 
latitude, elevation, glacier size, and catchment geology (Data S1). 
Sampling was conducted as previously described (Fodelianakis et al., 
2021; Kohler et al., 2020). Briefly, samples were collected from two 
reaches of each GFS, with one near the glacier snout and the other 
located downstream (median: 434 m) before the confluence with an-
other tributary. The presence of physical barriers (cliffs, waterfalls, 
etc.) prevented a standardized distance between the glacier and as-
sociated transects. At each reach, three patches were sampled for 
benthic sediments (top <5 cm of the streambed) and gently sieved to 
retain the sandy fraction (from 250 μm to 3.15 mm); all sampling de-
vices were flame-sterilized via blowtorch prior to use. All sediment 
aliquots were flash-frozen with liquid nitrogen in the field, pending 
analysis of chlorophyll a, EEA, and DNA extraction before being 
stored at –80°C.

Stream water temperature, pH, electrical conductivity, and 
O2 concentrations were measured in situ with a SenTix® 940-P, a 
TetraCon® 925-P, and a FDO® 925-P probe on a MultiLine® meter 
(WTW Xylem Analytics Germany), respectively. Turbidity was 
measured with a Turb® 430 IR portable turbidity meter (WTW 
Xylem Analytics Germany). Stream water samples were collected 
from both reaches (except for New Zealand, where only upstream 
reaches were sampled) for the measurement of major ions, nutri-
ents, and dissolved organic carbon (DOC). Samples for nutrient 
analyses were collected by filtering water through pre-washed 
Whatman GF/F filters into acid-washed Nalgene HDPE bottles 
and were frozen as soon as possible. Nutrient concentrations were 
measured on a LaChat QuikChem 8500 flow injection analyzer and 
included nitrate (N -NO−

3
; QuikChem® Method 10-107-05-1-C), 

nitrite  +  nitrate 
(

N -
(

NO−
2
+ NO−

3

))

; 10-107-04-1-B), ammonium 
(N -NH+

4
; 10-107-06-3-D), and soluble reactive phosphorus (P-SRP; 

10-115-01-1-M). New Zealand nutrient chemistry was measured on 
the same instrument model, but using slightly different QuikChem® 
methods for the same chemical species (see Kohler et al., 2020). 
Inorganic forms of N were summed to make dissolved inorganic N 
(DIN). Values were normalized using the molar mass of each ele-
ment before calculating molar N:P ratios of stream water nutrients 
(DIN:SRP). Lastly, DOC samples were also filtered through pre-
ashed Whatman GF/F filters, stored at 4°C in acid-washed amber 
glass vials, and measured on a Sievers M9  TOC Analyser (GE). All 
concentrations are reported in ppb.

Reach coordinates were collected using a GPS (GPSMAPR 66s, 
GARMIN). Coordinates allowed the calculation of glaciological met-
rics, such as the distance to the glacier, glacier area, and percent 

glacierized catchment based on satellite data. Specifically, glacier 
area was defined as the total glacierized area within the catch-
ment above the sampling point and was manually delineated from 
Sentinel-2 imagery (Level 2a, March–April 2019, downloaded from 
https://scihub.coper​nicus.eu/) based on a catchment definition 
derived from the ASTER Global Digital Elevation Model (GDEM) 
Version 3 (NASA/Meti/Aist/Japan Spacesystems, and U.S./Japan 
Aster Science Team, 2019). Straight-line distances to the termini 
were calculated from manually mapped terminus positions based 
on the same data sources and GPS coordinates. From these data, 
we calculated the “Glacial Index” (GI; Jacobsen & Dangles, 2012), 
where high values indicate a greater level of glacier influence than 
low values:

2.2  |  Biofilm biomass and enzymatic 
extracellular activity

Chlorophyll a was measured by adding 90% EtOH to weighed sedi-
ments (~2 g wet weight), extracted in a hot water bath (78°C) for ten 
min, and incubated in the dark at 4°C for 24 h. Following incubation, 
samples were vortexed, centrifuged (max. speed for 5 min), read in 
a plate reader at 436/680 excitation/emission, and sediment dried 
to normalize resulting values by the dry mass (DM) of sediment (µg 
chlorophyll a g−1 DM).

We measured potential activities of α-1,4-glucosidase 
(AG), β-1,4-glucosidase (BG), leucine aminopeptidase (LAP),  
β-1,4-N-acetylglucosaminidase (NAG), and acid (alkaline) phos-
phatase (AP) using fluorescent 4-methylumbelliferone (MUF) and  
7-Amino-4-methylcoumarin (AMC)-linked substrates (4-MUF-​α-D-
glucoside, 4-MUF-β-D-glucoside, L-Leucine-7-amino-4-AMC, 4-M
UF-N-acetyl-β-D-glucosaminide, and 4-MUF-phosphate, respec-
tively) as performed previously (Kohler et al., 2020). AG and BG ac-
quire C, cleaving starch and cellulose, LAP and NAG acquire both 
N and C, cleaving peptides and chitin, while AP acquires P through 
the degradation of phosphomonoesters (Sinsabaugh et al., 2009). 
These extracellular enzymes are widely distributed across aquatic 
ecosystems where they have been extensively used to infer controls 
on microbial decomposition (Sinsabaugh et al., 2009; Sinsabaugh & 
Shah, 2012).

A substrate concentration of 0.3 µM and a 1.5 to 2 h incubation 
time were applied to all substrates based on preliminary work and 
were dissolved in artificial stream water with a pH adjusted to 7.5 
(Kohler et al., 2020). Approximately 1 g (wet weight) of sediment was 
transferred to pre-weighed centrifuge tubes, and 4 ml of MUF and 
AMC-linked substrates were added chilled (4°C) to sediments incu-
bated for 1.5–2 h in the dark on a shaker at 4°C. In addition to the 
assays, we incubated reference standards of MUF/AMC with con-
trols for each sediment sample: a blank (artificial stream water only), 
a matrix control (sediment plus artificial stream water), a quench 

(1)GI=

√

glacierarea (km2)

distance fromterminus (km)+

√

glacierarea (km2)

.

https://scihub.copernicus.eu/
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control (sediment plus MUF/AMC reference standard), and a deac-
tivated control (sediment boiled for 30 min before adding substrate). 
Following incubation, 2 ml of glycine buffer (pH = 10.4) was quickly 
added to all tubes (2:1 sample:buffer vol:vol ratio) to raise pH and 
halt product generation. Tubes were vortexed, centrifuged, and the 
supernatant transferred to black 96-well plates (Corning, flat bot-
tom, polystyrene non-binding surface) before fluorescences were 
read on a BioTek Synergy H1 high sensitivity plate reader at 365/455 
excitation/emission wavelengths for MUF and 364/445 excitation/
emission wavelengths for AMC. Following analyses, sediments were 
dried to a stable mass and weighed, and enzymatic activities (nmol 
h−1 g−1 DM) were calculated using equations in Kohler et al. (2020).

2.3  |  DNA extraction, amplification, and  
sequencing

Nucleic acids were extracted from ~5  g of sediment following a 
phenol-chloroform-based protocol modified for GFSs (Busi et al., 
2020). Analysis of the prokaryotic microbial component was per-
formed by amplifying the V3–V4  hypervariable region of the 16S 
rRNA gene using primers 341f (5′-CCTACGGGNGGCWGCAG-3′) 
and 785r (5′-GACTACHVGGGTATCTAATCC-3′; Klindworth et al., 
2013). Similarly, the V4 loop of the eukaryotic 18S rRNA gene was 
amplified gene was amplified using the TAReuk454F––TAReukREV3 
primers (Stoeck et al., 2010). While we acknowledge that other prim-
ers may be superior in cataloguing fungal diversity, such as the in-
ternal transcribed spacer (ITS) region, the 18S rRNA gene has been 
shown to adequately reflect fungal diversity at high taxonomic levels 
(e.g., order and higher, Yarza et al., 2017), which is sufficient for our 
purposes of providing class-level or higher differences.

The KAPA HiFi DNA polymerase (Hot Start and Ready Mix 
formulation) was used in a 25-µl-amplification reaction containing 
1x PCR buffer, 1 µM of each primer, 0.48 µg/µl BSA, and 1.0 µl of 
template DNA (concentration of ≤2–3 ng/µl). Amplification was per-
formed in a Biometra Trio (Biometra) instrument and consisted of an 
initial denaturation at 95°C for 3 min, followed by 94°C for 30 s, 55°C 
for 30 s and 72°C for 30 s for 25 cycles followed by a final exten-
sion at 72°C for 5 min. Amplification was verified on a 1.5% agarose 
gel, libraries were prepared, and samples sequenced using a 300-
bp paired-end protocol on the Illumina Miseq platform. Sequencing 
was performed partly in the Genomic Technologies Facility of the 
University of Lausanne and partly at the Biological Core Lab of the 
King Abdullah University of Science and Technology. 16S and 18S 
rRNA genes’ amplicon data were analyzed by using Trimmomatic 
(v.0.36, Bolger et al., 2014) for quality filtering and QIIME2 (v.2019.1, 
Bolyen et al., 2019) for sequence processing. DADA2 was used to 
create amplicon sequence variants (ASVs; Callahan et al., 2016), and 
the SILVA database (v138.1) was used for taxonomic classification 
(Quast et al., 2012). Singletons, chloroplasts, and mitochondria were 
removed prior to analysis from the 16S rRNA gene data set, and we 
removed singletons and all non-eukaryotes from the 18S rRNA gene 
data set.

A subset (n = 50) of the samples were chosen for shotgun metag-
enomic sequencing (based on DNA concentration and successful li-
brary preparation) and included samples from all six regions (New 
Zealand, N = 18; European Alps, n = 6; Greenland, n = 2; Caucasus, 
n = 16; Ecuador, n = 3; Norway, n = 5; Data S1). Shotgun metage-
nomic libraries were prepared using the NEBNext Ultra II FS library 
kit. The libraries were prepared as described in Busi et al. (2021). 
Briefly, 50 ng of DNA was enzymatically fragmented for 12.5 min, 
followed by 6 PCR amplification cycles for constructing the librar-
ies. The libraries were quantified using Qubit (Invitrogen), and the 
average insert size (~450 bp) was determined by quality assessment 
using the Bioanalyzer from Agilent. All the libraries were pooled and 
sequenced at the Functional Genomics Centre Zurich on a NovaSeq 
(Illumina) using a S4 flowcell.

Shotgun metagenomic samples were preprocessed using trim_
galore with default parameters (Krueger, 2018) which uses a com-
bination of cutadapt (Martin, 2011) and fastqc (Andrews, 2010) to 
check the quality and remove adapters and other unwanted se-
quences (e.g. containing primers, poly-A tails) from the raw sequence 
files. Then, megahit (v1.2.9, Li et al., 2015) was used to assemble the 
reads into contigs per sample using the default parameters. ORFs 
were obtained by Prodigal with the meta options (v2.6.3, Hyatt 
et al., 2010) and then annotated with eggnog-mapper using default 
parameters (v2.1.2, Huerta-Cepas et al., 2017). The genes taxonomy 
was determined by using Kraken2 (v2.1.2, Wood & Salzberg, 2014) 
against the Kraken2 v2.0.9beta97 maxikraken database available at 
https://loman​lab.github.io/mockc​ommun​ity/mc_datab​ases.html. To 
match genes with the laboratory-measured EEA, we used Enzyme 
Commission numbers obtained from Sinsabaugh et al. (2009; 
AG = 3.2.1.20, BG = 3.2.1.21, NAG = 3.2.1.14, LAP = 3.4.11.1, and 
AP = 3.1.3.1). The enzymes were then dereplicated using cdhit-est 
(Huang et al., 2010) by applying a global identity cutoff of 95% and 
a coverage of 80% for the shorter gene. The coverage of the differ-
ent dereplicated enzymes among the samples was obtained with the 
coverM software (v0.6.1, Woodcroft, 2020) with the trimmed_mean 
method that removes the 5% of bases with highest coverage and 5% 
of bases with lowest coverage before averaging the coverage along 
the remaining base. The recA gene (K03553) was used to normalize the  
coverage between samples by dividing the number of reads from 
the EEA genes by the number of reads assigned to this prokaryotic 
single-copy gene (Acinas et al., 2021).

2.4  |  Calculation of decomposition rate

We calculated decomposition rates from EEA based on equations 
described in Hill et al. (2017). As a first step, threshold elemental ra-
tios (TERC:X) were calculated based on the equations formulated by 
Sinsabaugh et al. (2009) and modified by Tapia-Torres et al. (2015):

(2)TERC:N =

(

AG+BG+NAG+ LAP

LAP +NAG

)

∕BC:N

no
,

https://lomanlab.github.io/mockcommunity/mc_databases.html
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where BC:X is the carbon to nutrient ratio of microbial cells (C:N = 8.6 
and C:P = 60), according to Cleveland and Liptzin (2007), and no and po 
are scalers determined by finding the intercept between C-acquiring 
(AG, BG, NAG, and LAP) and N- (NAG and LAP) and P-acquiring (AP) 
EEA. Importantly, here and below, we have reorganized the equa-
tions to include LAP and NAG as both C- and N-acquiring EEA. This 
is because LAP dominated enzymatic activity across all sites, which is 
presumably due to the high protein content of GFS dissolved OM, as 
previously reported (Singer et al., 2012). When carbon use efficiency 
(CUE) was calculated by using LAP and NAG as only N-acquiring EEA 
(as outlined below), high values were obtained and were deemed un-
realistic. Thus, we have modified our equations as recommended by 
Sinsabaugh and Shah (2012) for freshwater phytoplankton by also in-
cluding LAP and NAG as C-acquiring EEA in the model, with improved 
results. Lastly, scalers were calculated by using the entire data set so as 
not to induce differences as a function of geographic region.

The estimated TER values were next used to calculate CUE by 
using the equation described in Sinsabaugh et al. (2013, 2016):

where AX is the assimilation efficiency of N or P (0.9). Overall, CUE 
values averaged 0.23 (median 0.18) for our data set, indicating that 
our model performs reasonably compared with past meta-studies 
(Sinsabaugh et al., 2013; Sinsabaugh & Shah, 2012). Decomposition 
rates (k, % d−1) were then calculated as formulated by Sinsabaugh and 
Moorhead (1994) and executed previously by Hill et al. (2017):

where each EEA value for a given site is normalized to the greatest 
value in the data set to remove scalar weighting, and EEAtotal is the sum 
of all normalized EEA for a given site.

2.5  |  Statistical analyses

To assess how the mean and variance of decomposition changes 
over glaciological (turbidity, glacier coverage, GI) and environmen-
tal gradients (chlorophyll a, stream water temperature and N:P), we 
used generalized additive models (GAMs) for location, scale, and 
shape (GAMLSS, Rigby et al., 2005). Furthermore, we built a model 
that included the sampled region (e.g., New Zealand, European Alps, 
etc.), sediment chlorophyll a, stream water N:P, and temperature 
as fixed effects. Chlorophyll a was chosen because it represents 
the primary OM source in GFSs, is generated in close proximity 
to the decomposers, and is also likely to be of considerably higher 
quality and quantity than the DOC in the water column. Nutrient 

concentrations have previously been linked to decomposition 
(Rosemond et al., 2015), and the N:P variable specifically was chosen 
because GFSs are generally thought to be N-limited due to high levels of  
P loading from subglacial weathering (Ren et al., 2019). Therefore, 
a change in the balance of N to P may be influential for organisms 
in meeting elemental budgets. Lastly, temperature was included be-
cause organismal metabolic process rates, including decomposition, 
typically increase with temperature, per the metabolic theory of 
ecology (Brown et al., 2004). A GAM was chosen to model k because 
it allows nonlinear components for explanatory variables (i.e., chlo-
rophyll a), and produced the lowest AIC values compared with other 
model structures. The global model formula was thus:

To investigate how decomposition was related to the microbiome, 
we used phylogenetic factorization (phylofactorization) to identify bac-
terial clades that explained significant variation in k (Washburne et al., 
2017). Phylofactorization computes the isometric log-ratio (ILR) abun-
dances, ye, corresponding to each edge e in the phylogeny (to remove 
compositionality) and identifies edges maximizing an objective function 
quantifying a statistical pattern of interest. We were primarily inter-
ested in clades related to decomposition after controlling for region in 
order to account for possible region-specific and/or biogeographical 
signals present in the data set. Thus, we first computed the linear model:

for each edge and chose the edges maximizing the t statistic of y, 
referred to as the “winning” edge. To control for the nested depen-
dence of edges in the phylogeny (i.e., to ensure that a chain of de-
scendant edges behind a lineage with the largest signal are not all 
chosen in sequence), phylofactorization cuts the tree at each identi-
fied edge, recalculates ILR abundances within sub-trees, recomputes 
linear models for each edge, and repeats. Each iteration produces 
a p-value from the t statistics of the winning y, and we control for 
multiple comparisons across all edges at each iteration using Holm’s 
sequentially rejective procedure for family-wise error rates (FWER) 
at 5% as detailed in Washburne et al. (2019). We removed all samples 
with <10,000 total reads and all ASVs with <6 total reads from the 
16S rRNA gene amplicon data set prior to phylofactorization. All sta-
tistics were performed using the R statistical environment (version 
3.4.3, R Core Team, 2021).

3  |  RESULTS AND DISCUSSION

3.1  |  Decomposition rates across 101 glacier-fed 
streams

Consistent with previous work in GFSs (Kohler et al., 2020), we 
found LAP to have the greatest activities among the five extracel-
lular enzymes, followed by AP and BG (Figure S1b). This pattern of 
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EEA contrasts with work published from soils where BG activity 
generally represents a larger proportion of the EEA pool (Sinsabaugh 
et al., 2008), likely due to the abundance of OM derived from vas-
cular plants. Yet, the dominance of LAP has been previously ob-
served for both freshwater planktonic and river biofilm communities 
(Sinsabaugh et al., 2010), likely due to proteins and aminopolysac-
charides contributing a relatively large proportion of the total C 
available for production in these habitats (Sinsabaugh & Shah, 2012). 
Thus, given that LAP can be used to acquire both C and N, it provides 
a nutritionally and energetically efficient solution to using proteins; 
they likely constitute a significant resource in GFS biofilms due to 
the dominance of algal-derived matter over terrestrial subsidies of 
vascular plant material (Zah & Uehlinger, 2001).

We used EEAs to calculate decomposition rates (% d−1; 
Sinsabaugh & Moorhead, 1994), which averaged 0.0129 (median: 
0.0076; range: 0.0001 to 0.0773) across all 101 GFSs (Figure 1). 
These values are comparable with previous measurements from 
GFSs using cotton strips (mean: 0.0182; Fell et al., 2021) and from 
Alpine streams using leaf packs (mean: 0.0137 without mesh bags; 
Robinson & Gessner, 2000). Therefore, our enzymatic modeling 
approach is validated by this congruence between different meth-
ods. Strikingly, our calculated decomposition rates, encompassing 
patches, reaches, GFSs and mountain ranges, span the same range 
as those reported from streams and rivers draining across various 
biomes worldwide (Boyero et al., 2021; Tiegs et al., 2019). This find-
ing is unexpected because the GFS environment (e.g., stream water 
temperature, pH) varies relatively little among regions (Table S1) and 

because autochthonous production consistently dominates the OM 
pool in GFSs. Therefore, we explored possible drivers of decomposi-
tion that are specific to GFS ecosystems, foremost glacier influence 
and related parameters.

3.2  |  Decomposition rates increase with glacier 
shrinkage and primary producer biomass

The effects of glacier shrinkage on community ecology in GFSs are 
increasingly understood (Cauvy-Fraunié & Dangles, 2019; Milner 
et al., 2017), less so on ecosystem processes (Elser et al., 2020). 
Capitalizing on our two-reach sampling design (up- vs. downstream 
transects), we first created a generalized linear model including 
both transect and glacier as fixed effects, and found that upstream 
reaches have significantly lower decomposition rates than down-
stream (t = −6.110, p <  .001, Figure 1). To further investigate how 
decomposition rates are related to glacier influence, and by using 
GAMLSS, we found that the average decomposition rate decreased 
with percent glacier coverage and GI (taking into account glacier area 
and distance from the glacier) across all GFSs, reaches, and patches, 
while the variance of decomposition increased across that same gra-
dient (Figure 2a,b). Under the assumption that up- and downstream 
reaches, the GI, and percent glacier coverage substitute space for 
time (as used in past studies, Fell et al., 2021; Jacobsen & Dangles, 
2012), these relationships would translate into an acceleration of 
OM decomposition in GFSs as glaciers recede. To explore this rela-
tionship further, we calculated the slope from the linear regression 
of un-transformed decomposition rates versus percent glacier cov-
erage and estimated that for every 1% reduction in glacier coverage 
in the catchment, the decomposition rate increases by 0.0091% d−1.

Increasing variation in decomposition rates with glacier influ-
ence suggests that additional local factors not accounted for by 
these metrics are important for explaining decomposition. Indeed, 
it is likely that decomposition is not directly related to glacier influ-
ence, but instead related to the physical and chemical environment 
that changes with glacier influence. Stream water turbidity is such 
an environmental parameter, reflecting changes in suspended sedi-
ment concentrations largely driven by glacier extent, melt dynamics, 
and hydrological flow paths (Hodson & Ferguson, 1999; Swift et al., 
2005). At the same time, turbidity attenuates light that reaches the 
benthic zone of the stream (Boix Canadell et al., 2021; Uehlinger et al., 
2010) and induces physical abrasion of benthic biofilms (Francoeur 
& Biggs, 2006); hence, its effect on ecosystem processes is likely 
mediated by higher-order glacier processes. This notion is supported 
by the negative relationship between stream water turbidity and de-
composition (Figure 2c), which is similar to the previously described 
relationships between the glacier metrics (i.e., percent glacier cover-
age and GI) and decomposition rate (Figure 2a,b).

Overall, decomposition rates depend on OM quantity and qual-
ity (Enríquez et al., 1993; Follstad Shah et al., 2017), temperature 
and stoichiometric constraints (Findlay, 2021; Rosemond et al., 
2015; Sinsabaugh et al., 2009). DOC concentrations were low in the 

F I G U R E  1  Decomposition rates exhibited a wide range of 
values across glacier-fed streams, and were significantly greater at 
downstream (DN) versus upstream (UP) transects. We collected 
stream sediments from 101 glacier-fed streams (GFSs) from six 
major global regions, including the European Alps (green, n = 27 
GFSs), Russian Caucasus (orange, n = 19 GFSs), Ecuadorian Andes 
(blue, n = 15 GFSs), Greenland (violet, n = 10 GFSs), Norway (green, 
n = 10 GFSs), and New Zealand (yellow, n = 20 GFSs). At each GFS, 
two transects were sampled (up- and downstream), and at each 
transect three patches for a total of 606 individual measurements 
for decomposition rate, here expressed as natural log-transformed 
% day−1
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sampled streams (median = 150.35, range = 42.23–994 ppb; Table 
S1), which likely makes algae exudates the most important source of 
OM to GFS biofilms, which are in turn controlled by stream water 
turbidity. Therefore, to gain a more mechanistic understanding of 
decomposition in GFSs, we used a GAM to further explore varia-
tion in decomposition rate across all GFSs, reaches, and patches. 
Collectively, the deviance explained by the sampled region, chlo-
rophyll a, stream water temperature, and the N:P ratio was 61.4% 
(Table S2). Most conspicuously, we found chlorophyll a to be a 
major driver of decomposition rate (Spearman’s r = 0.76, p <  .001, 
Figure 3a). Stream water temperature (Spearman’s r = 0.24, p < .001) 

and N:P (Spearman's r = 0.15, p < .001) were also positively related 
with decomposition (Figure 3b,c); however, the magnitude of these 
correlations and the GAM effect sizes were relatively small com-
pared with the relationship with chlorophyll a (Table S2).

Algae have been long recognized as a source of labile OM 
substrate (Enríquez et al., 1993) and exude macromolecules (e.g., 
carbohydrates), particularly when senescing, which can be readily de-
composed by extracellular enzymes such as glucosidases (Espeland 
et al., 2001). In microbial biofilms, such enzymes act in close spatial 
proximity to the exuding algae, which is advantageous in a system 
characterized by high oligotrophy and continuous loss through ad-
vection (Battin et al., 2003, 2016). The efficient decomposition of 

F I G U R E  2  Decomposition rate increases with decreasing glacier 
influence using a space for time substitution. Decomposition 
rates in glacier-fed streams were negatively associated with the 
(a) glacier index, (b) percent glacier coverage of catchments, 
and (c) stream water turbidity (all natural log-transformed), 
suggesting that decomposition rates will increase with glacier 
shrinkage. Generalized additive models for location, scale and 
shape (GAMLSS) identified a significant decrease in the mean 
(black line), but an increase in variance (dashed gray line) in 
modeled decomposition rates with increases in all three variables 
(glacier index: μ, df = 3; t-value = −21.47; p < 0.001; σ, df = 3; 
t-value = 8.19; p < 0.001; percent glacier coverage: μ, df = 3; 
t-value = −11.75; p < 0.001; σ, df = 3; t-value = 5.88; p < 0.001; 
stream water turbidity: μ, df = 3; t-value = −20.36; p < 0.001;  
σ, df = 3; t-value = 6.06; p < 0.001)
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F I G U R E  3  Decomposition in glacier-fed streams is related 
to organic matter availability and subject to temperature and 
stoichiometric constraints. Chlorophyll a (a), stream water 
temperature (b), and stream water molar N:P ratios (c) all 
have significant positive univariate associations with modeled 
decomposition rates (all natural log-transformed). For all three, 
GAMLSS identified a significant increase in the mean (black 
line), but an decrease in variance (dashed grey line) in modeled 
decomposition rates with increases in all three variables (chlorophyll 
a; μ, df = 3; t-value = 26.61; p < .001; σ, df = 3; t-value = −8.54; 
p < .001; temperature; μ, df = 3; t-value = 5.93; p < .001; σ, df = 3; 
t-value = −2.52; p < .001; stream water N:P; μ, df = 3; t-value = 5.61; 
p < .001; σ, df = 3; t-value = −3.56; p < .001)
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the primary producers’ biomass by microorganisms is therefore a 
pivotal link to C and nutrient cycling in stream ecosystems. On the 
other hand, the lower effect size for stream water temperature in 
particular is likely attributable to the low variation in this parame-
ter across and particularly within GFSs (temperature median = 2.35, 
range = 0 to 9.35°C; Table S1). It could also be argued that the de-
composition of highly bioavailable algal-derived OM is relatively 
insensitive to temperature compared with more recalcitrant OM 
(Davidson & Janssens, 2006; von Lützow & Kögel-Knabner, 2009). 
Overall, temperature effects on OM decomposition in streams and 
rivers remain poorly understood compared with the terrestrial realm 
(Findlay, 2021).

3.3  |  Relating decomposition rates to the  
glacier-fed stream microbiome

An enduring theme in ecosystem science has been the integration 
of biogeochemistry with microbial ecology. We used 18S rRNA and 
16S rRNA gene amplicon sequencing to relate the composition of 
the biofilm microbiome to decomposition across all 101 GFSs. Based 
on relative abundances, we found that eukaryotes were domi-
nated by photoautotrophs, particularly Ochrophytes (mean  ±  SD: 
52.3% ± 24.3%), which includes the chrysophyte genus Hydrurus and 
diatoms, and green algae (Chlorophyta: 4.3% ± 6.3%; Charophyta: 
2.5% ± 5.5%). The relative abundance of fungi (5.5% ± 5.3%) was low 
compared with the photoautotrophs (Figure S2b). Intriguingly, the 
overwhelming majority of fungal reads were from Chytridiomycetes 
(69.0% ± 22.3%) followed by Dikarya (8.9% ± 11.6%), which include 
the hyphomycetes Ascomycota and Basidiomycota (Figure S3).

Chytridiomycetes are known to parasitize algae, directly deriving 
OM from them rather than through decomposition, and potentially 
fostering the release of macromolecules through cell death and dis-
ruption of the cell walls (Senga et al., 2018). The relevance of these 
parasitic fungi for the production of a “fungal shunt” and related 
carbon fluxes is increasingly being recognized in aquatic ecosystems 
(Klawonn et al., 2021), including cryospheric ecosystems (Anesio 
et al., 2017; Brown et al., 2015). The apparent dominance of these 
parasitic fungi suggests that the majority of GFS fungi are primarily 
using algae-derived OM (e.g., from Hydrurus) rather than allochtho-
nous OM from glacier ice or terrestrial vegetation. As a result, the 
classical role of fungi as saprotrophic decomposers may be down-
played in GFSs in comparison with lower elevation/latitude systems. 
Our findings on the relative dominance of Chytridiomycetes con-
trasts those on the hyphomycetes associated with cotton strips used 
as model POM in GFSs (Fell et al., 2021). Cotton strips are largely 
composed of cellulose, a major compound of vascular plant mate-
rial but largely absent from the upper reaches of GFSs. While we 
are aware that cellulose is an important component in the cell walls 
of green algae, it is not present in Hydrurus and diatoms (Lowe & 
LaLiberte, 2017), and green algae were a minority in the GFS pho-
toautotrophic communities compared with the Ochrophyta (Figure 
S2b).

Within the bacterial realm of the microbiome, Gammaproteobacteria 
(42.8%  ±  15.7%), Alphaproteobacteria (14.4%  ±  5.7%), Bacteroidia 
(10.5% ± 5.6%), and Verrucomicrobiae (4.4% ± 3.8%) were the most 
abundant classes across all GFSs (Figure S2a). To investigate which 
clades within the microbiome covary with decomposition across 
all GFSs, we used phylofactorization (Washburne et al., 2017), ac-
counting for biogeographical effects (see Methods, Table S3). Our 
analysis revealed clades with consensus taxonomies affiliated to 
Saprospiraceae (95 ASVs) within Bacteroidia, Fimbriiglobus (53 ASVs) 
within Gemmataceae, Acidobacteriae (256 ASVs), and Flavobacterium 
(50 ASVs) that were positively associated with increasing decom-
position rate and chlorophyll a. While constituting relatively minor 
contributions (mean: 1.7%; range: 0%–5.8% of the total reads per 
sample) to the bacterial microbiome, all of these clades are known 
to include chemoorganotrophs (Kulichevskaya et al., 2017; McIlroy 
& Nielsen, 2014). We, therefore, suggest that these bacterial clades 
are involved in the decomposition of algal-derived OM available in 
GFSs, potentially facilitated by, or in competition with, a fungal shunt 
as induced by the parasitic members of Chytridiomycetes.

Rather unexpectedly, the majority of the clades that we uncovered 
were negatively associated with decomposition rate. Most prominent 
among them was a large clade including 3,244 ASVs with consensus 
taxonomies affiliated to Gammaproteobacteria, Alphaproteobacteria, 
and Chloroflexi (Figure 4). This clade included genera that we have 
previously found in GFSs, including Polaromonas, Methylotenera, 
Rhodoferax, Leptothrix, and Thiobacillus, some of which are known for 
chemolithoautotrophy (Fodelianakis et al., 2021). This is also true for 
the other clades negatively associated with decomposition rate; they 
include Nitrospira, Patescibacteria, Sulfurifustis, Veruccomicrobiota, 
Planctomycetales, and Omnitrophales, with several of them being 
likely chemolithoautotrophic and previously reported from progla-
cial environments (Dindhoria et al., 2021; Fodelianakis et al., 2021; 
Wilhelm et al., 2013).

Notably, three clades nested within the largest negatively as-
sociated clade were concomitantly increasing in abundance with 
increasing decomposition rates. The consensus taxonomy of 
the largest among them was affiliated to Comamonadaceae and 
Gemmatimonadota (1,427 ASVs) and the taxonomies of the other 
two to Burkholderiales (53 ASVs) and Ellin6067 (59 ASVs). The tax-
onomic similarities between the negatively associated clade and the 
nested clades could suggest ecological differences among phyloge-
netically close relative taxa as we previously found in GFSs in New 
Zealand (Fodelianakis et al., 2021). This could explain the contrast-
ing patterns within the large phylogenetic clade that is negatively 
associated with decomposition rate and also agrees with our pre-
vious observation that, overall, taxa therein are decreasing both in 
diversity and in abundance with increasing sediment chlorophyll a 
content (Fodelianakis et al., 2021).

Because of the collinearity between decomposition rate and 
chlorophyll a (Figure 3a), we cannot unequivocally disentangle the 
effects of either on the bacterial clades. Nevertheless, our find-
ings suggest that the microbiome transits from a “gray” to a “green” 
food web depending on primary production. In GFSs with sparse 
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primary production, often related to high glacier influence with el-
evated turbidity and unstable channels, chemolithotrophy fuels a 
“gray” food web, similar to the subglacial environment (Boyd et al., 
2014; Dieser et al., 2014; Hamilton et al., 2013). In fact, some of 
the clades identified by phylofactorization, such as members of 
Comamonadaceae, may be constituents of this “gray” food web 
rather than actually suppressing decomposition. Members of 
Comamonadaceae are found in abundance within subglacial sed-
iments globally (Vinšová et al., 2022), and interestingly, are also 
known to oxidize carbon-monoxide in glacier surface sediments 
(i.e., cryoconite, Franzetti et al., 2016). As glacier influence on GFSs 
diminishes, their environment becomes more favorable to benthic 
photoautotrophs, which increasingly sustain a “green” food web 
and thereby creates niches for bacterial decomposers (i.e., het-
erotrophs). We therefore suggest, considering the space-for-time 
substitution across our studied GFSs, that food webs in GFSs may 
become “greener” as glaciers shrink, providing evidence toward 
earlier predictions for GFS ecosystems (Milner et al., 2017).

3.4  |  Relating extracellular enzymatic activity 
to the glacier-fed stream microbiome

While phylofactorization identified bacterial clades related to decom-
position across GFSs, we acknowledge that it does not necessarily 

unveil causal relationships. Therefore, we took advantage of the fact 
that EEAs underlie microbial decomposition and used gene-centric 
metagenomics to relate EEAs to bacterial groups across a subset of 
50 GFSs (Data S1). Analyzing the metagenomes, we found that the 
number of gene copies, normalized by housekeeping genes, overall 
mirrored the patterns of measured EEA, with the greatest number of 
gene copies found for LAP and AP (Figure S1a). The interpretation of 
gene abundances from metagenomic data comes with assumptions, 
particularly the relationship between gene abundance and gene ex-
pression; however, the relationship between EEA and normalized 
gene copies was relatively robust (Figure S1c), indicating that gene 
abundances may be at least partially related with their expression 
and activity.

To identify bacteria putatively involved with EEA production, 
we assigned normalized gene copies to their respective taxonomy 
at the class level. Compared with the relative abundance based on 
the prokaryotic 16S rRNA gene amplicons, we found disproportion-
ate amounts of the AP gene copies linked to Alphaproteobacteria, 
AG and BG gene copies linked to Bacteroidia, and LAP gene copies 
linked to Gammaproteobacteria (Figure 5). Gammaproteobacteria 
had the greatest relative abundances in the GFS biofilms (Figure 
S2a), and given that a disproportionate amount of the LAP gene 
copies could also be mapped to Gammaproteobacteria, these two 
observations help to explain the dominance of LAP within the total 
EEA pool. In contrast, Alphaproteobacteria generally dominate the 

F I G U R E  4  Multiple bacterial clades covary with decomposition rates in the sediment biofilm microbiome across 101 glacier-fed streams. 
Phylogenetic tree showing significant positively (green) and negatively (red) associated phylogenetic clades with decomposition after 
controlling for the effect of the sampled region. Consensus taxonomies are shown next to each clade. For the large green clade on the right 
the outgroup was the adjacent large red clade. For all other clades, the outgroup was the rest of the phylogeny
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soil microbiome (Delgado-García et al., 2018), with lower contribu-
tions of Gammaproteobacteria (i.e., former Betaproteobacteria), 
and the soil EEA pool generally has greater proportions of BG activ-
ity than in GFSs (Sinsabaugh et al., 2008). Alphaproteobacteria were 
also present in the GFS biofilms, although at lower relative abun-
dances than Gammaproteobacteria (Figure S2a), and a dispropor-
tionate number of BG gene copies were linked to this class. These 
findings on various bacterial classes differentially contributing to 
the gene abundance of extracellular enzymes and hence differ-
entially involved with OM decomposition corroborates the notion 
of ecological coherence of high phylogenetic ranks (e.g., classes; 
Philippot et al., 2010).

In the enzyme allocation model as used here (Equation 5), 
proportionately greater activities of C-acquiring extracellular en-
zymes may lead to higher decomposition rates. Thus, groups dis-
proportionately encoding for AG and BG, namely Bacteroidia and 
Alphaprotoebacteria, might disproportionately influence decom-
position through their enzyme production. Indeed, Saprospiraceae, 
a member of Bacteroidia, showed a positive relationship with de-
composition in the phylofactorization analysis, as did Acidobacteria. 
Meanwhile, Gammaproteobacteria showed an overall negative as-
sociation with decomposition rate in the same analysis, and very 
few AG and BG gene copies could be traced to this class. Given 
the high prevalence of Gammaprotebacteria and the lower rel-
ative abundances of Bacteroidia and Alphaproteobacteria, it is, 
therefore, likely that modeled decomposition is disproportionately 
driven by bacterial clades constituting a minority of these bacterial 
communities.

While decomposition may be at least partially determined by the 
differential contributions of individual bacterial classes, variability in 
decomposition may also arise through the responses of individual 
taxa to the resource gradient (e.g., chlorophyll a). For example, LAP, 
despite being the dominant EEA, was less sensitive to changes in 
the chlorophyll a gradient (slope from regression = 0.25, R2 = 0.19) 
than AG and BG, both of which strongly increased with increasing 
chlorophyll a (slopes = 0.51 and 0.55, R2 = 0.41 and 0.54, respec-
tively, Figure S4). These differences in response indicate that more 
AG and BG are produced per unit of increasing chlorophyll a than 
LAP, but whether these differences in activity are responses of in-
dividual taxa to changing environmental conditions via their enzyme 
production, community-level shifts over the same gradient, or both, 
remains to be resolved.

To conclude, we have presented evidence that glacier shrinkage 
increases decomposition rates in 101 GFSs worldwide. Our findings 
highlight the role of primary production for decomposition, thereby ex-
panding current understanding on stream OM decomposition, which 
has been largely based on ecosystems subsidized by terrestrial vas-
cular plant material. Phylofactorization and metagenomics collectively 
allowed us to pinpoint bacterial clades that are putatively involved in 
decomposition. The potential existence of a fungal shunt mediating 
between primary producers and decomposition in GFSs seems plau-
sible given that primary producers constitute the prime source of OM 
in GFSs but certainly warrants further investigations. Ultimately, our 
findings suggest that glacier shrinkage induces a shift of GFS ecosys-
tem energetics from a “gray” food web sustained by chemolithoautot-
rophy to a “green” food web sustained by photoautotrophy.

F I G U R E  5  Bacterial classes differed in 
the number of gene copies for measured 
extracellular enzymatic activity that 
could be mapped through shotgun 
metagenomics. Relative abundance of the 
gene copies of a given enzyme mapped to 
bacterial classes are plotted against the 
relative abundance of a given bacterial 
class from 16S rRNA gene amplicon 
sequencing. A 1:1 line is provided for 
comparison. Extracellular enzymes include 
α-1,4-glucosidase, β-1,4-glucosidase, 
leucine aminopeptidase, β-1,4-N-
acetylglucosaminidase, and acid (alkaline) 
phosphatase
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repository at https://doi.org/10.5281/zenodo.6367068. Code to re-
produce the analyses are available at https://github.com/micho​ug/
EEA_Glaci​erStream.
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