Skip to main content
. 2022 Jun 24;12(7):1543. doi: 10.3390/diagnostics12071543

Table 6.

Comparative analysis of AI-based studies with CVD/stroke risk stratification of PD patients in the COVID-19 framework.

SN Citations Year Input Covariates GT PS AI FE CLS ACC % AUC
OBBM LBBM CUSIP MedUSE PD COV
1 Yan et. al. [268] 2019 CVD NA NA NA NA NA NA
2 Park et al. [249] 2017 Stroke 18 ML RF SVM 88.00 NR
3 Suri et al. [248] 2022 CVD/stroke NR ML NR NR NR NR
4 Zimmerman et al. [252] 2020 CVD 32 DL LDA CNN 87.23 NR
5 Aljameel et al. [269] 2021 CVD/stroke 287 ML KNN SVM 95.00 0/99
6 Suri et al. [54] 2020 CVD/stroke NR ML/DL NR NR NR NR
7 Handy et al. [253] 2021 CVD/stroke NR ML/DL LSTM SVM 84.00 NR
8 Unnikrishnan et al. [245] 2016 CVD 3654 ML LR SVM 83.00 NR
9 Mouridsen et al. [270] 2020 Stroke, MRI 16 DL NR KNN 74.00 0.74
10 Bergamaschi et al. [254] 2021 CVD 237 NA NA NA NA NA
11 Reva et al. [244] 2021 Stroke, CT 200 ML NB DT, RF, SVM 85.32 NR
12 Kakadiaris et al. [243] 2022 CVD 6459 ML DT, RF SVM 86.00 0.92
13 Proposed study 2022 CVD/stroke NA NA NA NA NA NA

IC: Input covariate, COV: COVID-19, PD: Parkinson’s disease, CVD: Cardiovascular disease, AI: Artificial Intelligence, OBBM: Office-based, LBBM: Laboratory-based, CUSIP: Carotid ultrasound image phenotype, MedUse: Medication, GT: Ground truth, PS: Patient size, FE: Feature extraction, CLS: Type of classifier, ACC: Accuracy, AUC: Area under the curve, NA: Not applicable, NR: Not reported, ✓: Yes, ✕: No.