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Abstract: Cytochrome P450 oxidoreductase (POR) is a membrane-bound flavoprotein that helps in
transferring electrons from its NADPH domain to all cytochrome P450 (CYP450) enzymes. Mutations
in the POR gene could severely affect the metabolism of steroid hormones and the development of
skeletal muscles, a condition known as Cytochrome P450 oxidoreductase deficiency (PORD). PORD is
associated with clinical presentations of disorders of sex development, Antley and Bixler’s syndrome
(ABS), as well as an abnormal steroid hormone profile. We have performed an in silico analysis
of POR 3D X-ray protein crystal structure to study the effects of reported mutations on the POR
enzyme structure. A total of 32 missense mutations were identified, from 170 PORD patients, and
mapped on the 3D crystal structure of the POR enzyme. In addition, five of the missense mutations
(R457H, A287P, D210G, Y181D and Y607C) were further selected for an in-depth in silico analysis
to correlate the observed changes in POR protein structure with the clinical phenotypes observed
in PORD patients. Overall, missense mutations found in the binding sites of POR cofactors could
lead to a severe form of PORD, emphasizing the importance of POR cofactor binding domains in
transferring electrons to the CYP450 enzyme family.

Keywords: cytochrome P450 oxidoreductase (POR); cytochrome P45 oxidoreductase deficiency
(PORD); Antley and Bixley’s syndrome (ABS); disorders of sex development (DSD)

1. Introduction

Cytochrome P450 oxidoreductase (POR), previously known as cytochrome c reductase,
is an essential membrane-bound flavoprotein that transfers electrons to all the cytochrome
P450 (CYP450) enzymes, thus allowing them to fulfill their actions effectively [1–3]. Be-
sides providing electrons to all the microsomal P450 enzymes, POR also plays a crucial
role in the process of metabolizing drugs, steroid hormone synthesis, and xenobiotics
metabolism (Figure 1) [1]. Furthermore, the importance of POR in transferring electrons
is not just limited to microsomal CYP450; in fact, other enzymes such as heme oxygenase,
cytochrome b5, and squalene monooxygenase, as well as 7-dehydrocholesterol reductase
rely on POR to work efficiently (Figure 1) [4]. The gene of POR in homo sapiens contains
a total of 16 exons—1 non-coding exon and 15 protein-coding exons—which code for a
membrane-bound protein containing 680 amino acids [1]. The POR gene, which is located
on chromosome 7q11.23, is anchored towards the endoplasmic reticulum via a hydrophobic
N-terminus domain that helps in the interaction with CYP450 enzymes [5].

In terms of its 3D structure, POR comprises three cofactor binding domains, which are
the flavin adenine dinucleotide (FAD) binding domain, the flavin adenine mononucleotide
(FMN) binding domain, and the NADPH binding domain (Figures 2 and 3) [6,7]. Moreover,
the two flavin cofactors (FAD and FMN) are closely connected together via a flexible
hinge region that can allow the movement of electrons by undergoing conformational
changes, bringing FAD nearer to the domain of FMN (Figures 2 and 3) [5]. The initial step
of transferring electrons within POR begins with NADPH being oxidized as it donates
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its hydride anion (H-) to FAD which will eventually get reduced, the H- ion will then
be accepted by FMN, which will pass the electrons to the CYP450 enzyme, specifically
the heme center. FAD will receive two electrons from NDAPH but will only transfer one
electron to FMN at a time. Similarly, FMN will finally provide the electrons to CYP450 one
at a time [4].
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Figure 1. Role of cytochrome P450 oxidoreductase (POR). POR provides electrons to all microsomal
P450 enzymes that play a crucial role in the process of metabolizing drugs, steroid hormone synthesis,
and xenobiotic metabolism, as well as to other enzymes that also rely on POR to work efficiently, such as
heme oxygenase, cytochrome b5, squalene monooxygenase as well as 7-dehydrocholesterol reductase.
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Figure 2. Structure of POR with its redox partner. POR consists of three protein domains which are
the flavin adenine dinucleotide (FAD) binding domain, the flavin adenine mononucleotide (FMN)
binding domain, and the NADPH binding domain. FAD and FMN are closely connected together via
a flexible hinge region that changes shape to help bring FAD towards FMN allowing the electron
transfer to take place.
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Figure 3. Ribbon model of human wild-type POR protein structure (PDB: 5FA6), displaying the
flexible hinge region (green) and the three cofactor binding domains, i.e., FMN (purple ribbon), FAD
(yellow ribbon), and NADPH (orange ribbon). The FMN, FAD, as well as NADPH ligands, are
indicated as balls and sticks with colors corresponding to their binding domains (purple, yellow, and
orange, respectively).

POR Deficiency (PORD)

A number of gene mutations have been reported in the POR enzyme, resulting in
the distortion of its 3D protein structure, ultimately causing POR to function abnormally.
The mutation-driven changes in the 3D structure of the POR enzyme could lead to a
medical condition known as cytochrome P450 oxidoreductase deficiency (PORD) (OMIM:
613571), which is an autosomal recessive genetic disorder and can also be categorized as a
rare congenital adrenal hyperplasia (CAH) [3,8]. PORD has an impact on the regulation
of steroid hormone production in the body; thus, this condition could affect the normal
development of the skeletal system, the reproductive system, as well as metabolic pathways.
In an early experiment, Peterson et al. (1985) [9] assessed a 46, XY, six-month-old infant
characterized by having a female phenotype and abnormal genitals, with an unusual
steroid profile, and it was assumed to be caused by a loss of function of both CYP17A1
and CYP21A2. This report led Miller et al. (1986) [10] to propose that there might be a
defect in the POR enzyme, which provides electrons to both CYP17A1 and CYP21A2. In
spite of that, the hypothesis was excluded as an embryonic lethality was discovered in
POR knockout mice [11,12]. It was not until in 2004, when Flück et al. [3] confirmed that
the first four individuals suffering from PORD have mutations in their POR gene. The
author also described how three out of four patients developed abnormal genitals while the
remaining 1 patient suffered from an abnormal steroid profile, a cystic ovary, and primary
amenorrhea [3].

As PORD is a rare autosomal recessive disease about which we have little understand-
ing and knowledge, it can often be misdiagnosed in clinical settings. Missense mutations
in the POR gene were seen to be the most prevalent type of mutation causing PORD as
compared to other mutations. This study aims to map the missense mutations, reported in
PORD patients, on the 3D X-ray crystal structure of the POR enzyme, using a published
human POR X-ray crystal structure (PDB: 5FA6). The objectives are to establish a potential
correlation between the various POR mutations and their impact on the tertiary structure
and function of the POR enzyme, as revealed by observing the clinical phenotypes reported
in PORD patients [13–16].
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2. Results and Discussion
2.1. Compilation of Reported POR Genetic Variants

We have identified a total of approximately 170 cases of PORD reported around the
globe since its initial discovery in the year 2004 (Table 1). The extent of the POR enzyme
impairment dictates the clinical phenotype, such as disorders of sex development (DSDs),
irregular steroid hormone profiles, and skeletal malformations observed in PORD patients.
Around 84.1% of PORD patients display ABS features and 70.6% of patients experienced
ambiguous external genitalia (Table 1). Furthermore, the tabulated data indicated that a
higher number of female individuals with 46, XX karyotype were seen to suffer more from
PORD as compared to male, at a ratio of 1.3:1 (Table 1). In addition, a total of 32 reported
POR genetic variants, caused by missense mutations in the POR gene, were identified and
listed in Table 2, representing 25 disease-causing and 7 polymorphic variants. The identified
32 genetic variants were further mapped on the primary protein sequence (Figure 4) and
tertiary structure of the human POR enzyme (Figure 5) using an in silico analysis approach
to establish their location within the different cofactor binding domains of the POR enzyme
(Table 2).

Table 1. Reported cases of POR deficiency.

Patient (n)
Chromosomal

Sex 46,XX/46,XY POR Mutation
Clinical Phenotype

Reported by
ABS Features Abnormal

Genitals
Abnormal

Steroid Levels

4 2/2 7/8 a 2 2 3 [3]
3 2/1 6/6 1 2 3 [15]
2 1/1 4/4 2 1 2 [16]
1 0/1 2/2 1 0 1 [17]

19 (32 b) 6 c/10 c 34/38 a 19 (32) 12 c 10 c [18]
10 6/4 19/20 a 9 9 10 [19]
3 2/1 6/6 0 2 3 [20]
7 2/5 14/14 5 2 7 [21]
1 1/0 2/2 1 1 1 [22]
1 1/0 1/2 a,d 1 1 1 [8]
4 0/4 8/8 3 3 4 [23]
1 1/0 2/2 0 1 1 [24]

12 (35 e) 7/5 24/24 11 11 12 [25]
4 3/1 8/8 3 3 4 [26]
1 0/1 2/2 f 0 1 1 [27]
1 1/0 2/2 1 1 1 [28]
1 1/0 2/2 1 0 1 [29]
7 5/2 14/14 7 5 7 [30]
2 2/0 4/4 2 2 2 [31]
30 18/12 54/60 a 27 22 28 c [13]
1 1/0 2/2 1 1 1 [32]
1 1/0 2/2 1 1 1 [33]
1 0/1 2/2 0 1 1 [34]
20 12/8 39/40 a 19 12 N/A [35]
1 1/0 2/2 1 1 1 [36]
1 1/0 2/2 1 1 N/A [37]
1 0/1 2/2 1 1 1 [38]
1 1/0 2/2 0 1 1 [39]
1 1/0 2/2 1 1 1 [40]
2 1 c/0 c 4/4 1 1 N/A [41]
1 1/0 2/2 1 1 1 [42]
1 0/1 2/2 1 0 1 [43]
1 1/0 2/2 1 0 1 [44]
1 1/0 2/2 0 1 1 [45]



Molecules 2022, 27, 4646 5 of 13

Table 1. Cont.

Patient (n)
Chromosomal

Sex 46,XX/46,XY POR Mutation
Clinical Phenotype

Reported by
ABS Features Abnormal

Genitals
Abnormal

Steroid Levels

1 1/0 2/2 1 0 1 [46]
1 0/1 2/2 0 0 1 [47]
1 0/1 2/2 1 1 1 [48]
8 3/5 16/16 7 8 8 [14]
1 1/0 2/2 1 1 N/A [49]
4 2/2 8/8 2 4 2 [50]
1 1/0 2/2 0 0 1 [51]
2 1/1 4/4 2 1 2 [52]
1 1/0 2/2 1 1 N/A [53]
2 1/1 4/4 2 0 N/A [54]

170 95/71 143 (84.1%) 120 (70.6%)
a Not all alleles were found to be mutated. b Out of 32 patients, 19 had ABS due to POR mutation. c Karyotype,
description of genitalia, or steroid levels are not known for all patients. d Additional heterozygous mutations in
CYP21B gene. e Out of 35 patients, 12 were new and other 23 cases were reported earlier. f Additional heterozygote
mutation Q798E in the androgen receptor gene. N/A, Data not available.

Table 2. List of missense mutations variants in POR.

No. Variant DNA
Change Exon Domain

Affected References

1 R457H 1370G > A 11 FAD
[3,13–16,18–

21,24,25,28,30,42–
44,48–54]

2 V492E 1475T > A 12 FAD [3,18]

3 A287P 859G > C 8 Below FAD [3,8,13,15,17,18,22,
30,32,35–37,40,41]

4 C569Y 1706G > A 13 NADPH [3,13,17,18]
5 V608F 1822G > T 14 NADPH [3,18]
6 A115V 345C > T 5 FMN [18]
7 T142A 424A > G 4 FMN [13,18,29,30]
8 Q153R 458A > G 4 FMN [18]
9 Y181D 541T > G 5 FMN [13,15]

10 P228L 683C > T 6 FMN [18]
11 M263V 787A > G 7 Below FAD [18]
12 R316W 947C > T 9 Below FAD [18]
13 G413S 1237G > A 10 FAD [18]
14 Y459H 1375T > C 11 FAD [18]
15 A503V 1508C > T 12 FAD [18]
16 G504R 1510G > A 12 FAD [18]
17 G539R 1615G > A 12 NADPH [18,23,34]
18 L565P 1694T > C 12 NADPH [18]
19 Y578C 1733A > G 13 NADPH [19]
20 E580Q 1738G > C 13 NADPH [21]
21 L577R 1730T > G 13 NADPH [26]
22 N185K 555T > A 5 FMN [26]
23 Y607C 1820A > G 14 NADPH [13,27]
24 R498P 1493G > C 12 FAD [13,35]
25 H628P g.32234A > C 14 NADPH [13,35]
26 M408L 1223T > A 10 FAD [33]
27 A259G 758G > C 7 Below FAD [38]
28 L374H 1121A > G 10 FAD [39]
29 G144S 430G > A 4 FMN [45]
30 G177R 529G > C 5 FMN [46]
31 D210G 629A > G 5 FMN [14]
32 Y326D 976C > T 10 FAD [47]
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mutation variants found in PORD patients, while green boxes indicate polymorphic variants detected
in healthy individuals.

2.2. In Silico Analysis of POR Mutations

To identify the highly conserved amino acid residues in the POR genome across
different species, a multiple sequence alignment of human and five POR ortholog proteins
(rat, monkey, squirrel, lynx, and dog), sharing above 90% sequence identity, was performed
(Figure 6). The sequence analysis identified several highly conserved amino acid residues
among the POR orthologs (Figure 6), highlighting the importance of these conserved
residues in maintaining the stability of the POR 3D structure and function, as they were
retained throughout evolution. The interactions between different amino acid residues
within a protein sequence have a great impact on the overall stability of the protein [55], and
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any change in amino acid residue(s) due to the mutation(s) could drastically influence the
structural integrity of the protein [56,57]. The identification of conserved residues within
the POR orthologs further prompted us to investigate the location of these conserved
amino acid residues on different domains of the POR enzyme in order to understand their
potential role in keeping the functional and structural integrity of the POR enzyme.
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Therefore, using in silico analysis, we have mapped the 32 POR missense mutant
variants on the crystal structure of POR enzyme. The in silico analysis reveals the presence
of 9 out of the 32 POR variants on the FMN binding domain (A115V, T142A, G144S,
Q153R, G177R, Y181D, N185K, D210G, and P228L) (Figure 5). One of the mutation in
the FMN binding domain, i.e., the Y181Dinteracts with the FMN cofactor using a pi–pi
bond interaction (Figure 7A) between the benzene ring of the tyrosine group and the
isoalloxazine rings of FMN. Therefore, the substitution of tyrosine to aspartic acid at
position 181 would result in the destabilization of the FMN cofactor. Several studies have
determined that the Y181D mutation leads to a significant loss of activity of cytochrome
c and the CYP17A enzyme [1,58,59], leading to bone defects, i.e., midface hypoplasia
and phalangeal malformations [13,15]. In contrast, the D210G mutation presents patients
with brachydactyly and external genitalia such as micro-penis and hypospadias [14]. The
aspartic acid (D210) forms a hydrogen bond with neighboring residues K179 and D218 with
an atomic distance of 2.12 Å and 1.76 Å, respectively (Figure 7B), and its substitution to
Glycine residue at position 210 would weaken these interactions, resulting in the distortion
of the protein structure. As D210G was discovered recently, no POR activity has yet been
associated with it.
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Dog           ---MEDSSMDASATVSETVVEEVSLFSMTDMILFSLIVGLLTYWFLFRKKKDEIPEFTTI 57 
                 * **  *:*:*: *:*.******* ***:*****:*:*****:*****:*:***: * 
 
 
              A115V 
Rat           QTTAPPVKESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY 117 
Human         QTLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY 120 
Monkey        QTSTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY 120 
Squirrel      QAMTSSVKESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMAADPEEY 117 
Lynx          QPVTSSVKDSSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMAADPEEY 117 
Dog           QPMTSSAKDSSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMAADPEEY 117 
              *  :  .::********************************************:****** 
 
 
                  T142A G144S       Q153R          G177R  
Rat           DLADLSSLPEIDKSLVVFCMATYGEGDPTDNAQDFYDWLQETDVDLTGVKFAVFGLGNKT 177 
Human         DLADLSSLPEIDNALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVFGLGNKT 180 
Monkey        DLADLSSLPEIDNALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVFGLGNKT 180 
Squirrel      DLADLSSLSDIDNSLAVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGLKYAVFGLGNKT 177 
Lynx          DLADLGSLPEIENSLAVFCMATYGEGDPTDNAQDFYDWLQETDMDLSGVKYAVFGLGNKT 177 
Dog           DLADLGSLPEIENSLAVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKYAVFGLGNKT 177 
              *****.** :*:::*.***************************:**:*:*:********* 
 
 
         Y181D N185K                  D210G                             P228L 
Rat           YEHFNAMGKYVDQRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEFFGVEATG 237 
Human         YEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEHFGVEATG 240 
Monkey        YEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEHFGVEATG 240 
Squirrel      YEHFNAMGKYVDKRLEQLGAQRIFELGMGDDDGNLEEDFITWREQFWPAVCEHFGVEATG 237 
Lynx          YEHFNAMGKYVDKRLEQLGAQRIFELGMGDDDGNLEEDFITWREQFWPAVCEHFGVEATG 237 
Dog           YEHFNAMGKYVDKRLEQLGAQRIFELGMGDDDGNLEEDFITWREQFWPAVCEHFGVEATG 237 
              ************:**************:************************.******* 
 
 

       A259G M263V                A287P 
Rat           EESSIRQYELVVHEDMDVAKVYTGEMGRLKSYENQKPPFDAKNPFLAAVTANRKLNQGTE 297 
Human         EESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTTNRKLNQGTE 300 
Monkey        EESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTTNRKLNQGTE 300 
Squirrel      EESSIRQYELVVHTDIDPAKVYKGEMGRLKSYENQKPPFDAKNPFLAAVTTNRKLNQGTE 297 
Lynx          EESSIRQYELVVHTDIDVAKVYTGEMGRLKSYENQKPPFDAKNPFLAEVTTNRKLNQGTE 297 
Dog           EESSIRQYELVVHTDIDMAKVYVGEMGRLKSYENQKPPFDAKNPFLAAVTTNRKLNQGTE 297 
              ************* *:* **** ************************ **:******** 
 
 
      R316W           Y326D 
Rat           RHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQIGEILGADLDVIMSLNNLDEESNK 357 
Human         RHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDVVMSLNNLDEESNK 360 
Monkey        RHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDVIMSLNNLDEESNK 360 
Squirrel      RHLMHLELDISDSKIRYESGDHVAVYPANDSALVTQLGEILGADLDVVMSLNNLDEESNK 357 
Lynx          RHLMHLELDIADSKLRYESGDHVAVYPANDSALVSQLGKILGADLDVIMSLNNLDEESNK 357 
Dog           RHLMHLELDISDSKLRYESGDHVAVYPANDSALVNQLGEILGADLDVVMSLNNLDEESNK 357 
              **********:***:*******************.*:*:********:************ 

   L374H    M408L G413S 
Rat           KHPFPCPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEGKELYL 417 
Human         KHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMASSSGEGKELYL 420 
Monkey        KHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMASSSGEGKELYL 420 
Squirrel      KHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLRKMASSSGEGKELYL 417 
Lynx          KHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLRKMASSSGEGKELYL 417 
Dog           KHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPTEQEHLRKMASSSGEGKELYL 417 
              ********:******************************:*** *:************** 
 
 
                 R457H  
      Y459H 
Rat           SWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVAVE 477 
Human         SWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVVVE 480 
Monkey        SWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVVVE 480 
Squirrel      SWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVAVE 477 
Lynx          SWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVAVE 477 
Dog           SWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVAVE 477 
              **************** ****************************************.** 
  
 
            A503V 
                 V493E  R498P   G504R        G539R 
Rat           YEAKSGRVNKGVATSWLRAKEPAGENGGRALVPMFVRKSQFRLPFKSTTPVIMVGPGTGI 537 
Human         YETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATTPVIMVGPGTGV 540 
Monkey        YETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATTPVIMVGPGTGV 540 
Squirrel      YETKSGRINKGVATSWLRAKEPAGENGRRALVPMFVRKSQFRLPFKATTPVIMVGPGTGV 537 
Lynx          YETKSGRINKGVATSWLRAKEPAGENGRRALVPMFVRKSQFRLPFKATTPVIMVGPGTGV 537 
Dog           YQTRSGRINKGVATSWLRAKEPAGENGRRALVPMFVRKSQFRLPFKAATPVIMVGPGTGV 537 
              *::::**:******.************ ******************::***********: 
 
 
      L565P   Y578C 
          C569Y   L577R E580Q    
Rat           APFMGFIQERAWLREQGKEVGETLLYYGCRRSDEDYLYREELARFHKDGALTQLNVAFSR 597 
Human         APFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRDGALTQLNVAFSR 600 
Monkey        APFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRDGALTQLNVAFSR 600 
Squirrel      APFIGFIQERAWLQQQGKEVGETLLYYXCRRSDEDYLYREELAQFHKDGSLTQLNVAFSR 597 
Lynx          APFIGFIQERAWLRQQGKDVGETLLYYGCRRSDEDYLYREELTQFHKDGSLTQLNVAFSR 597 
Dog           APFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHQDGSLTQLNVAFSR 597 
              ***:*********::***:******** **************::**:**:********** 
 
 
        Y607C V608F  H628P 
Rat           EQAHKVYVQHLLKRDREHLWKLIHEGGAHIYVCGDARNMAKDVQNTFYDIVAEFGPMEHT 657 
Human         EQSHKVYVQHLLKQDREHLWKLI-EGGAHIYVCGDARNMARDVQNTFYDIVAELGAMEHA 659 
Monkey        EQSHKVYVQHLLKRDREHLWKLI-EGGAHIYVCGDARNMARDVQNTFYDIVAELGAMEHA 659 
Squirrel      EQPHKVYVQHLLKRDKEHLWKLIHDGGAHIYVCGDARNMARDVQNTFCDIVAELGAMEHA 657 
Lynx          EQPHKVYVQHLLKRDREHLWKLIHEGGAHIYVCGDARNMARDVQNTFYDIVAEVGAMEHA 657 
Dog           EQPHKVYVQHLLKRDKEHLWQLIHEAGAHIYVCGDARNMARDVQNTFYDIVAEVGAMEHA 657 
              ** **********:*:****:** :.**************:****** *****.* ***: 
 
Rat           QAVDYVKKLMTKGRYSLDVWS 678 
Human         QAVDYIKKLMTKGRYSLDVWS 680 
Monkey        QAVDYIKKLMTKGRYSLDVWS 680 
Squirrel      QAVDYIKKLMTKGRYSLDVWS 678 
Lynx          QAVDYIKKLMTKGRYSLDVWS 678 
Dog           QAVDYIKKLMTKGRYSLDVWS 678 
              *****:*************** 

Figure 6. Multiple protein sequence alignment of human and other POR orthologs. The protein
sequences used include: rat (NCBI: NP_113764.1), human (NCBI: NP_000932.3), monkey (NCBI:
XP_024105393), squirrel (NCBI: XP_006155694.1), lynx (NCBI: XP_046945282.1), and dog (NCBI:
NP_001171276.1). The Clustal Omega multiple sequence alignment tool was utilized to make the
alignments above. Residues that are highly conserved within the five species are labelled. Polymor-
phic variants found in healthy individuals are highlighted in green, while the mutation variants
found in PORD patients are highlighted in yellow.

Furthermore, the analysis of the FAD binding domain reveals the presence of 10 POR
mutations (Y326D, L374H, M408L, G413S, R457H, Y459H, R498P, A503V and G504R)
(Figure 5). In this group, R457H is the most prevalent mutation found in the Asian popu-
lation, especially Japanese individuals, presenting with clinical phenotypes varying from
mild to severe [3,13,15,16,18–21,24,25,27,29,41–43,47–49,53]. The R457 is located at the bind-
ing site of FAD where it closely interacts with the FAD cofactor (Figure 7C). The reported
in vitro studies showed that the R457H mutation has led to 3% residual activity of the
CYP17A1 enzyme [18,60]. In addition, four mutations were located below the FAD-binding
domain (A259G, M263V, A287P and R316W) (Figure 5). In this group the A287P mutation
commonly found in the Caucasian population accounted for 40% residual activity of POR.
The residue A287 plays an important role in stabilizing the beta-sheet structure (Figure 7D),
and its substitution with Proline would have deleterious effects on the beta-sheet secondary
structure, resulting in severe bone defects and sexual development disorders as seen in
PORD patients [3,8,13,15,17,18,22,30,32,35–37,40,41].

Similarly, the analysis of the NADPH binding domain also reveals the presence of
nine POR variants (G539R, L565P, C569Y, L577R, Y578C, E580Q, Y607C, V608F and H628P)
(Figure 5). The mutations in this group, e.g., Y607C, interact with the NADPH cofac-
tor within the NADPH binding domain using a hydrogen bonds and pi–pi interactions
(Figure 7E), and its replacement with cysteine at position 607 is reported to have a signifi-
cant loss in 17,20 lyase and aromatase enzymes activities [59,60], resulting in the reported
clinical phenotype of bone deformities and disordered sex developments in both male and
female patients [13,27].
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Figure 7. An in silico view of POR cofactor binding domains and location of the conserved amino
acid residues. (A,B) The Y181 and D210 interactions with the FMN cofactor and neighboring residues
within the FMN binding domain, respectively. (C) The R457 interactions with the FAD cofactor
and neighboring residues within the FAD binding domain. (D) The A287P interactions with the
neighboring residues below the FAD binding domain. (E) The Y607 interactions with the NADPH
cofactor and neighboring residues within the NADPH binding domain.
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3. Materials and Methods
3.1. Compilation of Reported Cases of POR Mutations

All mutation variants from the reported cases of PORD were listed and tabulated
according to their mutated site, mutation residue, DNA change, location on the exon, as well
as the domain affected by the mutation. As this study only focuses on missense mutations
reported in the POR gene, variants caused by other types of mutations such as frameshift,
nonsense, insertion, deletion, duplication, and splice-site mutations are excluded.

3.2. Bioinformatics Analysis of POR Protein Sequences

The National Center for Biotechnology Information (NCBI) database was utilized
in order to access the Homo Sapiens POR protein sequence (NCBI: NP_000932.3). Once
the sequence was retrieved, the computer algorithm basic local alignment search tool
(BLAST) (blast.ncbi.nlm.nih.gov; accessed on 25 June 2022) was used to analyze and
select POR orthologs from other species that share a close percentage identity with the
human POR protein sequences. Based on the BLAST result, species such as Pongo abelli
(monkey), Tupaia Chinensis (squirrel), Lynx rufus (lynx), Canis lupus familiaris (dog), and
Rattus norvegicus (rat) were selected as the orthologs sharing 99.56%, 94.69%, 94.10%,
93.36%, and 92.48% similarities with the human POR sequence, respectively. Lastly, to
find and compare the conserved regions between the human POR sequence and the other
selected POR orthologs, the Clustal Omega multiple sequence alignment program (EMBL-
EBI, Cambridgeshire, UK) (www.ebi.ac.UK; accessed on 25 June 2022) was used for the
alignment of amino acids. Hence, the protein sequences that were used include Homo
Sapiens (NCBI: NP_000932.3), Pongo abelli (NCBI: XP_024105393), Lynx Rufus (NCBI:
XP_046945282.1), Tupaia Chinensis (NCBI: XP_006155694.1), Rattus novergicus (NCBI:
NP_113764.1), and Canis lupus familiaris (NCBI: NP_001171276.1).

3.3. In Silico Analysis of 3D X-ray Crystal Structure of POR Protein

A wild-type 3D X-ray crystal structure of POR protein (PDB: 5FA6) was retrieved
from the Protein Data Bank (PDB). The Molsoft ICM browser tool (Molsoft LLC, San Diego,
CA, USA), was used to analyze the 3D structure of the POR enzyme. In addition, several
reported mutations in the PORD patients were analyzed and mapped on the wild-type
3D X-ray crystal structure, and an in-depth in silico structural analysis of the several POR
mutations was performed.

4. Conclusions

PORD is a genetic steroid disorder with multiple clinical presentations, as observed in
patients suffering with PORD. The severity of the PORD clinical phenotypes depends upon
the mutated amino acid residue and its location within the three cofactor binding domains,
i.e., the FAD, FMN and NADPH binding domains of the POR enzyme. The in silico mapping
of missense mutations onto the human POR structure reveals that those amino acid residues
that are in direct contact with the cofactor and are substituted for residues with smaller
sidechains, e.g., R457 to H and Y181 to D, would result in the distortion of interactions
with the cofactor molecule and will compromise the stability and folding of the enzyme.
However, a substitution such as A287 to P would interfere with the integrity of a secondary
structure element, as the substitution of alanine for proline would introduce a turn/bend in
the beta sheet harboring the A287 residue. Patients with the A287P mutation experienced
the most severe form of bone defects and sexual development disorders. On the other hand,
for residues that display charged interactions within the local environment, such as the two
polar residues Y607 and D210 when substituted with cysteine, a non-polar residue, there
will be severe steric and electrostatic clashes in the local environment which will severely
affect the folding, architecture and stability of the POR enzyme. In contrast, the missense
mutations not directly interfering with the cofactor binding domains usually result in less
structural destabilization and would present with less severe clinical phenotypes.

blast.ncbi.nlm.nih.gov
www.ebi.ac.UK
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