Table 6.
SN | Citations | Year | Input Covariates | GT | PS | AI | FE | CLS | ACC % | AUC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OBBM | LBBM | CUSIP | MedUSE | PD | COV | ||||||||||
1 | Yan et. al. [268] | 2019 | ✓ | ✓ | ✕ | ✓ | ✕ | ✕ | CVD | NA | NA | NA | NA | NA | NA |
2 | Park et al. [249] | 2017 | ✓ | ✓ | ✕ | ✕ | ✓ | ✕ | Stroke | 18 | ML | RF | SVM | 88.00 | NR |
3 | Suri et al. [248] | 2022 | ✓ | ✓ | ✓ | ✕ | ✓ | ✕ | CVD/stroke | NR | ML | NR | NR | NR | NR |
4 | Zimmerman et al. [252] | 2020 | ✓ | ✓ | ✕ | ✕ | ✕ | ✓ | CVD | 32 | DL | LDA | CNN | 87.23 | NR |
5 | Aljameel et al. [269] | 2021 | ✓ | ✓ | ✕ | ✕ | ✕ | ✓ | CVD/stroke | 287 | ML | KNN | SVM | 95.00 | 0/99 |
6 | Suri et al. [54] | 2020 | ✓ | ✓ | ✓ | ✕ | ✕ | ✓ | CVD/stroke | NR | ML/DL | NR | NR | NR | NR |
7 | Handy et al. [253] | 2021 | ✓ | ✓ | ✓ | ✕ | ✕ | ✓ | CVD/stroke | NR | ML/DL | LSTM | SVM | 84.00 | NR |
8 | Unnikrishnan et al. [245] | 2016 | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | CVD | 3654 | ML | LR | SVM | 83.00 | NR |
9 | Mouridsen et al. [270] | 2020 | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | Stroke, MRI | 16 | DL | NR | KNN | 74.00 | 0.74 |
10 | Bergamaschi et al. [254] | 2021 | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | CVD | 237 | NA | NA | NA | NA | NA |
11 | Reva et al. [244] | 2021 | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | Stroke, CT | 200 | ML | NB | DT, RF, SVM | 85.32 | NR |
12 | Kakadiaris et al. [243] | 2022 | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | CVD | 6459 | ML | DT, RF | SVM | 86.00 | 0.92 |
13 | Proposed study | 2022 | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | CVD/stroke | NA | NA | NA | NA | NA | NA |
IC: Input covariate, COV: COVID-19, PD: Parkinson’s disease, CVD: Cardiovascular disease, AI: Artificial Intelligence, OBBM: Office-based, LBBM: Laboratory-based, CUSIP: Carotid ultrasound image phenotype, MedUse: Medication, GT: Ground truth, PS: Patient size, FE: Feature extraction, CLS: Type of classifier, ACC: Accuracy, AUC: Area under the curve, NA: Not applicable, NR: Not reported, ✓: Yes, ✕: No.